跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 11:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴從伊
研究生(外文):Chung-I Tai
論文名稱:台灣紫斑蝶屬(鱗翅目:蛺蝶科)分子與翅形之變異特性
論文名稱(外文):Patterns of genetic and wing shape variation in formosan Euploea butterflies (Lepidoptera: Nymphalidae)
指導教授:葉文斌葉文斌引用關係
指導教授(外文):Wen-Bin Yeh
口試委員:楊曼妙鄭明倫
口試委員(外文):Man-Miao YangMing-Luen Jeng
口試日期:2016-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:昆蟲學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:67
中文關鍵詞:紫斑蝶雌雄二型性形值分析COI
外文關鍵詞:Euploeasexual dimorphismgeometric morphometricCOI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:324
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:1
翅色及翅斑的差異常見於蝴蝶的雌雄二型性中,但是很少文章是利用形值分析的方法,來分析性別之間翅形的微小差異。本研究應用位置標記的形值分析方法,檢測在形態上差異並不明顯的紫斑蝶是否有雌雄二型性。由前、後翅分別20及16個位置標記進行分析,結果顯示,在台灣四種常見紫斑蝶:圓翅紫斑蝶、異紋紫斑蝶、雙標紫斑蝶、小紫斑蝶,存在翅膀形狀的雌雄二型。相對於雄蝶,雌蝶的前翅延長並且有較為突出的翅端,及內縮的肛角。另一方面,我們也利用四種紫斑蝶的三段基因,COI、16S rDNA、EF-1a進行遺傳分析,與翅形變化做比較。遺傳分析發現圓翅紫斑蝶及小紫斑蝶早於五十萬年前及有多次入侵台灣的情形發生,而異紋紫斑蝶及雙標紫斑蝶則各自只有一個支系。結合形值距離及遺傳距離進行相關性比較,翅膀的形值距離與遺傳距離並沒有線性關係。圓翅紫斑蝶與小紫斑蝶形值上的分群與遺傳組成的分群有關。


Sexual dimorphism in wing color and spots are commonly found in butterflies,
while few studies examined the variation through geometric morphometric which could provide a powerful way to detect the slight difference in sexes. A landmark-based geometric morphometric approach was applied in Euploea butterflies which does not show a distinct sexual dimorphism. Based on 20 landmarks on forewing and 16 on hindwing, sexual dimorphism in wing shape of four Euploea species was detected. Generally, female has elongated forewing with more pointed apex and narrower tornus as comparing to male. Moreover, genetic variation based on three genes of COI, 16S rDNA, and EF-1? was applied to examine the relationship between genetic and wing shape variation. Relationship inferences reveal that Taiwanese E. eunice and E. tulliolus has two lineages which might involve multiple invasions driven more than 0.5 million years ago, while E. mulciber and E. sylvester each forms only one cluster. Pairwised morphometric distances comparing to the corresponding genetic distances shown no liner relationship. Morphometric clusters in species of E. eunice and E. tulliolus are associated with genetic composition.

摘要 i
Abstract ii
Contents iii
Table of contents v
Figure of contents vi
1. Introduction 1
2. Materials and Methods 4
2.1 Sampling and preservation 4
2.2 DNA extraction and amplification 4
2.3 Sequence alignment 5
2.4 Phylogenetic analysis 5
2.5 Molecular clock dating 6
2.7 Capture wings image 7
2.8 Morphometric data acquisition 7
2.9 Morphometric analysis 8
2.10 Relationship between genetic distance and morphometric distance 8
3 Results 9
3.1 The divergence time of formosan Euploea butterfly 9
3.2 Phylogenetic relationships 9
3.2.1 Euploea eunice 9
3.2.2 Euploea mulciber 10
3.2.3 Euploea sylvester 10
3.2.4 Euploea tulliolus 11
3.3 Wing shape variation of Euploea species 11
3.4 Relationship between genetic and morphometric variations 12
4. Discussions 14
4.1. Analysis of formosan Euploea genetic diversity and population structure 14
4.1.1 Euploea eunice 14
4.1.2 Euploea mulciber and Euploea sylvester 15
4.1.3 Euploea tulliolus 15
4.2 Wing shape variation of Euploea species 15
4.3 Relationship between genetic distance and morphometric distance 17
5. References 18


Allen CE, Zwaan BJ, Brakefield PM. 2011. Evolution of sexual dimorphism in the Lepidoptera. Annu. Rev. Entomol. 56: 445-64.
Adams DC, Rohlf FJ, Slice DE. 2004. Geometric morphometrics: Ten years of progress following the revolution. Italian Journal of Zoology 71: 5-16.
Bai Y, Ma LB, Xu SQ, Wang GH. 2015. A geometric morphometric study of the wing shapes of Pieris rapae (Lepidoptera: Pieridae) from the Qinling Mountains and adjacent regions: An environmental and distance-based consideration. Florida Entomologist vol. 98(1): 162-169.
Benitez HA, Parra LE, Sepulveda E, Senzana MJ. 2011. Geometric perspective of sexual dimorphism in the wing shape of Lepidoptera: the case of Synneuria sp. (Lepidoptera: Geometricdae). J. Entomol. Res. Soc. 13(1): 53-60.
Betts CR, Wootton RJ. 1988. Wing shape and fight behaviour in butterflies (Lepidoptera: Papilionidea and Hesperioidea): a preliminary analysis. J. exp. Biol. 138: 271-288.
Bookstein FL. 1991. Morphometric tools for landmark data, geometry and biology. Cambridge University Press.
Bookstein FL. 1996. Combining the tools of geometric morphometrics. Advances in morphometrics. Springer US. 131-151.
Bowlin MS, Wikelski M. 2008. Pointed Wings, low wingloading and calm air reduce migratory flight costs in Songbirds. PLoS ONE 3(5): e2154.
Brower LP. 1995. Understanding and misunderstanding the migration of the monarch butterfly(Nymphalidae) in North America: 1857-1995. Journal of the Lepidopterists Society 49(4): 304-385.
Brower A. 1994. rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from pattern of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences 91(14): 6491-6495.
de Camargo WR, de Camargo NF, Correa Ddo C, de Camargo AJ, Diniz IR. 2015. Sexual dimorphism and allometric effects associated with the wing shape of seven moth species of Sphingidae (Lepidoptera: Bombycoidea). J. Insect Sci. 15(1): 107.
Chao RF, Hsu CJ, Chen TY, Yang PS. 2007. Overwintering ecology of Danaine butterflies in the Dawu Area, Taitung County, southeastern Taiwan. Formosan Entomol. 27: 17-30.
Chao RF, Chen TY. 2005. An Ecological Study on the Danaid Overwintering Valley at Dawu, Taitung. Taitung Forest District Office 94-07-8-02. (in Chinese)
Chao RF, Chen TY. 2007. An Ecological Study on the Danaid Overwintering Valley at Dawu, Taitung (II). Taitung Forest District Office 95-07-8-02. (in Chinese)
Clement M, Posada D, Crandall K. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9(10): 1657-1660.
Dale, J, Dunn PO, Figuerola J, Lislevand T, Szekely T, Whittingham LA. 2007. Sexual selection explains Rensch’s rule of allometry for sexual size dimorphism. Proc. Biol. Sci. 274: 2971–2979.
Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7 Molecular Biology And Evolution 29: 1969-1973.
Favret C. 2009. Wing morphometry helps diagnose cryptic species and resurrect Mindarus pinicolus (Hemiptera: Aphididae). Annals of the Entomological Society of America 102(6): 970-981.
Goloboff PA, Farris JS, Nixon KC. 2008. TNT, a free program for phylogenetic analysis. Cladistics, 24(5), 774-786.
Hall TA. 1999. bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 41: 95-98.
Hsu YF. 2013. The butterflies of Taiwan: Nymphalidea. Morning star publishing Inc. Taichung. (in Chinese)
Huelsenbeck JP., Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754-755.
Jantzen B, Eisner T. 2008. Hindwings are unnecessary for flight but essential for execution of normal evasive flight in Lepidoptera. Proc. Natl. Acad. Sci. USA 105(43): 16636–16640.
Jeratthitikul E, Yago M, Hikina T. 2014. Sexual dimorphism and intraspecific variation in wing size and shape of Tongeia fischeri (Lepidoptera: Lycaenidae). Entomological Science 17: 342–353.
Kiyoshi T, Hikida T. 2012. Geographical variation in the wing morphology of the golden-ringed dragonfly Anotogaster sieboldii (Selys, 1854) (Odonata, Cordulegastridae) detected by landmark-based geometric morphometrics. Bulletin of the National Museum of Nature and Science. Series A (Zoology) 38: 65–73.
Lee JY, Wang HY. 1997. Migration and overwintering aggregations of nine Danaine butterfly species in Taiewan. Taiwan Museum, Taipei. 177pp. (in Chinese)
Lee YH, Lin CP. 2012. Morphometric and genetic differentiation of two sibling gossamer–wing damselflies, Euphaea formosa and E. yayeyamana, and adaptive trait divergence in subtropical East Asian islands. Journal of Insect Science 12(1): 53.
Lockwood R, Swaddle JP, Rayner JMV. 1998. Avian wingtip shape reconsidered: wingtip shape indies and morphological adaptions to migration. Journal of avian biology 29: 273-292.
Monteiro A, Pierce NE. 2001. Phylogeny of Bicyclus (Lepidoptera: Nymphalidae) inferred from COI, COII, and EF-1α gene sequences. Molecular phylogenetics and evolution, 18(2), 264-281.
Munoz-munoz F, Talavera S, Pages N. 2011. Geometric morphometrics of the wing in the subgenus Culicoides (Diptera: Ceratopogonidae): from practical implications to evolutionary interpretations. Journal of Medical Entomology 48(2): 129–139.
Nishikawa H, Iijima T, Kajitani R, Yamaguchi J, Ando T, Suzuki Y, Sugano S, Fujiyama A, Kosugi S, Hirasawa H, Tabata S, Ozaki K, Morimoto H, Ihara K, Obara M, Hori H, Itoh T, Fujiwara H. 2015. A genetic mechanism for female-limited Batesian mimicry in Papilio butterfly. Nature genetics, 47(4): 405-409.
Packer L, Gibbs J, Sheffield C, Hanner R. 2009. DNA barcoding and the mediocrity of morphology. Molecular Ecology Resources 9(s1): 42-50.
Posada D. 2008. jModeltest: phylogenetic model averaging. Mol Biol Evol 25: 1253-1256.
Roggero A, d’Entreves PP. 2005. Geometric morphometric analysis of wings variation between two populations of the Scythris obscurella species-group: geographic or interspecific diffenrences? (Lepidoptera: Scythrididae). SHILAP Revista de Lepidopterologia 33(130): 101-112.
Rohlf FJ, Loy A, Corti M. 1996. Morphometric analysis of old world Talpidae (Mammalia, Insectivora) using partial-warp scores. Systematic Zoology 45(3): 344-362.
Sadeghi S, Adriaens D, Dumont HJ. 2009. Geometric morphometric analysis of wing shape variation in ten European populations of Calopteryx splendens (Harris, 1782) (Zygoptera: Odonata). Odonatologica 38, 343-360.
Smith DA, Owen DF, Gordon IJ, Lowis, NK. 1997. The butterfly Danaus chrysippus (L.) in East Africa: polymorphism and morph‐ratio clines within a complex, extensive and dynamic hybrid zone. Zoological Journal of the Linnean Society, 120(1), 51-78.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30(12), 2725-2729.
Tsao WC, Yeh WB. 2008. DNA-based discrimination of subspecies of swallowtail butterflies (Lepidoptera: Papilioninae) from Taiwan. Zoological studies 47(5): 633-643.
Tsao WC, Yeh WB. 2009. Barcoding the butterflies of Taiwan. Symposium on insects in Biodiversity conservation. 117-139.
Wang HY, Emmel TC. 1990. Migration and over wintering aggregations of nine Danaine butterfly species in Taiwan (Nymphalidae). J. Lepid. Soc. 44(4), 216-228.
Webster M, Sheets HD. 2010. A practical introduction to landmarked-based geometric morphometrics. The Paleontological Society Papers, vol 16, pp 163–188, Boulder.
Yeh WB, Yang CT, Kang SC. 1997. Identification of two sibling species, Ephemera formosm and E. saucer (Ephemeroptera: Ephemeridae), based on mitochondrial DNA sequence analysis. Chin. J. Entomb. 17: 257-268.
Zelditch ML, Swiderski DL, Sheets HD. 2012. Geometric morphometrics for biologists: a primer. Academic Press. US.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top