(3.235.245.219) 您好!臺灣時間:2021/05/09 23:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:方政威
研究生(外文):Cheng-Wei Fang
論文名稱:台灣地區小菜蛾的抗藥性調查及對因滅汀之抗藥性遺傳研究
論文名稱(外文):Investigation of insecticide resistance and inheritance of emamectin benzoate resistance in diamondback moth, Plutella xylostella, in Taiwan
指導教授:戴淑美
指導教授(外文):Shu-Mei Dai 戴淑美
口試委員:許如君黃莉欣
口試日期:2016-07-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:昆蟲學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:54
中文關鍵詞:小菜蛾因滅汀抗藥性抗藥性遺傳機制
外文關鍵詞:Plutella xylostellaresistanceemamectin benzoateinheritance of resistance
相關次數:
  • 被引用被引用:3
  • 點閱點閱:58
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
小菜蛾 (Plutella xylostella L.) 為十字花科蔬菜的主要害蟲之ㄧ。為了減緩小菜蛾抗性發展的速度與延長防治藥劑的使用年限,目前多以輪用不同作用的機制藥劑作為小菜蛾抗藥性管理的主要策略。了解目前田間小菜蛾對防治藥劑的抗藥性發展趨勢與抗藥性遺傳機制,則是落實抗藥性管理策略的第一步。本研究首先利用先前建立之SHggt感性品系做為對照組,檢測2013至2015年間採自台灣6個十字花科蔬菜產區的小菜蛾對10種田間用藥的抗藥性情形。結果顯示田間小菜蛾對因滅汀與芬普尼的抗藥性普遍高於50倍;對於剋安勃與美文松的抗藥性則介於10-20倍之間;所有調查區小菜蛾對賜諾殺抗藥性皆在10倍以下。其次建立抗因滅汀的小菜蛾品系,即以因滅汀篩選草屯品系至千倍抗藥程度,再與SHggt感性品系進行互交、回交與自交,研究異型合子子代對因滅汀的抗藥性遺傳性狀。分析相關結果發現互交子代F1 (草屯篩選♂x SHggt♀) 與F1’ (草屯篩選♀x SHggt♂) 的半致死劑量分別為14.9與12.3 µg/ml,顯性度則為0.81及0.76,顯示小菜蛾對因滅汀的抗藥性是不具母體效應的不完全顯性遺傳性狀。從F1與感性親代回交的子代或F1自交的F2子代之對機數劑量反應曲線 (log concentration - probit) 皆未呈現椅形平台,以及卡方檢測不符合單基因遺傳模型的情況可推知小菜蛾對因滅汀的抗藥性由多個基因控制。而本研究也發現抗因滅汀小菜蛾在沒有藥劑的篩選壓力下,抗藥性下降十分快速,在10個世代中抗藥性從412倍降至22倍。本研究初步以添加協力劑來探討解毒酵素是否參與因滅汀的抗藥性機制,結果發現添加胡椒丁基氧化物 (Piperonyl butoxide) 可使抗因滅汀品系的半致死濃度下降了一半,顯示細胞色素P450單氧化酶可能參與部分小菜蛾對因滅汀的抗藥性。

Diamondback moth (Plutella xylostella L.) is one of the insect pests, which is capable to cause serious damage on cruciferous vegetables. To postpone or delay the development of insecticide resistance in and to extend life of insecticide use in P. xylostella, rotated use of insecticide with different mode of action is the main tactics in insecticide resistance management (IRM). The first step to implement IRM strategies is to understand the potential of insecticide-resistance development, and inheritance and stability of insecticide resistance in field diamondback moth. In this study, we use SHggt established in previous study as susceptible strain and survey the resistance development of P. xylostella collected from cruciferous vegetables growing areas in Taiwan with 10 different insecticides. The results of resistance survey have showed that the P. xylostella collected from the fields has developed high resistance to emamectin benzoate and fipronil (more than 50 folds), medial resistance to mevinphos and chlorantraniliprole (10 to 20-folds), low resistance to spinosad (< 10-fold). An emamectin benzoate-resistant strain of P. xylostella was further established to study the inheritance and stability of emamectin benzoate resistance in diamondback moth. The results showed that the LC50s of two reciprocal cross progeny, F1 and F1’, were 14.9 and 12.3 μg/ml, and the degrees of dominance of F1 and F1’were 0.81 and 0.76. There was no plateau on the log dose-Probit lines of backcrossing and self-cross progeny. These results indicate that resistance of emamectin benzoate in P. xylostella is inherited as an incomplete dominant and autosomal trait governed by polygene. In the absence of selection pressure, the emamectin benzoate resistance declined very fast, decrease from 414-fold to 22-fold within 10 generation. The involvement of metabolic enzymes in emamectin benzoate resistance was studied using synergists. Two-fold synergist ratio in treatment of emamectin benzoate and piperonyl butoxide indicates that CYP450s may play a role in emamectin benzoate resistance in P. xylostella.

摘要 i
Abstract ii
目錄 iv
表目錄 vi
圖目錄 vi
前言 1
壹、前人研究 3
一、小菜蛾簡介 3
(一) 小菜蛾形態特徵與生活史 3
(二) 小菜蛾的防治歷史與經濟危害 3
(三) 台灣登記於小菜蛾的防治藥劑 4
(四) 台灣小菜蛾抗藥性發展概況 5
二、小菜蛾防治藥劑的作用機制 6
三、小菜蛾的抗藥性機制 8
四、抗藥性遺傳研究 10
貳、材料與方法 13
一、小菜蛾飼養 13
二、供試藥劑 13
三、生物檢定 14
(ㄧ)圓葉片浸藥法 14
(二)單一濃度快速檢測 14
(三)傳統藥劑試驗 14
四、藥劑篩選 15
五、協力試驗 15
六、遺傳雜交 15
七、數據分析 16
参、 結果 18
一、單一診斷濃度快速檢測 18
二、傳統抗藥性檢測方法 19
三、小菜蛾對因滅汀的抗藥性遺傳研究 20
四、小菜蛾對因滅汀的代謝抗藥性研究 21
肆、 討論 22
一、台灣地區小菜蛾的抗藥性調查 22
二、小菜蛾對因滅汀的代謝抗藥性研究 25
三、因滅汀的抗藥性遺傳研究 27
伍、結論 29
陸、引用文獻 30
柒、圖表 35



呂鳳嗚、李錫山。1984。小菜蛾生活史觀察。中華農業研究。33: 424- 430頁。
許如君、龔庭毅、劉佩芳、李建佑、馮海東。2012。小菜蛾對21種登記殺蟲劑的田間感受性調查及敏感品系感受性基準資料的建立。臺灣昆蟲。32: 25-40。
鄭允、周桃美、高靜華。1984。小菜蛾抗藥性之研究─五、抗美文松品系誘發之交互抗性及其麩胱甘肽轉基酶活性變化情形。中華農業研究。33: 73-80頁。
高靜華、鄭允。2001。小菜蛾抗藥性之研究─十一、對數種新型殺蟲劑之抗性(1990~2001) 。中華農業研究。50(4): 80-99頁。
台灣農業藥物毒物試驗所。2013。歷年政府禁用之農藥一覽表。http://www.tactri.gov.tw/htdocs/regis/forbiden.pdf
行政院農業委員會動植物防疫檢疫局。農藥資訊服務網,登記農藥查詢:因滅汀
http://pesticide.baphiq.gov.tw/web/Insecticides_MenuItem5_3.aspx (20160722)
APRD (2016) Arthropod Pesticide Resistance Database. East Lansing: Michigan State Univ. http://www.pesticideresistance.org/display.php?page=species&
arId=571 (20160722)
Arena JP, Liu KK, Paress PS, Frazier EG, Cully DF, Mrozik H ,Schaeffer JM.(1995) The Mechanism of Action of Avermectins in Caenorhabditis Elegans: Correlation between Activation of Glutamate-Sensitive Chloride Current, Membrane Binding, and Biological Activity. J. Parasitol. 81(2) 286-294
Atumurirava F, Furlong MJ (2011) Diamondback moth resistance to commonly used insecticides in Fiji: Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests (ed. by R Srinivasan, AM Shelton and HL Collins) AVRDC – The World Vegetable Center, Nakhon Pathom, Thailand, pp. 216-221.
Baker G (2011) Crucifer vegetable insecticide resistance management strategies and issues in Australia, p. 161.
Bourguet D, Lenormand T, Guillemaud T, Marcel V, Fournier D, Raymond M (1997) Variation of dominance of newly arisen adaptive genes. Genetics 147: 1225-1234.
Bourguet D, Prout M, Raymond M (1996) Dominance of insecticide resistance presents a plastic response. Genetics 143: 407-416.

Bourguet D, Raymond M (1998) The molecular basis of dominance relationships: the case of some recent adaptive genes. J. Evol. Biol. 11: 103-122.
Bourguet D, Genissel A, Raymond M (2000) Insecticide resistance and dominance levels: J. Econ. Entomol. 93(6): 1588-1595.
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72 248-254.
Chang C, Huang XY, Chang PC, Wu HH, Dai SM (2012) Inheritance and stability of sodium channel mutations associated with permethrin knockdown resistance in Aedes aegypti. Pestic. Biochem. Physiol. 104: 136-142.
Charlesworth B (1998) Adaptive evolution: the struggle for dominance. Current Biology 8: R502-R504.
Chi H (1997) Computer program for the probit analysis. National Chung Hsing University, Taichung, Taiwan.
Dhumale UM, Moharil MP, Ghodki BS (2009) Geographical variations and genetics of pyrethroid resistance in diamondback moth Plutella xylostella L. Int. J. Integr. Biol. 7: 175.
FAOSTAT (2012) Production statistics. Rome: FAO. http://faostat.fao.org/site/567/default.aspx#ancor.
Feng HT (1987) Control economics of resistant diamondback moth - a field cage
study. Plant Prot. Bull. 29:175-184.
Furlong MJ, Spafford H, Ridland PM, Endersby NM, Edwards OR, Baker GJ, Keller MA, Paull CA (2008) Ecology of diamondback moth in Australian canola: landscape perspectives and the implications for management. Aust. J. Exp. Agr. 48: 1494-1505.
Frova C (2006) Glutathione transferases in the genomics era: new insights and perspectives. Bioorg. Chem. 23(4):149-169
Georghiou G (1969) Genetics of resistance to insecticides in houseflies and mosquitoes. Exp. Parasitol. 26: 224-255.
Georghiou GP , Taylor CE (1977) Operational influences in the evolution of insecticide resistance. J. Econ. Entomol. 70: 653-658.
Hu ZD, Feng X, Lin QS, Chen HY, Li ZY, Yin F, Liang P and Gao, XW. (2014). Biochemical mechanism of chlorantraniliprole resistance in the diamondback moth, Plutella xylostella Linnaeus. J. Integ. Agr., 13(11), 2452-2459.



Jansson RK, Brown R, Cartwright B, Cox D, Dunbar DM, Dybas RA,
Eckel C, Lasota JA, Mookerjee PK, Norton JA, Peterson RF, Starner VR, White S (1997) Emamectin benzoate: a novel avermectin derivative for control of lepidopterous pests. In Proceedings of the 3rd International Workshop on Management of Diamondback Moth and Other Crucifer Pests. MARDI, Kuala Lumpur, Malaysia.
Liu X, Wang HY, Ning YB, Qiao K, AND Wang KY (2015) Resistance Selection and Characterization of Chlorantraniliprole Resistance in Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 108(4): 1978–1985
Motohiro T and John EC (2003) Selective toxicity of neonicotinoids a attributable to specificity of insect and mammalian nicotinic receptors. Annu. Rev. Entomol. 48:339-364.
Patil SS, Ugale TB, Land GK and Barkhade UP (2011) Resistance to emamamectin benzoate in Plutella xylostella collected from different geographic locations. Internat. J. Pl. Protec., 4(1): 168-171.
Putter l, Mac Connell JG , Preiser FA, Haidri AA, Ristich SS, Dybas RA (1981) Avermectins: novel insecticides, acaricides and nematicides from a soil microorganism. Cell. Mol. Life Sci. 37(9):963-964
Pu X, Yang Y, Wu S, Wu Y (2010) Characterisation of abamectin resistance in a field‐evolved multiresistant population of Plutella xylostella. Pest Manag. Sci. 66: 371-378.
Ronald FL Mau, Gusukuma-Minuto L (2004) Diamondback moth, Plutella xylostella (L.), resistance management in Hawaii, Vol. 34: University of Hawaii at Manoa, Hawaii pp. 307-311.
Sayyed AH, Attique MNR, Khaliq A, Wright DJ (2005a) Inheritance of resistance and cross‐resistance to deltamethrin in Plutella xylostella (Lepidoptera: Plutellidae) from Pakistan. Pest Manag. Sci. 61: 636-642.
Sayyed AH, Crickmore N (2007) Selection of a field population of diamondback moth (Lepidoptera: Plutellidae) with acetamiprid maintains, but does not increase, cross-resistance to pyrethroids. J. Econ. Entomol. 100: 932-938.
Sayyed AH, Gatsi R, Ibiza-Palacios MS, Escriche B, Wright DJ, Crickmore N (2005b) Common, but Complex, Mode of Resistance of Plutella xylostella to Bacillus thuringiensis Toxins Cry1Ab and Cry1Ac. Appl. Environ. Microbiol. 71: 6863-6869.
Sayyed AH, Moores G, Crickmore N, Wright DJ (2008) Cross-resistance between a Bacillus thuringiensis Cry toxin and non-Bt insecticides in the diamondback moth. Pest Manag. Sci. 64(8):813-919
Sayyed AH, Omar D, Wright DJ (2004a) Genetics of spinosad resistance in a multi‐resistant field‐selected population of Plutella xylostella. Pest Manag. Sci. 60: 827-832.
Sayyed AH, Raymond B, Ibiza-Palacios MS, Escriche B, Wright DJ (2004b) Genetic and Biochemical Characterization of Field-Evolved Resistance to Bacillus thuringiensis Toxin Cry1Ac in the Diamondback Moth, Plutella xylostella. Appl. and Environ. Microbiol. 70: 7010-7017.
Sayyed AH, Wright DJ (2004) Fipronil resistance in the diamondback moth (Lepidoptera: Plutellidae): inheritance and number of genes involved. J. Econ. Entomol. 97: 2043-2050.
Sayyed AH, Wright DJ (2006) Genetics and evidence for an esterase‐associated mechanism of resistance to indoxacarb in a field population of diamondback moth (Lepidoptera: Plutellidae). Pest Manag. Sci. 62: 1045-1051.
Sarjeet SG, Elizabeth AC, and Patricia VP (1992) The Mode of action of Bacillus Thuringiensis Endotoxins. Annu. Rev. Entomol. 38:615-634
Schellhorn NA, Nyoike TW, Liburd OE (2009) IPM programs in vegetable crops in Australia and USA: current status and emerging trends: Integrated Pest Management: Innovation-Development Process Springer, pp. 575-597.
Shelton AM, Sances FV, Hawley J, Tang JD, Boune M, Jungers D, Collins HL, Farias J (2000) Assessment of insecticide resistance after the outbreak of diamondback moth (Lepidoptera : Plutellidae) in California in 1997. J. Econ. Entomol. 93: 931-936.
Stone B (1968) A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bulletin of the World Health Organization 38: 325.
Tabashnik BE and Cushing NL (1987) Leaf residue vs topical bioassays for assessing insecticide resistance in the diamondback moth, Plutella xyillstella L. F.A.O. Plant Prot. Bull. 35: 11-14.
Talekar NS, Shelton AM (1993) Biology, Ecology, and Management of the Diamondback Moth. Annu. Rev. Entomol. 38: 275-301.
Denholm l and Rowland MW Tactics for Managing Pesticide Resistance in Arthropods: Theory and Practice. Annu. Rev. Entomol. 37:91-112
Tsukamoto M (1983) Methods of genetic analysis of insecticide resistance: Pest Resistance to Pesticides ed. Springer, pp. 71-98.
Wang X, Khakame SK, Ye C, Yang Y, Wu Y (2012) Characterisation of field-evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Management Science 69(5):661-5.
Wang X, Wu S, Gao W, Wu Y (2016) Dominant inheritance of field-evolved resistance to fipronil in Plutella xylostella (Lepidopter:Plutellidae). J. Econ. Entomol. 109(1):334-338.
Yeh SC, Lin CL, Chang C, Feng HT, Dai SM (2014) Amino acid substitutions and intron polymorphism of acetylcholinesterase1 associated with mevinphos resistance in diamondback moth, Plutella xylostella (L.). Pestic. Biochem. Physiol, 112, 7-12.

Zalucki MP, Shabbir A, Silva R, Adamson D, Shu-Sheng L, Furlong MJ (2012) Estimating the Economic Cost of One of the world''s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string? J. Econ. Entomol. 105: 1107-1476.
Zalucki, M. P., and M. J. Furlong. (2011) Predicting outbreaks of a migratory pest: an analysis of DBM distribution and abundance revisited. The 6th International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests.
Zhao JZ, Collins HL, Li YX, Mau RFL, Thompson GD, Hertlein M, Andaloro JT, Boykin R, Shelton AM (2006) Monitoring of diampndback moth (Lepidoptera : Plutellidae) resistance to spinosad, indoxacard, and emamectin benzoate. J. Econ. Entomol. 99(1):176-181


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔