(3.235.191.87) 您好!臺灣時間:2021/05/13 05:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭冠宏
研究生(外文):Kuan-Hong Cheng
論文名稱:溶凝膠法製備的CdS量子點敏化太陽能電池之研究
論文名稱(外文):The Study of Quantum Dot Sensitized Solar Cell Prepared by Sol-Gel Method
指導教授:斯頌平
口試委員:李明威李英德
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:物理學系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:73
中文關鍵詞:量子點太陽能電池溶凝膠法硫化鎘交流阻抗
外文關鍵詞:quantum dotsolar cellsol-gelCdSac impedance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:42
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用化學浴沉積法合成CdS量子點,然後利用溶凝膠法將量子點與異丙醇鈦混合製備半導體敏化太陽能電池。我們使用X-ray,SEM與交流阻抗分析儀,並量測電池的I-V曲線來分析所製備的電池。實驗發現電池的光電轉換效率最佳樣品為使用硫化鈉製備CdS量子點、而前驅物TiO2:Cd:S的莫耳比為1:1:1、溶膠的酸鹼值pH=4、加熱溫度到450℃並恆溫2小時、需要去Na處理浸泡4分鐘,加光散射層。最佳的電池轉換效率為0.213%,開路電壓為0.37 V、短路電流密度為1.37 mA/cm2、填充因子FF為42.10%。透過SEM分析可知效率較佳的電池顯示TiO2顆粒,有小顆粒附著在大顆粒上,還有小孔洞。我們透過交流阻抗分析,得到交換電流密度、電子擴散長度與電子電洞結合時間。由擬合參數了解電池中對電極與電解質界面電荷交換的機制,電子在TiO2顆粒中擴散的機制,還有量子點內電子與電洞結合的時間。由交流阻抗的分析顯示電子電洞結合時間為本實驗樣品影響光轉換效率關係最主要的因素。

The quantum dots semiconductor sensitized solar cell is prepared by incorporation of the sol-gel and the chemical bath deposition methods. The CdS quantum dot which is prepared by the chemical bath deposition method is mixed with titanium isopropoxide. The solution is then spin coated on the substrate glass that is precoated with a thin dense TiO2 layer. X-ray, SEM and AC impedance analyzer are used to characterize the structure and morphology of the cell. According to the measurements of the I-V curves of the cells, the cell having the highest conversion efficiency is prepared using sodium sulfide as precursor, the molar ratio of Ti, Cd, and S is 1:1:1, pH value of the solution is 4, the heat treatment temperature is 450℃, the time of the heat treatment is 2 hours, and the soaking time to eliminate of Na+ ions is 4 minutes. The best performance cell has efficiency 0.213%, open circuit voltage 0.37 V, and short circuit current density 1.37 mA/cm2. The SEM image for the cell having the highest efficiency shows microstructure of small TiO2 particles aggeragating to larger particles and with small holes between them. The exchange current density, electron diffusion length and the recombination time of electron and hole are obtained by analyzing the ac impedance spectra. The results indicate that the recombination time of electron and hole is the most important factor affecting the efficiency of the cell.

摘要......................................................i
Abstract.................................................ii
目錄....................................................iii
表目錄...................................................vi
圖目錄.................................................viii
第一章 緒論..............................................1
1-1 前言.............................................1
1-2 研究動機.........................................5

第二章 實驗原理..........................................6
2-1 量子點敏化太陽能電池工作原理與元件組成..............6
2-2 量子點敏化太陽能電池元件組成結構....................6
2-3 透明導電玻璃基板..................................8
2-4 光電極組成........................................8
2-5 電解質..........................................10
2-6 金屬對電極.......................................10
2-7 光敏化層的製作...................................10
2-8 CdS 半導體......................................13
2-9 太陽能電池量測之光源..............................14
2-10 太陽能電池量測之電壓-電流輸出特性.................15
2-11 交流阻抗分析....................................17

第三章 實驗流程.........................................23
3-1 透明導電玻璃基板FTO切割與清洗.....................23
3-2 緻密層製作.......................................25
3-3 合成量子點 CdS...................................26
3-4 對電極製作.......................................28
3-5 液態電解液製作...................................30
3-6 電池封裝........................................31
3-7 樣品量測........................................31
3-8 I-t 照光時間分析.................................33

第四章 結果討論.........................................37
4-1 CdS 量子點太陽能電池效率分析......................37
4-1-1 CdS 硫的不同來源比較........................37
4-1-2 電池封裝有無散射層比較.......................39
4-1-3 光敏化層去Na處理之比較.......................40
4-1-4 光敏化層恆溫不同時間比較.....................43
4-1-5 光敏化層加熱溫度比較.........................45
4-1-6 CdS 去Na不同時間比較........................49
4-1-7 CdS 硫的來源比例比較........................50
4-2 XRD 分析........................................52
4-3 SEM 分析........................................55
4-3-1 CdS 硫的不同來源比較分析.....................55
4-3-2 溫度處理的影響..............................56
4-3-3 恆溫不同時間的影響..........................58
4-3-4 去Na不同時間的影響..........................58
4-4 UV-Vis 光學特性分析..............................61
4-5 交流阻抗分析.....................................64

第五章 結論.............................................70

參考文獻.................................................72


[1] A. Yella, H. Lee, H. Tsao, C. Yi, A. Chandiran, M. Nazeeruddin, E. Diau, C. Yeh, S. Zakeeruddin, M. Grätzel, Sci. 334 (2011) 629.
[2] Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng, X. Zhong, Am. Chem. Soc. Nano. 6 (2013) 5215.
[3] I. Hod, V. Pedro, Z. Tachan, F. Santiago, I. Sero, J. Bisquert, A. Zaban, The J. Phys. Chem. Lett. 2 (2011) 3032.
[4] 濱川圭弘, 太陽能光電池設計與應用, 五南圖書 (2009).
[5] 周嘉玲, 國立國立中興大學奈米科學研究所碩士論文 (2015).
[6] M. Green, K. Emery, Y. Hishikawa, W. Warta, E. Dunlop, Prog. Photovolt. 22 (2014) 1.
[7] M. Suait, M. Rahman, A. Ahmad, Sol. Energy. 115 (2015) 452.
[8] S. Wang, Q. Zhang, Y. Xu, D. Li, Y. Luo. Q. Meng, J. Power Sources. 224 (2013) 152.
[9] X. Xiao, Q. Liu, G. Dong, X. Zhao, H. Liu, J. Sol-Gel Sci. Techn. 41 (2007) 169.
[10] Y. Hui, H. Dijie, J. Zhonghong, D. Yong, J. Sol-Gel Sci. Techn. 3 (1994) 235.
[11] E. Cordoncillo, P. Escribano, G. Monros, M. A.Tena, V. Orera, J. Carda, J. Solid State Chem. 118 (1995) 1.
[12] 陳佳靜, 國立國立中興大學物理所碩士論文 (2008).
[13] 郭泰麟, 國立中山大學光電工程學系碩士論文 (2010).
[14] I. Robel, V. Subramanian, M. Kuno, P. Kamat, J. Am. Chem. Soc. 128 (2006) 2385.
[15] M. Ebelmen, Ann. Chimie. Phys. 16(1846)0129.
[16] M. Ebelmen, Acad. Sci. 25(1847)854.
[17] T. Graham, Chem. Soc. 17(1864)316.
[18] B. Yoldas, J. Mater. Sci. 10(1975)1856.
[19] B. Yoldas, J. Mater. Sci. 12(1977)1203.
[20] M. Yamane, A. Shinji, T. Sakaino, J. Mater. Sci. 13(1978)865.
[21] M. Spinu, A. Brennan, K. Rancourt, G. Wilkes, J. McGrath, Mater. Res. Soc. Symp. Proc. 175(1990)179.
[22] Y. Chen, J. Iroh, Chem. Mater. 11(1999)1218.
[23] D. Choi, J. Park, T. Rhee, N. Kim, S. Lee, Chem. Mater. 10(1998)705.
[24] B. Jirgensons, “Colloid Chemistry”, Macmillan New York Publication. (1962).
[25] R. Winter, J. Chan, R. Frattini, J. Jonas, J. Non-Cryst. Solids 105(1988)214.
[26] K. Muraleedharan, V. Rajan, V. Mujeeb, Trans. Nonferrous Met. Soc. China 25 (2015) 3265.
[27] R. Das, S. Pandey, Int. J. Mater. Sci. (2011) 35.
[28] K. Jain, “ Physics of Semiconducting Nanostructures”, Narosa Publication. (1997) p.25.
[29] J. Nanda, B. Kuruvilla, K. Shafi, D. Sarma, Phys. Rev. B 59 (1999) 7473.
[30] R. Elilarassi, S. Maheshwari, G. Chandrasekaran. Optoelectron. Adv. Mater. Rapid. Commun. 4 (2010) 309.
[31] J. Macintyre, F. Daniel, V. Stirling, “Dictionary of Inorganic Compounds-Chemical Database”, Charpman and Hall (1992).
[32] A. Goldstein, C. Echer, A. Alivisatos, Sci. 256 (1992) 1425.
[33] A. Yoffe, Adv. Phys. 42 (1993) 173.
[34] M. Steigerwald, A. Alivisatos, J. Gibson, T. Harris, R. Kortan, A. Muller, A. Thayer, T. Duncan, D. Douglass, L. Brus, J. Am. Chem. Soc. 110 (1988) 3046.
[35] R. Rossetti, J. Ellison, J. Gibson, L. Brus, J. Chem. Phys. 80 (1984) 4464.
[36] T. Gacoin, K. Lahlil, P. Larregaray, J-P. Boilot, J. Phys. Chem. B 105 (2001) 10228.
[37] R. Reisfeld. J. Alloys and Compounds. 341 (2002) 56.
[38] 林義成, 國立彰化師範大學機電系/顯示所 (2005).
[39] 楊惟智, 國立國立中興大學奈米科學研究所碩士論文 (2013).
[40] M. Zaharescu, M. Crisan, L. Simionescu, D. Crisan, M. Gartner, J. Sol-gel Sci. Techn. 8 (1997) 249.
[41] M. Ghamsari, A. Bahramian, Mater. Lett. 62 (2008) 361.
[42] N. Hullavarad, S. Hullavarad, Photon. Nanostruct. Fund. Appl. 5 (2007) 156.
[43] B. Raut, P. Godse, S. Pawar, M. Chougule, D. Bandgar, V. Patil, Meas. 45 (2012) 94.
[44] G. Zhu, L. Pan, T. Xu, Q. Zhao, Z. Sun, J. Alloys. Compd. 509 (2011) 7814.
[45] M. Yeh, L. Lin, C. Lee, C. Chou, K. Tsai, J. Lin, K. Ho, J. Power Sources. 237 (2013) 141.
[46] Y. Lin, Y. Lin, Y. Meng, Y. Tu, X. Zhang, Opt. Commun. 346 (2015) 64.
[47] Y. Ho, M. Lee, Electrochem. Commun. 26 (2013) 48.
[48] A. Tubtimtae, K. Wu, H. Tung, M. Lee, G. Wang, Electrochem. Commun. 12 (2010) 1158.
[49] A. Zaleska, Recent Pat. Eng. 2 (2008) 157.
[50] J. Rios, J. Calderón, R. Nogueira, J. Braz, Chem. Soc. 22 (2011) 1362.
[51] C. Wan, Y. Nuli, J. Zhuang, Z. Jiang, Mater. Lett. 56 (2002) 357.
[52] U. Ozgur, J Appl. Phys. 98 (2005) 7945.
[53] J. Janos, “Quantum Theory”, Plenum Publishing Corporation. (1987) p.346.
[54] G. Govindaraj, R. Murugaraj, Mater. Sci. and Eng. B77 (2000) 60.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔