(3.236.118.225) 您好!臺灣時間:2021/05/14 13:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:侯毓欣
研究生(外文):Yu-Hsin Hou
論文名稱:利用麥麩液態培養Aureobasidium pullulans NCH-218生產β-葡萄糖苷酶條件及其特性分析
論文名稱(外文):Production of β-glucosidase from Aureobasidium pullulans NCH-218 by using wheat bran as a major substrate for shaking culture and characterization of β-glucosidase
指導教授:陳錦樹陳錦樹引用關係
口試委員:謝寶全林澤群張淑微
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:116
中文關鍵詞:麥麩液態培養Aureobasidium pullulans NCH-218β-glucosidase酵素純化酵素特性分析
外文關鍵詞:wheat branliquid cultureAureobasidium pullulans NCH-218β-glucosidaseenzyme purificationcharacteristics of enzyme
相關次數:
  • 被引用被引用:3
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
麥麩為小麥加工製成麵粉之副產物,含有豐富之碳水化合物、蛋白質、膳食纖維等,除了用於動物飼料、菇類培養或堆肥,亦廣泛應用於食品、生質能源製造等領域,微生物生產上麥麩亦為良好之培養基質。Aureobasidium pullulans 為一類酵母真菌,具有產生胞外多醣及多種胞外酵素之能力,其中所產生之β-glucosidase,為一纖維素分解酵素,可切斷纖維素之β-1,4-糖苷鍵,進而產生葡萄糖,且具減少纖維二糖累積造成endoglucanase、exoglucanase之抑制作用,為分解纖維素之極重要的一環,β-glucosidase廣泛應用於各種領域如造紙工業、食品工業。本研究擬以麥麩作為培養基質,探討A. pullulans NCH-218生產β-glucosidase之較適培養基與液態培養條件,並進行β-glucosidase酵素部分純化及其特性分析。
實驗首先以Mandels-Reese培養基篩選菌株,結果顯示A. pullulans NCH-218具良好生產β-glucosidase之能力。接著以搖瓶培養探討A. pullulans NCH-218生產β-glucosidase較適培養基組成及培養條件,結果以添加5%麥麩、2.5%乳糖、1%酵母萃取物及未調整起始pH (pH 6.25-6.27)配製成載液量50 mL培養基,接種1% A. pullulans NCH-218活化菌液,於30℃、150 rpm下培養4天,可得最佳酵素活性(55.5 U/mL)。β-glucosidase經超過濾濃縮、硫酸銨沉澱及離子交換層析後得兩種β-glucosidase,βGI及βGII,比活性分別由50.31 U/mg增為120.51 U/mg及270.28 U/mg。βGII經活性染色及對比SDS-PAGE,推論βGII分子量大於180 kDa。βGI最適反應pH為4-5,pH穩定性在pH 5-6間,最適反應溫度40-50℃,在30-40℃具較佳熱穩定性;βGII最適反應pH為3-4,pH穩定性在pH 3-5,最適反應溫度則在60-80℃,熱穩定性在30-60℃間為佳。βGI及βGII對許多基質(如p-nitrophenyl-β-D-glucopyranoside、p-nitrophenyl-β-D-xylopyranoside、cellobiose、lactose、maltose)皆具有活性,推測屬於broad-specificity-β-glucosidase。


Wheat bran is a by-product of the wheat milling industry. It is rich in carbohydrates, protein, and dietary fiber, etc. In addition to animal feed, composting or cultivation of mushroom, it is also widely used in food, biomass energy manufacturing, and good culture medium for microbial production. Aureobasidium pullulans is a yeast-like fungus, having the ability to produce a variety of exopolysaccharides and extracellular enzymes. One of the enzyme produced is β-glucosidase, belonging to cellulases, with the ability to cleave β-1,4-glycosidic bond and then release glucose. β-glucosidase being able to reduce cellobiose accumulation therefore can reduce the inhibitory effect of endoglucanase and exoglucanase. It is widely used in various fields such as the paper industry and food industry. The purpose of this study was to produce, purify and characterize the β-glucosidase from A. pullulans NCH-218 by using wheat bran as a major substrate for shaking culture. Effects of other medium components and cultivation conditions were also investigated.
The experiment begins with the screening of strains by using Mandels-Reese culture. The results indicated that A. pullulans NCH-218 had a good ability to produce β-glucosidase. Then the optimal medium and cultivation conditions for A. pullulans NCH-218 was determined in shaking flask. The results showed that the highest production of β-glucosidase was attained by employing the following optimal conditions: 5% wheat bran (w/v), 2.5% lactose (w/v), initial pH at 6.25-6.27, 1% (v/v) A. pullulans NCH-218 was inoculated and cultured at 30℃and 150 rpm for 4 days. Under the conditions mentioned above, the maximum enzyme activity was reached approximately 55.5 U/mL. The broth filtrate from A. pullulans NCH-218 was subsequently purified by ultrafiltration, ammonium sulfate precipitation and DEAE-Sepharose ion exchange chromatography. We had two kinds of β-glucosidase, βGI and βGII. The specific activity of βGI and βGII were increased from 50.31 U/mg to 120.51 U/mg and 270.28 U/mg, respectively. By comparison of zymogram and SDS-PAGE the estimated molecular weight of βGII was greater than 180 kDa. The optimum pH of βGI was pH 4-5, while the enzyme remained quite stable in pH 5-6. The optimum temperature was 40-50℃, and the enzyme was stable at 30-40℃. As for βGII, the optimum pH was pH 3-4, while the enzyme remained quite stable in pH 3-5. The optimum temperature was 60-80℃, and the enzyme was stable at 30-60℃. Both βGI and βGII had different relative enzyme activities toward many substrates (such as p-nitrophenyl-β-D-glucopyranoside, p-nitrophenyl-β-D-xylopyranoside, cellobiose, lactose, and maltose), so we speculated that they belong to a broad-specificity-β-glucosidase.

謝誌 i
摘要 ii
Abstract iii
目次 v
表目次 ix
圖目次 x
第一章 前言 1
第二章 文獻回顧 3
一、 小麥之介紹 3
(一) 小麥結構及成分 3
(二) 應用 5
二、 麥麩之介紹 5
(一) 麥麩結構及組成 5
(二) 麥麩之應用 8
三、 Aureobasidium pullulans之簡介 12
(一) 生長及特性 12
(二) A. pullulans之應用 14
四、 纖維素酶之介紹 16
(一) Endoglucanase 16
(二) Exoglucanase 18
(三) β-glucosidase 18
五、 β-葡萄糖苷酶之介紹 18
(一) β-glucosidase之分類 18
(二) 生產β-glucosidase之菌株 19
(三) β-glucosidase之應用 19
第三章 材料方法 23
一、 實驗材料 23
(一) 實驗原料 23
(二) 實驗菌株 23
(三) 培養基 23
(四) 化學藥劑 24
二、 儀器設備 25
三、 套裝軟體 26
四、 實驗架構 27
五、 實驗方法 28
(一) 菌種活化及保存 28
(二) 原料前處理 28
(三) 麥麩基本成分分析 28
(四) β-glucosidase活性測定方法 30
(五) β-glucosidase較適液態條件探討 31
(六) 粗酵素液製備 33
(七) 酵素部分純化 33
(八) 部分純化後β-glucosidase性質分析 34
(九) 分析方法 38
第四章 結果討論 40
一、 麥麩基本成分分析 40
二、 生產β-glucosidase之菌株確立 40
三、 Aureobasidium pullulans NCH-218外觀型態及生長曲線 43
(一) 外觀型態 43
(二) 生長曲線 43
四、 生產β-glucosidase較適液態培養條件之探討 45
(一) 基質(麥麩)濃度 47
(二) 碳源種類 47
(三) 碳源濃度 51
(四) 氮源種類 51
(五) 氮源濃度 53
(六) 培養溫度 56
(七) 起始pH值 58
(八) 菌液接種量 60
(九) 震盪速率 60
(十) A. pullulans NCH-218較適培養條件下生產
β-glucosidase探討 63
五、 β-glucosidase粗酵素液性質分析 65
(一) 最適反應pH值 65
(二) pH穩定性 65
(三) 最適反應溫度 68
(四) 熱穩定性 68
(五) 基質特異性 68
六、 酵素純化 72
(一) 超過濾濃縮 72
(二) 硫酸銨沉澱劃分 72
(三) DEAE-Sepharose FF 離子交換層析 75
七、 部分純化β-glucosidase之性質分析 75
(一) SDS-聚丙醯胺膠體電泳(SDS-PAGE) 75
(二) 原態聚丙醯胺膠體電泳(Native-PAGE) 80
(三) 活性染色 80
(四) 酵素最適反應pH值 82
(五) 酵素pH穩定性 85
(六) 酵素最適反應溫度 88
(七) 酵素熱穩定性 90
(八) 基質特異性 94
第五章 結論 98
第六章 未來展望 100
第七章 參考文獻 101



李中正。2005。煙麴黴中β-葡萄糖苷酶之纯化及生化特性探討。國立屏東科技大學。碩士學位論文。
沈勳。2000。淺談小麥與麵粉的應用。行政院農業委員會改良場。
麥揚竣。2007。Aspergillus oryzae NCH-42單寧酶之生產、純化及其特性分析。國立國立中興大學食品暨應用生物科技學系。碩士學位論文。
游義德。1991。米糠、麩皮和粉頭在餵豬上應注意之事項。畜牧半月刊。46(3): 33-40。
黃欣珮。2013。利用大豆豆渣液態培養 Aureobasidium pullulans NCH-218生產聚甘露糖酶及酵素特性分析。國立國立中興大學食品暨應用生物科技學系。碩士學位論文。
黃詩淳。2012。半纖維素酶生產菌株之篩選、培養條件與Aureobasidium pullulans NCH-218聚木糖酶酵素特性探討。國立國立中興大學食品暨應用生物科技學系。碩士學位論文。
鄭文振。2013。利用麥麩為主要基質培養Aureobasidium pullulans NCH-218生產普魯蘭多醣條件與多醣特性之探討。國立國立中興大學食品暨應用生物科技學系。碩士學位論文。
A.O.A.C. 1995. Official methods of analysis of the Association of Official Analytic Chemists, 16th edition, Horowitz, W. ed. Washinton, District of Columbia, United States of America.
Abedi, T., Alemzadeh, A. and Kazemeyni, S. A. 2011. Wheat yield and grain protein response to nitrogen amount and timing. Australian Journal of Crop Science. 5(3): 327-333.
Adedayo, M. R., Ajiboye, E. A., Akintunde, J. K. and Odaibo, A. 2011. Single cell proteins: as nutritional enhancer. Advances in Applied Science Research. 2(5): 396-409.
Amouri, B and Gargouri, A. 2006. Characterization of a novel β-glucosidase from a Stachybotrys strain. Biochemical Engineering Journal. 32(3): 191-197.
Anish, R., Rahman, M. S. and Rao, M. 2007. Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnology and Bioengineering. 96(1): 48-56.
Baffi, M. A., Martin, N., Tobal, T. M., Ferrarezi, A. L., Lago, J. H., Boscolo, M., Gomes, E. and Da-Silva, R. 2013a. Purification and characterization of an ethanol-tolerant beta-glucosidase from Sporidiobolus pararoseus and its potential for hydrolysis of wine aroma precursors. Applied Biochemistry and Biotechnology. 171(7): 1681-1691.
Baffi, M. A., Tobal, T., Lago, J. H. G., Boscolo, M., Gomes, E. and Da-Silva, R. 2013b. Wine aroma improvement using a beta-glucosidase preparation from Aureobasidium pullulans. Applied Biochemistry and Biotechnology. 169(2): 493-501.
Bankova, E., Bakalova, N., Petrova, S. and Kolev, D. 2006. Enzymatic synthesis of oligosaccharides and alkylglycosides in water-organic media via transglycosylation of lactose. Biotechnology & Biotechnological Equipment. 20(3): 114-119.
Bauer, R. 1938. Physiology of Dematium pullulans de Bary. Zentralbl Bacteriol Parasitenkd Infektionskr Hyg Abt2. 98: 133-167.
Bhat, M.K. and Bhat, S. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances. 15(3-4): 583-620.
Bhatia, Y., Mishra, S. and Bisaria, V. S. 2002. Microbial beta-glucosidases: Cloning, properties, and applications. Critical Reviews in Biotechnology. 22(4): 375-407.
Bolarinwa, I. F., Orfila, C. and Morgan, M. R. 2015. Determination of amygdalin in apple seeds, fresh apples and processed apple juices. Food Chemistry. 170: 437-442.
Burkholder, P. R. and Sinnott, E. W. 1945. Morphogenesis of fungus colonies in submerged shaken cultures. American Journal of Botany. 32: 424-431.
Chen, H., Hayn, M. and Esterbauer, H. 1992. Purification and characterization of two extracellular beta-glucosidases from Trichoderma reesei. Biochimica et Biophysica Acta. 1121(1-2): 54-60.
Chen, L., Li, N. and Zong, M. H. 2012. A glucose-tolerant beta-glucosidase from Prunus domestica seeds: Purification and characterization. Process Biochemistry. 47(1): 127-132.
Chi, Z., Wang, F., Chi, Z., Yue, L., Liu, G. and Zhang, T. 2009. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Applied Microbiology Biotechnology. 82(5): 793-804.
Coughlan, M. P. 1985. The properties of fungal and bacterial cellulases with comment on their production and application. Biotechnology & Genetic Engineering Reviews. 3: 39-109.
Daroit, D. J., Simonetti, A., Hertz, P. F. and Brandelli, A. 2008. Purification and characterization of an extracellular beta-glucosidase from Monascus purpureus. Journal of Microbiology and Biotechnology. 18(5): 933-941.
De Hoog, G. S. 1993. Evolution of black yeasts, possible adaptation to the human host. Antonie van Leeuwenhoek. 63(2): 105-109.
Deshpande, M. S., Rale, V. B. and Lynch, J. M. 1992. Aureobasidium Pullulans in applied microbiology - a status-report. Enzyme and Microbial Technology. 14(7): 514-527.
Desrochers, M., Jurasek, L. and Paice, M. G. 1981. High production of beta-glucosidase in Schizophyllum commune - Isolation of the enzyme and effect of the culture filtrate on cellulose hydrolysis. Applied and Environmental Microbiology. 41(1): 222-228.
Dikshit, R. and Tallapragada, P. 2015. Partial purification and characterization of beta-glucosidase from Monascus sanguineus. Brazilian Archives of Biology and Technology. 58(2): 185-191.
Dwek, R. A. 1996. Glycobiology: Toward understanding the function of sugars. Chem Rev. 96(2): 683-720.
Efsa. 2011. Scientific opinion on the substantiation of health claims related to beta-glucans and maintenance of normal blood cholesterol concentrations(ID 754, 755, 757, 801, 1465, 2934) and maintenance or achievement of a normal body weight (ID 820, 823). EFSA Journal. 7(9): 1-18.
Eivazi, F. and Tabatabai, M. A. 1988. Glucosidases and galactosidases in soils. Soil Biology and Biochemistry. 20(5): 601-606.
El Khoury, D., Cuda, C., Luhovyy, B. L. and Anderson, G. H. 2012. Beta glucan: health benefits in obesity and metabolic syndrome. Journal of Nutrition and Metabolism. 2012: 851362.
Esen, A. 1993. Beta-Glucosidases - Overview. Acs Symposium Series. 533: 1-14.
Gao, Z. Q., Hop, D. V., Yen, L. T. H., Ando, K., Hiyamuta, S. and Kondo, R. 2012. The production of beta-glucosidases by Fusarium proliferatum NBRC109045 isolated from Vietnamese forest. Amb Express. 2.
Garcia, N. F. L., Santos, F. R. D., Goncalves, F. A., Da Paz, M. F., Fonseca, G. G. and Leite, R. S. R. 2015. Production of beta-glucosidase on solid-state fermentation by Lichtheimia ramosa in agroindustrial residues: Characterization and catalytic properties of the enzymatic extract. Electronic Journal of Biotechnology. 18(4): 314-319.
Gibbs, P. A., Seviour, R. J. and Schmid, F. 2000. Growth of filamentous fungi in submerged culture: problems and possible solutions. Critical Reviews in Biotechnology. 20(1): 17-48.
Giraldo, M. A., Goncalves, H. B., Furriel Rdos, P., Jorge, J. A. and Guimaraes, L. H. 2014. Characterization of the co-purified invertase and beta-glucosidase of a multifunctional extract from Aspergillus terreus. World Journal of Microbiology and Biotechnology. 30(5): 1501-1510.
Gonzalez-Pombo, P., Farina, L., Carrau, F., Batista-Viera, F. and Brena, B. M. 2011. A novel extracellular beta-glucosidase from Issatchenkia terricola: Isolation, immobilization and application for aroma enhancement of white Muscat wine. Process Biochemistry. 46(1): 385-389.
Gonzalez-Pombo, P., Farina, L., Carrau, F., Batista-Viera, F. and Brena, B. M. 2014. Aroma enhancement in wines using co-immobilized Aspergillus niger glycosidases. Food Chemistry. 143: 185-191.
Grizard, D. and Barthomeuf, C. 1999. Non-digestible oligosaccharides used as prebiotic agents: mode of production and beneficial effects on animal and human health. Reproduction Nutrition Development. 39(5-6): 563-588.
Gueguen, Y., Chemardin, P., Arnaud, A. and Galzy, P. 1995. Purification and characterization of an intracellular beta-glucosidase from Botrytis cinerea. Enzyme and Microbial Technology. 17(10): 900-906.
Gueguen, Y., Chemardin, P., Janbon, G., Arnaud, A. and Galzy, P. 1996. A very efficient beta-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices. Journal of Agricultural and Food Chemistry. 44(8): 2336-2340.
Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K. and Chauhan, B. 2003. Microbial alpha-amylases: a biotechnological perspective. Process Biochemistry. 38(11): 1599-1616.
Han, Y. W., Cheeke, P. R., Anderson, A. W. and Lekprayoon, C. 1976. Growth of Aureobasidium pullulans on straw hydrolysate. Applied and Environmental Microbiology. 32(6): 799-802.
Harnpicharnchai, P., Champreda, V., Sornlake, W. and Eurwilaichitr, L. 2009. A thermotolerant beta-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expression and Purification. 67(2): 61-69.
Heck, J. X., Hertz, P. F. and Ayub, M. A. Z. 2002. Cellulase and xylanase production by isolated Amazon bacillus strains using soybean industrial residue based solid-state cultivation. Brazilian Journal of Microbiology. 33(3): 213-218.
Hemery, Y., Rouau, X., Dragan, C., Bilici, M., Beleca, R. and Dascalescu, L. 2009. Electrostatic properties of wheat bran and its constitutive layers: Influence of particle size, composition, and moisture content. Journal of Food Engineering. 93(1): 114-124.
Hemery, Y., Rouau, X., Lullien-Pellerin, V., Barron, C. and Abecassis, J. 2007. Dry processes to develop wheat fractions and products with enhanced nutritional quality. Journal of Cereal Science. 46(3): 327-347.
Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino-acid-sequence similarities. Biochemical Journal. 280: 309-316.
Henrissat, B. and Bairoch, A. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal. 316: 695-696.
Hernandez, L. F., Espinosa, J. C., Fernandez-Gonzalez, M. and Briones, A. 2003. beta-glucosidase activity in a Saccharomyces cerevisiae wine strain. International Journal of Food Microbiology. 80(2): 171-176.
Jensen, M. K., Koh-Banerjee, P., Franz, M., Sampson, L., Gronbaek, M. and Rimm, E. B. 2006. Whole grains, bran, and germ in relation to homocysteine and markers of glycemic control, lipids, and inflammation 1. The American Journal of Clinical Nutrition. 83(2): 275-283.
Jones, D. A. 1998. Why are so many food plants cyanogenic? Phytochemistry. 47(2): 155-162.
Juhasz, T., Szengyel, Z., Szijarto, N. and Reczey, K. 2004. Effect of pH on cellulase production of Trichoderma reesei RUT C30. Applied Biochemistry and Biotechnology. 113-116: 201-211.
Juturu, V. and Wu, J. C. 2014. Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews. 33: 188-203.
Karnchanatat, A., Petsom, A., Sangvanich, P., Piaphukiew, J., Whalley, A. J. S., Reynolds, C. D. and Sihanonth, P. 2007. Purification and biochemical characterization of an extracellular beta-glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.: Fr.) Rehm. Fems Microbiology Letters. 270(1): 162-170.
Kaur, Jatinder, Chadha, Bhupinder S., Kumar, Badhan A., Ghatora, S. Kaur and Saini, Harvinder S. 2007. Purification and characterization of ß-glucosidase from Melanocarpus sp. MTCC 3922. Electronic Journal of Biotechnology. 10(2): 0-0.
Kitpreechavanich, V., Hayashi, M. and Nagai, S. 1986. Purification and characterization of extracellular beta-xylosidase and beta-glucosidase from Aspergillus fumigatus. Agricultural and Biological Chemistry. 50(7): 1703-1711.
Ko, J. A., Park, J. Y., Kwon, H. J., Ryu, Y. B., Jeong, H. J., Park, S. J., Kim, C. Y., Oh, H. M., Park, C. S., Lim, Y. H., Kim, D., Rho, M. C., Lee, W. S. and Kim, Y. M. 2014. Purification and functional characterization of the first stilbene glucoside-specific beta-glucosidase isolated from Lactobacillus kimchi. Enzyme and Microbial Technology. 67: 59-66.
Kozubek, A. and Nienartowicz, B. 1995. Cereal grain resorcinolic lipids inhibit H2O2-induced peroxidation of biological membranes. Acta Biochimica Polonica. 42(3): 309-315.
Kudanga, T. and Mwenje, E. 2005. Extracellular cellulase production by tropical isolates of Aureobasidium pullulans. Canadian Journal of Microbiology. 51(9): 773-776.
Kwon, K. S., Kang, H. G. and Hah, Y. C. 1992. Purification and characterization of two extracellular beta-glucosidases from Aspergillus nidulans. Fems Microbiology Letters. 76(1-2): 149-153.
Landberg, R., Kamal-Eldin, A., Salmenkallio-Marttila, M., Rouau, X. and Aman, P. 2008. Localization of alkylresorcinols in wheat, rye and barley kernels. Journal of Cereal Science. 48(2): 401-406.
Lau, A. T. Y. and Wong, W. K. R. 2001. Purification and characterization of a major secretory cellobiase, Cba2, from Cellulomonas biazotea. Protein Expression and Purification. 23(1): 159-166.
Leathers, T. D. 1993. Substrate regulation and specificity of amylases from Aureobasidium strain NRRL Y-12,974. Fems Microbiology Letters. 110(2): 217-222.
Lecas, M., Gunata, Z. Y., Sapis, J. C. and Bayonove, C. L. 1991. Purification and partial characterization of β-glucosidase from grape. Phytochemistry. 30(2): 451-454.
Leelavathi, K. and Rao, P. H. 1993. Development of High-Fiber Biscuits Using Wheat Bran. Journal of Food Science and Technology-Mysore. 30(3): 187-190.
Lei, V., Amoa-Awua, W. K. A. and Brimer, L. 1999. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms. International Journal of Food Microbiology. 53(2-3): 169-184.
Leite, R. S., Bocchini, D. A., Martins Eda, S., Silva, D., Gomes, E. and Da Silva, R. 2007. Production of cellulolytic and hemicellulolytic enzymes from Aureobasidium pulluans on solid state fermentation. Applied Biochemistry and Biotechnology. 137-140(1-12): 281-288.
Leite, R. S. R., Alves-Prado, H. F., Cabral, H., Pagnocca, F. C., Gomes, E. and Da-Silva, R. 2008. Production and characteristics comparison of crude beta-glucosidases produced by microorganisms Thermoascus aurantiacus e Aureobasidium pullulans in agricultural wastes. Enzyme and Microbial Technology. 43(6): 391-395.
Li, H. F., Chi, Z. M., Wang, X. H., Duan, X. H., Ma, L. Y. and Gao, L. M. 2007. Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion. Enzyme and Microbial Technology. 40(5): 1006-1012.
Li, J. F. and Chi, Z. M. 2004. Siderophores from marine microorganisms and their applications. Journal of Ocean University of China. 3(1): 40-47.
Li, W., Cui, S. W. and Kakuda, Y. 2006. Extraction, fractionation, structural and physical characterization of wheat beta-D-glucans. Carbohydrate Polymers. 63(3): 408-416.
Lin, T. C. and Chen, C. S. 2004. Enhanced mannanase production by submerged culture of Aspergillus niger NCH-189 using defatted copra based media. Process Biochemistry. 39(9): 1103-1109.
Liu, L., Winter, K. M., Stevenson, L., Morris, C. and Leach, D. N. 2012. Wheat bran lipophilic compounds with in vitro anticancer effects. Food Chemistry. 130(1): 156-164.
Lynd, L. R., Weimer, P. J., Van Zyl, W. H. and Pretorius, I. S. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews. 66(3): 506-577.
Ma, Z. C., Chi, Z., Geng, Q., Zhang, F. and Chi, Z. M. 2012. Disruption of the pullulan synthetase gene in siderophore-producing Aureobasidium pullulans enhances siderophore production and simplifies siderophore extraction. Process Biochemistry. 47(12): 1807-1812.
Maitan-Alfenas, G. P., Lage, L. G. D., De Almeida, M. N., Visser, E. M., De Rezende, S. T. and Guimaraes, V. M. 2014. Hydrolysis of soybean isoflavones by Debaryomyces hansenii UFV-1 immobilised cells and free beta-glucosidase. Food Chemistry. 146: 429-436.
Mandels, M. 1985. Applications of cellulases. Biochemical Society Transactions. 13: 414-415.
Mandels, M. and Reese, E. T. 1957. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. Journal of Bacteriology. 73(2): 269-278.
Mandels, M. and Reese, E. T. 1960. Induction of cellulase in fungi by cellobiose. Journal of Bacteriology. 79: 816-826.
Michael, J. C. and Watkinson, S. C. 1997. Fungal cell and vegetative growth. In The Fungi, Acdemic Press: U. S. A.
Michlmayr, H., Schumann, C., Da Silva, N. M. B. B., Kulbe, K. D. and Del Hierro, A. M. 2010. Isolation and basic characterization of a beta-glucosidase from a strain of Lactobacillus brevis isolated from a malolactic starter culture. Journal of Applied Microbiology. 108(2): 550-559.
Neyrinck, A. M., Van Hee, V. F., Piront, N., De Backer, F., Toussaint, O., Cani, P. D. and Delzenne, N. M. 2012. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutrition & Diabetes. 2: e28.
Ng, I. S., Li, C. W., Chan, S. P., Chir, J. L., Chen, P. T., Tong, C. G., Yu, S. M. and Ho, T. H. D. 2010. High-level production of a thermoacidophilic beta-glucosidase from Penicillium citrinum YS40-5 by solid-state fermentation with rice bran. Bioresource Technology. 101(4): 1310-1317.
Olajuyigbe, F. M., Nlekerem, C. M. and Ogunyewo, O. A. 2016. Production and Characterization of Highly Thermostable beta-Glucosidase during the Biodegradation of Methyl Cellulose by Fusarium oxysporum. Biochemistry Research International. 2016: 3978124.
Palmarola-Adrados, B., Choteborska, P., Galbe, M. and Zacchi, G. 2005. Ethanol production from non-starch carbohydrates of wheat bran. Bioresource Technology. 96(7): 843-850.
Perez-Pons, J. A., Cayetano, A., Rebordosa, X., Lloberas, J., Guasch, A. and Querol, E. 1994. A beta-glucosidase gene (bgl3) from Streptomyces sp. strain QM-B814. Molecular cloning, nucleotide sequence, purification and characterization of the encoded enzyme, a new member of family 1 glycosyl hydrolases. European Journal of Biochemistry. 223(2): 557-565.
Perezpons, J. A., Rebordosa, X. and Querol, E. 1995. Properties of a Novel Glucose-Enhanced Beta-Glucosidase Purified from Streptomyces Sp (Atcc-11238). Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology. 1251(2): 145-153.
Pitson, S. M., Seviour, R. J. and Mcdougall, B. M. 1997. Purification and characterization of an extracellular beta-glucosidase from the filamentous fungus Acremonium persicinum and its probable role in beta-glucan degradation. Enzyme and Microbial Technology. 21(3): 182-190.
Pruckler, M., Siebenhandl-Ehn, S., Apprich, S., Holtinger, S., Haas, C., Schmid, E. and Kneifel, W. 2014. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. Lwt-Food Science and Technology. 56(2): 211-221.
Puri, M. and Banerjee, U. C. 2000. Production, purification, and characterization of the debittering enzyme naringinase. Biotechnology Advances. 18(3): 207-217.
Qu, H., Madl, R. L., Takemoto, D. J., Baybutt, R. C. and Wang, W. 2005. Lignans are involved in the antitumor activity of wheat bran in colon cancer SW480 cells. Journal of Nutrition. 135(3): 598-602.
Riou, C., Salmon, J. M., Vallier, M. J., Gunata, Z. and Barre, P. 1998. Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Applied and Environmental Microbiology. 64(10): 3607-3614.
Rizzello, C. G., Coda, R., Mazzacane, F., Minervini, D. and Gobbetti, M. 2012. Micronized by-products from debranned durum wheat and sourdough fermentation enhanced the nutritional, textural and sensory features of bread. Food Research International. 46(1): 304-313.
Romero, M. D., Aguado, J., Gonzalez, L. and Ladero, M. 1999. Cellulase production by Neurospora crassa on wheat straw. Enzyme and Microbial Technology. 25(3-5): 244-250.
Ronen, M., Guterman, H. and Shabtai, Y. 2002. Monitoring and control of pullulan production using vision sensor. Journal of Biochemical and Biophysical Methods. 51(3): 243-249.
Ross, A. B., Kamal-Eldin, A. and Aman, P. 2004. Dietary alkylresorcinols: absorption, bioactivities, and possible use as biomarkers of whole-grain wheat- and rye-rich foods. Nutrition Reviews. 62(3): 81-95.
Rudick, M. J. and Elbein, A. D. 1975. Glycoprotein enzymes secreted by Aspergillus fumigatus: purification and properties of a second beta-glucosidase. Journal of Bacteriology. 124(1): 534-541.
Saha, B. C. and Bothast, R. J. 1996. Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata. Applied and Environmental Microbiology. 62(9): 3165-3170.
Saha, B. C., Freer, S. N. and Bothast, R. J. 1994. Production, Purification, and Properties of a Thermostable beta-Glucosidase from a Color Variant Strain of Aureobasidium pullulans. Applied and Environmental Microbiology. 60(10): 3774-3780.
Saini, R., Saini, J. K., Adsul, M., Patel, A. K., Mathur, A., Tuli, D. and Singhania, R. R. 2015. Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresource Technology. 188: 240-246.
Samson, R. A., Hoekstra, E. S. and Frisvad, J. C. 2004. Introduction to food- and airborne fungi (No. Ed. 7). Centraalbureau voor Schimmelcultures (CBS). 150-177.
Sestelo, A. B. F., Poza, M. and Villa, T. G. 2004. beta-Glucosidase activity in a Lactobacillus plantarum wine strain. World Journal of Microbiology & Biotechnology. 20(6): 633-637.
Shahriarinour, M., Wahab, M. N. A., Mohamad, R., Mustafa, S. and Ariff, A. B. 2011. Effect of medium composition and cultural condition on cellulase production by Aspergillus terreus. African Journal of Biotechnology. 10(38): 7459-7467.
Sharmila, T., Sreeramulu, G. and Nand, K. 1998. Purification and characterization of beta-1,4-glucosidase from Clostridium papyrosolvens. Biotechnology and Applied Biochemistry. 27: 175-179.
Shingel, K. I. 2004. Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan. Carbohydrate Research. 339(3): 447-460.
Sidhu, J. S., Al-Hooti, S. N. and Al-Saqer, J. M. 1999. Effect of adding wheat bran and germ fractions on the chemical composition of high-fiber toast bread. Food Chemistry. 67(4): 365-371.
Singhania, R. R., Sukumaran, R. K., Patel, A. K., Larroche, C. and Pandey, A. 2010. Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology. 46(7): 541-549.
Smaali, I., Maugard, T., Limam, F., Legoy, M. D. and Marzouki, N. 2007. Efficient synthesis of gluco-oligosaccharides and alkyl-glucosides by transglycosylation activity of β-glucosidase from Sclerotinia sclerotiorum. World Journal of Microbiology and Biotechnology. 23(1): 145-149.
Sohail, M., Siddiqi, R., Ahmad, A. and Khan, S. A. 2009. Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnology. 25(6): 437-441.
Solovyeva, I. V., Ananjin, V. M., Boev, A. V. and Okunev, O. N. 1997. The controlled biosynthesis of cellobiase by Aspergillus fungi. Process Biochemistry. 32(1): 21-28.
Sorensen, A., Ahring, B. K., Lubeck, M., Ubhayasekera, W., Bruno, K. S., Culley, D. E. and Lubeck, P. S. 2012. Identifying and characterizing the most significant beta-glucosidase of the novel species Aspergillus saccharolyticus. Canadian Journal of Microbiology. 58(9): 1035-1046.
Sorensen, A., Andersen, J. J., Ahring, B. K., Teller, P. J. and Lubeck, M. 2014. Screening of carbon sources for beta-glucosidase production by Aspergillus saccharolyticus. International Biodeterioration & Biodegradation. 93: 78-83.
Stanyon, P. and Costello, C. 1990. Effects of Wheat Bran and Polydextrose on the Sensory Characteristics of Biscuits. Cereal Chemistry. 67(6): 545-547.
Sternberg, D., Vijayakumar, P. and Reese, E. T. 1977. Beta-glucosidase - microbial-production and effect on enzymatic-hydrolysis of cellulose. Canadian Journal of Microbiology. 23(2): 139-147.
Struski, D. G. J. and Kozubek, A. 1992. Cereal Grain Alk(En)Ylresorcinols Protect Lipids against Ferrous Ions-Induced Peroxidation. Zeitschrift Fur Naturforschung C-a Journal of Biosciences. 47(1-2): 47-50.
Su, E., Xia, T., Gao, L., Dai, Q. and Zhang, Z. . 2010. Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage. Food and Bioproducts Processing. 88(2–3): 83-89.
Sun, R., Zhang, Z. M., Hu, X. J., Xing, Q. H. and Zhuo, W. Y. 2015. Effect of wheat germ flour addition on wheat flour, dough and Chinese steamed bread properties. Journal of Cereal Science. 64: 153-158.
Surget, A and Barron, C. 2005. Histologie du grain de blé. Industrie des Céréales. 145: 3-7.
Sutherland, I. W. 1998. Novel and established applications of microbial polysaccharides. Trends in Biotechnology. 16(1): 41-46.
Szabo, I. J., Johansson, G. and Pettersson, G. 1996. Optimized cellulase production by Phanerochaete chrysosporium: Control of catabolite repression by fed-batch cultivation. Journal of Biotechnology. 48(3): 221-230.
Tangnu, S. K., Blanch, H. W. and Wilke, C. R. 1981. Enhanced production of cellulase, hemicellulase, and beta-glucosidase by Trichoderma reesei (Rut C-30). Biotechnology and Bioengineering. 23(8): 1837-1849.
Ted, R. J. and Christine, L. C. . 2007. Laboratory experiments in microbiology (Eighth edition). America: David Novak.
Turner, B. L., Hopkins, D. W., Haygarth, P. M. and Ostle, N. 2002. β-Glucosidase activity in pasture soils. Applied Soil Ecology. 20(2): 157-162.
Urzi, C., De Leo, F., Lo Passo, C. and Criseo, G. 1999. Intra-specific diversity of Aureobasidium pullulans strains isolated from rocks and other habitats assessed by physiological methods and by random amplified polymorphic DNA (RAPD). Journal of Microbiological Methods. 36(1-2): 95-105.
Varki, A. 1993. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 3(2): 97-130.
Villena, M. A., Iranzo, J. F. U., Gundllapalli, S. B., Otero, R. R. C. and Perez, A. I. B. 2006. Characterization of an exocellular beta-glucosidase from Debaryomyces pseudopolymorphus. Enzyme and Microbial Technology. 39(2): 229-234.
Villena, M. A., Iranzo, J. F. U., Otero, R. R. C. and Perez, A. I. B. 2005. Optimization of a rapid method for studying the cellular location of beta-glucosidase activity in wine yeasts. Journal of Applied Microbiology. 99(3): 558-564.
Wang, Q., Qian, C., Zhang, X. Z., Liu, N., Yan, X. and Zhou, Z. 2012. Characterization of a novel thermostable beta-glucosidase from a metagenomic library of termite gut. Enzyme and Microbial Technology. 51(6-7): 319-324.
Wang, W. L., Chi, Z. M., Chi, Z., Li, J. and Wang, X. H. 2009. Siderophore production by the marine-derived Aureobasidium pullulans and its antimicrobial activity. Bioresource Technology. 100(9): 2639-2641.
Watanabe, T., Sato, T., Yoshioka, S., Koshijima, T. and Kuwahara, M. 1992. Purification and properties of Aspergillus niger beta-glucosidase. European Journal of Biochemistry. 209(2): 651-659.
Wen, Z. Y., Liao, W. and Chen, S. L. 2005. Production of cellulase/beta-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochemistry. 40(9): 3087-3094.
Xue, Dong-Sheng, Wang, Jiang-Bo and Yao, Shan-Jing. 2015. High production of β-glucosidase from a marine Aspergillus niger immobilized on towel gourd vegetable sponges. Chinese Chemical Letters. 26(8): 1011-1015.
Yan, T. R. and Lin, C. L. 1997. Purification and characterization of a glucose-tolerant beta-glucosidase from Aspergillus niger CCRC 31494. Biosci Biotechnol Biochem. 61(6): 965-970.
Ying, W., Zhu, R., Lu, W. and Gong, L. 2009. A new strategy to apply Bacillus subtilis MA139 for the production of solid-state fermentation feed. Letters in Applied Microbiology. 49(2): 229-234.
Yurlova, N. A. and De Hoog, G. S. 1997. A new variety of Aureobasidium pullulans characterized by exopolysaccharide structure, nutritional physiology and molecular features. Antonie van Leeuwenhoek. 72(2): 141-147.
Zagrobelny, M., Bak, S., Rasmussen, A. V., Jorgensen, B., Naumann, C. M. and Moller, B. L. 2004. Cyanogenic glucosides and plant-insect interactions. Phytochemistry. 65(3): 293-306.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔