跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 18:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳婷雅
研究生(外文):Ting-Ya Wu
論文名稱:普魯蘭多醣發酵槽生產條件及其塗膜在草莓保鮮之應用
論文名稱(外文):Cultivation conditions in a stirred tank reactor for pullulan and application of pullulan coating to extending shelf-life of strawberry
指導教授:陳錦樹陳錦樹引用關係
口試委員:謝寶全林澤群
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:101
中文關鍵詞:麥麩酵素水解Aureobasidium pullulans普魯蘭多醣發酵槽培養條件塗膜蔬果保鮮
外文關鍵詞:wheat branAureobasidium pullulanspullulanconditions of submerged fermentation in stirred tank reactorcoatingpreservation of post harvested fruit and vegetables
相關次數:
  • 被引用被引用:1
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
麥麩為小麥研磨後之副產物,含有澱粉、纖維素、蛋白質、礦物質,可直接作為微生物培養基質。研究顯示,經過適當之預處理及酵素處理,可以提升麥麩萃取液中醣類、蛋白質之含量,有利於微生物之發酵利用。普魯蘭多醣為類酵母真菌Aureobasidiun pullulans所分泌之直鏈線型胞外同質多醣,由麥芽三糖單元以α-1,6糖苷鍵鍵結形成,無毒無味無色,具有生物可降解性、成膜性及阻氧能力,可添加抗菌物質作為可食性抗菌膜,應用於食品包材延長食品保存。本研究擬以麥麩水解液及水萃液為主要基質,額外添加4% (w/v)蔗糖,接種A. pullulans NCH-218進行5 L發酵槽培養,探討較適普魯蘭多醣發酵槽生產條件,以及塗膜在草莓保鮮上之應用。

結果顯示,麥麩較適處理條件為取10% (w/v)麥麩,經121℃、15分鐘高溫滅菌後,待冷卻至室溫,經離心過濾後取濾液作為基質,額外添加4%蔗糖以製備麥麩水萃液培養基,接種1% A. pullulans NCH-218,於載液量50 mL、起始pH 6.5、培養溫度25℃及轉速120 rpm之條件下,搖瓶培養72小時可獲得最佳普魯蘭多醣產量26.55 ± 4.12 g/L。而後,較適普魯蘭多醣發酵槽生產條件為以麥麩水萃液為基質,額外添加4%蔗糖,於工作體積3 L、培養溫度25℃、起始pH 6.5、接種量7.5%、通氣量1.5 vvm及攪拌速率300rpm,培養72小時,可獲得最佳胞外多醣產量與普魯蘭多醣產量,分別為21.17與12.44 g/L。

另外,草莓保鮮試驗之結果顯示,以10%粗普魯蘭多醣添加1%植酸 (含3%甘油)組,貯存於4℃,可延緩草莓腐壞程度、失重以及維生素C之損失。生物防治劑之結果顯示,菌體應用於草莓保鮮之效果優於培養濾液,但不及普魯蘭多醣塗膜組之效果。

Wheat bran, a by-product of the milling industry, contains starch, cellulose, protein and mineral. An appropriate pretreatment such as heating and enzymatic treatment on wheat can increase the contents of soluble carbohydrates and protein in wheat bran extracts, which benefits the microbial fermentation. Pullulan is a linear homopolysaccharide, produced by a yeast-like fungus, Aureobasidium pullulans extracellularly. It consists of repeating maltotriose subunits linked by α-1, 6-glycosidic bond and is non-toxic, tasteless and odorless. With its unique linkage pattern, pullulan has a considerable physico-chemical properties like biodegradability, film formability, impermeability to oxygen. Pullulan can be used as antimicrobial edible film with antimicrobial substance and applied in food packaging to extending the shelf-life of food.

In this study, wheat bran hydrolysates and extracts supplementing with 4% (w/v) sucrose were used as the substrate for cultivation in a 5 L stirred tank reactor. Cultivation condition in a stirred tank reactor for pullulan and application of pullulan coating to extending shelf-life of strawberry were investigated.

The results revealed that the highest production of pullulan (26.55 g/L) was obtained by following better shake flask conditions: 50 mL wheat bran extracts obtained after autoclaving, 4% sucrose (w/v), initial pH 6.5, 1% of A. pullulans NCH-218 was inoculated and cultured at 25℃and 120 rpm for 72 hours. Subsequently, the highest production of pullulan (12.44 g/L) was obtained by following better stirred tank reactor conditions: 3 L wheat bran extracts obtained after autoclaving, supplemented with 4% sucrose (w/v), initial pH 6.5, 7.5% (v/v) of A. pullulans NCH-218 was inoculated and cultured at 25℃, aerated and agitated at 1.5 vvm and 300 rpm respectively for 72 hours.

In addition, the results of strawberry coating test revealed that the better formula of coating solution was comprised 10% (w/v) crude exopolysaccharide, 1% (v/v) phytic acid and 3% (v/v) glycerol, and coated strawberries were stored at 4℃.

摘要 i
Abstract ii
目次 iii
表目次 v
圖目次 vi
第一章 前言 1
第二章 文獻回顧 2
一、 麥麩之介紹 2
(一) 麥麩之組成 2
(二) 麥麩之處理 2
(三) 麥麩之應用 6
二、 Aureobasidium pullulans之介紹 9
(一) A. pullulans之生長特性 9
(二) A. pullulans之應用 12
三、 普魯蘭多醣之介紹 13
(一) 普魯蘭多醣之結構及合成 13
(二) 普魯蘭多醣之生產 16
(三) 普魯蘭多醣之應用 19
四、 草莓之介紹 21
(一) 草莓之營養成分 21
(二) 草莓之病原菌 21
(三) 草莓之採後保鮮 23
第三章 材料與方法 26
一、 實驗材料 26
(一) 實驗原料 26
(二) 實驗菌株 26
(三) 培養基 26
(四) 商業酵素 27
(五) 化學藥劑 28
二、 儀器設備 28
三、 套裝軟體 29
四、 實驗方法 30
(一) 實驗架構 30
(二) 麥麩水解液及水萃液製備流程 31
(三) 菌株活化及保存 32
(四) 麥麩前處理 32
(五) 基本成分分析 32
(六) 麥麩水解液 (wheat bran hydrolysates)之製備 35
(七) 麥麩水萃液 (wheat bran extracts)之製備 35
(八) 搖瓶培養 36
(九) 發酵槽較適培養條件之探討 36
(十) 草莓塗膜 (coating)保鮮試驗 37
(十一) 分析方法 38
第四章 結果與討論 46
一、 麥麩基本成分分析 46
二、 Aureobasidium pullulans NCH-218外觀形態及生長曲線 46
(一) 外觀形態 46
(二) 生長曲線 46
三、 麥麩基質液製備之最適化探討 49
(一) 搖瓶培養之探討 49
(二) 組成分之探討 61
四、 發酵槽擴大培養之探討 70
(一) 酸鹼值 70
(二) 攪拌速率 72
(三) 通氣量 72
(四) 接種量 72
五、 草莓保鮮試驗 75
第五章 結論 86
第六章 未來展望 87
第七章 參考文獻 88



任紅、商憲庫、曹兵、李勁松。2007。羧甲基殼聚醣塗膜在草莓保鮮中的應用研究。食品科技。4: 211-213。
李和生與王鴻飛。2002。幾種常用化學保鮮劑對草莓貯藏保鮮作用的比較。保鮮與加工。2(2): 14-16。
李建武、蕭能庚、余瑞元、陳麗蓉、陳雅蕙、陳來同、元明秀。1997。生物化學實驗原理和方法。藝軒出版社。台北市。456-460。
李豐在。2005。草莓灰黴病之防治策略。花蓮區農業專訊。54: 11-12。
段丹萍、喬勇進、魯莉莎、王海宏、陈兆亮。2014。殼聚醣複合塗膜對草莓保鮮的影響。食品與發酵工業。40(4): 205-209。
張廣淼、彭淑貞、黃勝泉。2009。草莓產業的發展及展望。苗栗區農業專訊。48: 2-4。
張廣淼。2002。草莓重要病害之防治策略。苗栗區農業專訊。19: 8-10。
許嘉伊。2010。前瞻工業生技未來發展趨勢。台灣經濟研究月刊。33(3):53-59
陳蔓甄。2014。利用豆渣為主要基質固態培養Aureobasidium pullulans NCH-218生產聚甘露醣酶與聚木醣酶條件及益生效果之探討。國立國立中興大學食品暨應用生物科技學系。碩士論文。
曾柏瑞。2010。醱酵生產日本麴菌、黑麴菌、黃麴菌和出芽短梗黴的果糖轉移酶。大同大學生物工程研究所。碩士論文。
游女儀。2012。利用Aureobasidium pullulans NCH-218固態發酵農產加工副產物之條件及發酵產物之益生效果。國立國立中興大學食品暨應用生物科技學系。碩士論文。
黃詩淳。2012。半纖維素酶生產菌株之篩選、培養條件與Aureobasidium pullulans NCH-218聚木醣酶酵素特性探討。國立國立中興大學食品暨應 用生物科技學系。碩士論文。
萬忠明。2008。植酸對草莓保鮮的研究。食品科學。29(10): 619-621。
趙鵬宇、艾啟俊、田磊、朱玲玲、王亞飛。2011。不同配比複合膜對草莓採後品質的影響。北京農學院學報26(4): 66-68。
齊文隆、林進財。1998。健康草莓苗的栽培與管理。苗栗區農業專訊。3: 7-11。
蔡敏嘉、邱發祥。1997。草莓採收成熟度與包裝貯運之改進。園產品採後處理與運銷技術研討會專刊 農業試驗所特刊第60號: 101-112。
衛生福利部食品藥物管理署。2015。食品營養成分資料庫。https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178
鄭文振。2013。利用麥麩為主要基質培養Aureobasidium pullulans NCH-218 生產普魯蘭多醣條件與多醣特性之探討。國立國立中興大學食品暨應用生物科技學系。碩士論文。
Aday, M. S., Temizkan, R., Büyükcan, M. B. & Caner, C. (2013). An innovative technique for extending shelf life of strawberry: Ultrasound. LWT - Food Science and Technology 52(2): 93-101.
Aguedo, M., Fougnies, C., Dermience, M. & Richel, A. (2014). Extraction by three processes of arabinoxylans from wheat bran and characterization of the fractions obtained. Carbohydrate Polymers 105: 317-324.
Aguedo, M., Vanderghem, C., Goffin, D., Richel, A. & Paquot, M. (2013). Fast and high yield recovery of arabinose from destarched wheat bran. Industrial Crops and Products 43: 318-325.
Anson, N. M., Hemery, Y. M., Bast, A. & Haenen, G. R. M. M. (2012). Optimizing the bioactive potential of wheat bran by processing. Food and Function 3(4): 362-375.
Antunes, M. C., Cuquel, F. L., Zawadneak, M. A., Mogor, Á. F. & Resende, J. T. (2014). Postharvest quality of strawberry produced during two consecutive seasons. Horticultura Brasileira 32(2): 168-173.
AOAC. (1995). Official methods of analysis of the Association of Official Analytic Chemists. In P. Cunniff (Ed.), (16 ed.). Washington, DC, USA.
Apprich, S., Tirpanalan, Ö., Hell, J., Reisinger, M., Böhmdorfer, S., Siebenhandl-Ehn, S., Novalin, S. & Kneifel, W. (2014). Wheat bran-based biorefinery 2: Valorization of products. LWT - Food Science and Technology 56(2): 222-231.
Banani, H., Spadaro, D., Zhang, D., Matic, S., Garibaldi, A. & Gullino, M. L. (2014). Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple. International Journal of Food Microbiology 182-183(16): 1-8.
Barnett, C., Smitha, A., Scanlona, B. & Israilides, C. J. (1999). Pullulan production by Aureobasidium pullulans growing on hydrolysed potato starch waste. Carbohydrate Polymers 38: 203-209.
Bauer, R. (1938). Physiology of Dematium pullulans de Bary. Zentralbl Bacteriol Parasitenkd Infektionskr Hyg Abt 2 98: 133-167.
Beaugrand, J., Chambat, G., Wong, V. W., Goubet, F., Remond, C., Paes, G., Benamrouche, S., Debeire, P., O''Donohue, M. & Chabbert, B. (2004). Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydrate Research 339(15): 2529-2540.
Bencheqroun, S. K., Bajji, M., Massart, S., Labhilili, M., Jaafari, S. E. & Jijakli, M. H. (2007). In vitro and in situ study of postharvest apple blue mold biocontrol by Aureobasidium pullulans: Evidence for the involvement of competition for nutrients. Postharvest Biology and Technology 46(2): 128-135.
Bouveng, H. O., Kiessling, H., Lindberg, B. & Theander, O. (1962). Polysaccharides elaborated by Pullularia pullulans. Part I. The neutral glucan synthesized from sucrose solutions. Acta Chemica Scandinavica 16(3): 615-622.
Buranov, A. U. & Mazza, G. (2009). Extraction and purification of ferulic acid from flax shives, wheat and corn bran by alkaline hydrolysis and pressurised solvents. Food Chemistry 115(4): 1542-1548.
Campbell, B. S., Siddique, A.-B. M., McDougall, B. M. & Seviour, R. J. (2004). Which morphological forms of the fungus Aureobasidium pullulans are responsible for pullulan production? FEMS Microbiology Letters 232(2): 225-228.
Canan, C., Cruz, F. T. L., Delaroza, F., Casagrande, R., Sarmento, C. P. M., Shimokomaki, M. & Ida, E. I. (2011). Studies on the extraction and purification of phytic acid from rice bran. Journal of Food Composition and Analysis 24(7): 1057-1063.
Carvalheiro, F., Duarte, L. C. & Gírio, F. M. (2008). Hemicellulose biorefineries: a review on biomass pretreatments. Journal of Scientific & Industrial Research 67: 849-864.
Cheng, K. C., Demirci, A. & Catchmark, J. M. (2011). Pullulan: biosynthesis, production, and applications. Applied Microbiology and Biotechnology 92(1): 29-44.
Chi, Z., Wang, F., Chi, Z., Yue, L., Liu, G. & Zhang, T. (2009). Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Applied Microbiology and Biotechnology 82(5): 793-804.
Chi, Z., Yan, K., Gao, L., Li, J., Wang, X. & Wang, L. (2008). Diversity of marine yeasts with high protein content and evaluation of their nutritive compositions. Journal of the Marine Biological Association of the United Kingdom 88(7): 1347-1352.
Chi, Z. M., Liu, J. & Zhang, W. (2001). Trehalose accumulation from soluble starch by Saccharomycopsis fibuligera sdu Enzyme and Microbial Technology 28(2-3): 240-245.
Church, F. C., Swaisgood, H. E., Porter, D. H. & Catignani, G. L. (1983). Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Diary Science 66: 1219-1227.
Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J. & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13(4): 414-430.
Di Francesco, A., Roberti, R., Martini, C., Baraldi, E. & Mari, M. (2015). Activities of Aureobasidium pullulans cell filtrates against Monilinia laxa of peaches. Microbiological Research 181: 61-67.
Diab, T., Biliaderis, C. G., Gerasopoulos, D. & Sfakiotakis, E. (2001). Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. Journal of the Science of Food and Agriculture 81: 988-1000.
Duan, X., Chi, Z., Wang, L. & Wang, X. (2008). Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydrate Polymers 73(4): 587-593.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3): 350-356.
Duran, M., Aday, M. S., Zorba, N. N. D., Temizkan, R., Büyükcan, M. B. & Caner, C. (2016). Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’ to extend shelf life of fresh strawberry. Food and Bioproducts Processing 98: 354-363.
Ekholm, P., Virkki, L., Ylinen, M. & Johansson, L. (2003). The effect of phytic acid and some natural chelating agents on the solubility of mineral elements in oat bran. Food Chemistry 80(2): 165-170.
Elliotta, D. C., Ortha, R. J., Gaoa, J., Werpya, T. A., Eakina, D. E., Schmidta, A. J., Neuenschwandera, G. G., Flaggb, A. J., Murryb, J., Lahmanc, L., Linc, C. J., Mennelc, D. L. & Landuccid, R. (2002). Biorefinery concept development based on wheat flour milling. Fuel Chemistry Division Preprints 47(1): 361-362.
Ferreira, A. R., Alves, V. D. & Coelhoso, I. M. (2016). Polysaccharide-Based Membranes in Food Packaging Applications. Membranes (Basel) 6(2).
Finkelman, M. A. J. & Vardanis, A. (1982a). Pullulan elaboration by Aureobasidium pullulans protoplasts. Applied and Environmental Microbiology 44(1): 121-127.
Finkelman, M. A. J. & Vardanis, A. (1982b). Simplified microassay for pullulan synthesis. Applied and Environmental Microbiology 43(2): 483-485.
Göksungur, Y., Dağbağlı, S., Uçan, A. & Güvenç, U. (2005). Optimization of pullulan production from synthetic medium by Aureobasidium pullulans in a stirred tank reactor by response surface methodology. Journal of Chemical Technology and Biotechnology 80(7): 819-827.
Gaidhani, H. K., McNeil, B. & Ni, X. (2005). Fermentation of pullulan using an oscillatory baffled fermenter. Chemical Engineering Research and Design 83(6): 640-645.
Gaur, R. & Singh, R. (2010). Optimization of physico-chemical and nutritional parameters for pullulan production by a mutant of thermotolerant Aureobasidium pullulans in fed batch fermentation process. African Journal of Biotechnology 9(43): 7322-7330.
Giampieri, F., Tulipani, S., Alvarez-Suarez, J. M., Quiles, J. L., Mezzetti, B. & Battino, M. (2012). The strawberry: composition, nutritional quality, and impact on human health. Nutrition 28(1): 9-19.
Gniewosz, M., Krasniewska, K., Woreta, M. & Kosakowska, O. (2013). Antimicrobial activity of a pullulan-caraway essential oil coating on reduction of food microorganisms and quality in fresh baby carrot. Journal of Food Science 78(8): M1242-1248.
Gniewosz, M., Synowiec, A., Kraśniewska, K., Przybył, J. L., Bączek, K. & Węglarz, Z. (2014). The antimicrobial activity of pullulan film incorporated with meadowsweet flower extracts (Filipendulae ulmariae flos) on postharvest quality of apples. Food Control 37: 351-361.
Hamelinck, C. N., Hooijdonk, G. v. & Faaij, A. P. C. (2005). Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy 28(4): 384-410.
Hancock, J. F., Sjulin, T. M. & Lobos, G. A. (2008). Strawberries. In J. F. Hancock (Ed.), Temperate Fruit Crop Breeding (pp. 393-437). New York, USA: Springer Netherlands.
Hemery, Y., Rouau, X., Lullien-Pellerin, V., Barron, C. & Abecassis, J. (2007). Dry processes to develop wheat fractions and products with enhanced nutritional quality. Journal of Cereal Science 46(3): 327-347.
Hossain, A., Begum, P., Salma Zannat, M., Hafizur Rahman, M., Ahsan, M. & Islam, S. N. (2016). Nutrient composition of strawberry genotypes cultivated in a horticulture farm. Food Chemistry 199: 648-652.
Ippolito, A., Ghaouth, A. E., Wilson, C. L. & Wisniewski, M. (2000). Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biology and Technology 19: 265–272.
Ippolito, A., Schena, L., Pentimone, I. & Nigro, F. (2005). Control of postharvest rots of sweet cherries by pre- and postharvest applications of Aureobasidium pullulans in combination with calcium chloride or sodium bicarbonate. Postharvest Biology and Technology 36(3): 245-252.
Israilides, C., Scanlon, B., Smith, A., Harding, S. E. & Jumel, K. (1994). Characterization of pullulans produced from agro-industrial wastes. Carbohydrate Polymers 25(3): 203-209.
Izydorczyk, M. S. & Biliaderis, C. G. (1995). Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydrate Polymers 28(1): 33-48.
Jiang, L., Wu, S. & kim, J. M. (2011). Effect of different nitrogen sources on activities of UDPG-pyrophosphorylase involved in pullulan synthesis and pullulan production by Aureobasidium pullulans. Carbohydrate Polymers 86(2): 1085-1088.
Jouki, M. & Khazaei, N. (2014). Effect of low-dose gamma radiation and active equilibrium modified atmosphere packaging on shelf life extension of fresh strawberry fruits. Food Packaging and Shelf Life 1(1): 49-55.
Kachhawa, D. K., Bhattacharjee, P. & S., S. R. (2003). Studies on downstream processing of pullulan. Carbohydrate Polymers 52: 25-28.
Kraśniewska, K., Gniewosz, M., Synowiec, A., Przybył, J. L., Bączek, K. & Węglarz, Z. (2015). The application of pullulan coating enriched with extracts from Bergenia crassifolia to control the growth of food microorganisms and improve the quality of peppers and apples. Food and Bioproducts Processing 94: 422-433.
Kumar, D., Saini, N., Pandit, V. & Ali, S. (2012). An insight to pullulan: A biopolymer in pharmaceutical approaches. International Journal of Basic and Applied Sciences 1(3): 202-219.
Lacroix, C., Leduy, A., Noel, G. & Choplin, L. (1985). Effect of pH on the batch fermentation of pullulan from sucrose medium. Biotechnology and Bioengineering 27(2): 202-207.
Larsson, S., Palmqvist, E., Stenberg, B. K., Zacchi, G. & Nilvebrant, N.-O. (1999). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology 24(3-4): 151-159.
Laser, M., Jin, H., Jayawardhana, K., Dale, B. E. & Lynd, L. R. (2009). Projected mature technology scenarios for conversion of cellulosic biomass to ethanol with coproduction thermochemical fuels, power, and/or animal feed protein. Biofuels, Bioproducts and Biorefining 3(2): 231-246.
Lazaridou, A., Roukas, T., Biliaderis, C. G. & Vaikousi, H. (2002). Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme and Microbial Technology 31: 122-132.
Leathers, T. D. (2003). Biotechnological production and applications of pullulan. Applied Microbiology and Biotechnology 62(5): 468-473.
Lee, J. W., Yeomans, W. G., Allen, A. L., Deng, F., Gross, R. A. & Kaplan, D. L. (1999). Biosynthesis of novel exopolymers by Aureobasidium pullulans. Applied and Environmental Microbiology 65(12): 5265-5271.
Li, H., Chi, Z., Duan, X., Wang, L., Sheng, J. & Wu, L. (2007a). Glucoamylase production by the marine yeast Aureobasidium pullulans N13d and hydrolysis of potato starch granules by the enzyme. Process Biochemistry 42(3): 462-465.
Li, H., Chi, Z., Wang, X., Duan, X., Ma, L. & Gao, L. (2007b). Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion. Enzyme and Microbial Technology 40(5): 1006-1012.
Li, W., Cui, S. & Kakuda, Y. (2006). Extraction, fractionation, structural and physical characterization of wheat β-D-glucans. Carbohydrate Polymers 63(3): 408-416.
Lima, G., Ippolito, A., Nigro, F. & Salerno, M. (1997). Effectiveness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots. Postharvest Biology and Technology 10: 169-178.
Liu, Z., Chi, Z., Wang, L. & Li, J. (2008). Production, purification and characterization of an extracellular lipase from Aureobasidium pullulans HN2.3 with potential application for the hydrolysis of edible oils. Biochemical Engineering Journal 40(3): 445-451.
Ma, J., Jiang, G., Yao, S., Jin, H. & Wang, C. (2012). Studies on the Pullulans Polysaccride Produced by Biostat@B Fermentor. Bioprocess 2(1): 40-44.
Madi, N. S., Harvey, L. M., Mehler, A. & McNeil, B. (1997). Synthesis of two distinct exopolysaccharide fractions by cultures of the polymorphic fungus Aureobasidium pullulans. Carbohydrate Polymers 32: 307-314.
Maes, C. & Delcour, J. A. (2001). Alkaline hydrogen peroxide extraction of wheat bran non-starch polysaccharides. Journal of Cereal Science 34(1): 29-35.
Mahunu, G. K., Zhang, H., Yang, Q., Zhang, X., Li, D. & Zhou, Y. (2016). Improving the biocontrol efficacy of Pichia caribbica with phytic acid against postharvest blue mold and natural decay in apples. Biological Control 92: 172-180.
Manisseri, C. & Gudipati, M. (2010). Bioactive xylo-oligosaccharides from wheat bran soluble polysaccharides. LWT - Food Science and Technology 43(3): 421-430.
Mari, M., Martini, C., Spadoni, A., Rouissi, W. & Bertolini, P. (2012). Biocontrol of apple postharvest decay by Aureobasidium pullulans. Postharvest Biology and Technology 73: 56-62.
Mayer, J. M. (1990). Polysaccharides, modified polysaccharides and polysaccharide blends for biodegradable materials. Polymeric Materials: Science and Engineering 63: 732-735.
McNeil, B., Kristiansen, B. & Seviour, R. J. (1986). Polysaccharide production and morphology of Aureobasidium pullulans in continuous culture. Biotechnology and Bioengineering 33(9): 1210-1212.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3): 426-428.
Moubasher, H. & Wahsh, S. S. (2014). Pullulan production from Aureobsidium pullulans by continuous culture. Basic Research Journal of Microbiology 1(6): 11-15.
Mounir, R., Durieux, A., Bodo, E., Allard, C., Simon, J. P., Achbani, E. H., El-Jaafari, S., Douira, A. & Jijakli, M. H. (2007 ). Production, formulation and antagonistic activity of the biocontrol like-yeast Aureobasidium pullulans against Penicillium expansum. Biotechnology Letters 29(4): 553-559.
Naveena, B. J., Altaf, M., Bhadrayya, K. & Reddy, G. (2004). Production of L(+) lactic acid by Lactobacillus amylophilus GV6 in semi-solid state fermentation using wheat bran. Food Technology and Biotechnology 42(3): 147-152.
Nunes, M. C. N., Brecht, J. K., Morais, A. M. M. B. & Sargent, S. A. (1998). Controlling temperature and water loss to maintain ascorbic acid levels in strawberries during postharvest handling. Journal of Food Science 63(6): 1033-1036.
Oğuzhan, P. & Yangılar, F. (2013). Pullulan: Production and usage in food ındustry. African Journal of Food Science and Technology 4(3): 57-63.
Ohta, K., Fujimoto, H., Fujii, S. & Wakiyama, M. (2010). Cell-associated beta-xylosidase from Aureobasidium pullulans ATCC 20524: Purification, properties, and characterization of the encoding gene. Journal of Bioscience and Bioengineering 110(2): 152-157.
Onipe, O. O., Jideani, A. I. O. & Beswa, D. (2015). Composition and functionality of wheat bran and its application in some cereal food products. International Journal of Food Science and Technology 50(12): 2509-2518.
Orr, D., Zheng, W., Campbell, B. S., McDougall, B. M. & Seviour, R. J. (2009). Culture conditions affect the chemical composition of the exopolysaccharide synthesized by the fungus Aureobasidium pullulans. Journal of Applied Microbiology 107(2): 691-698.
Palmarola-Adrados, B., Choteborska, P., Galbe, M. & Zacchi, G. (2005). Ethanol production from non-starch carbohydrates of wheat bran. Bioresource Technology 96(7): 843-850.
Pan, S., Yao, D., Chen, J. & Wu, S. (2013). Influence of controlled pH on the activity of UDPG-pyrophosphorylase in Aureobasidium pullulans. Carbohydrate Polymers 92(1): 629-632.
Peng, F., Peng, P., Xu, F. & Sun, R. C. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnology Advances 30(4): 879-903.
Peyron, S., Abecassis, J., Autran, J.-C. & Rouau, X. (2002). Influence of UV exposure on phenolic acid content, mechanical properties of bran, and milling behavior of durum wheat (Triticum Durum Desf.). Cereal Chemistry 79(5): 726-731.
Pineli, L. d. L. d. O., Moretti, C. L., dos Santos, M. S., Campos, A. B., Brasileiro, A. V., Córdova, A. C. & Chiarello, M. D. (2011). Antioxidants and other chemical and physical characteristics of two strawberry cultivars at different ripeness stages. Journal of Food Composition and Analysis 24(1): 11-16.
Piri, I., Babayan, M., Tavassoli, A. & Javaheri, M. (2011). The use of gamma irradiation in agriculture. African Journal of Microbiology Research 5(32): 5806-5811.
Polizeli, M. L., Rizzatti, A. C., Monti, R., Terenzi, H. F., Jorge, J. A. & Amorim, D. S. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology 67(5): 577-591.
Pollock, T. J., Thorne, L. & Armentrout, R. W. (1992). Isolation of new Aureobasidium strains that produce high-molecular-weight pullulan with reduced pigmentation. Applied and Environmental Microbiology 58(3): 877-883.
Ponnusami, V. & Gunasekar, V. (2014). Production of pullulan by microbial fermentation. Polysaccharides: 1-13.
Prückler, M., Siebenhandl-Ehn, S., Apprich, S., Höltinger, S., Haas, C., Schmid, E. & Kneifel, W. (2014). Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT - Food Science and Technology 56(2): 211-221.
Prajapati, V. D., Jani, G. K. & Khanda, S. M. (2013). Pullulan: an exopolysaccharide and its various applications. Carbohydrate Polymers 95(1): 540-549.
Ray, R. C. & Moorthy, S. N. (2007). Exopolysaccharide (pullulan) production from cassava starch residue by Aureobasidium pullulans strain MTTC 1991. Journal of Scientific and Industrial Research 66(3): 252-255.
Reisinger, M., Tirpanalan, O., Huber, F., Kneifel, W. and Novalin, S. (2014). Investigations on a wheat bran biorefinery involving organosolv fractionation and enzymatic treatment. Bioresource Technology 170: 53-61.
Romanazzi, G., Smilanick, J. L., Feliziani, E. & Droby, S. (2016). Integrated management of postharvest gray mold on fruit crops. Postharvest Biology and Technology 113: 69-76.
Ronena, M., Guterman, H. & Shabtai, Y. (2002). Monitoring and control of pullulan production using vision sensor. Journal of Biochemial and biophysical methods 51(3): 243-249.
Roukas, T. (1998). Pretreatment of beet molasses to increase pullulan production. Process Biochemistry 33(8): 805-810.
Roukas, T. & Biliaderis, C. G. (1995). Evaluation of carob pod as a substrate for pullulan production by Aureobasidium pullulans. Applid Biochemistry and Biotechnology 55: 27-44.
Roukas, T. & Liakopoulou-Kyriakides, M. (1999). Production of pullulan from beet molasses by Aureobasidium pullulans in a stirred fermentor. Journal of Food Engineering 40: 80-94.
Sandberg, A. S. & Scheers, N. (2016). Phytic Acid: Properties, Uses, and Determination. Reference Module in Food Science Encyclopedia of Food and Health: 365-368.
Sanz, C., Pérez, A. G., Olías, R. & Olías, J. M. (1999). Quality of strawberries packed with perforated polypropylene. Journal of Food Science 64(4): 748-752.
Schooneveld-Bergmans, M. E. F., Beldman, G. & Voragen, A. G. J. (1999). Structural features of (glucurono)arabinoxylans extracted from wheat bran by barium hydroxide. Journal of Cereal Science 29(1): 63-75.
Sharma, N., Prasad, G. S. & Choudhury, A. R. (2013). Utilization of corn steep liquor for biosynthesis of pullulan, an important exopolysaccharide. Carbohydrate Polymers 93(1): 95-101.
Sheng, L., Tong, Q. & Ma, M. (2016). Why sucrose is the most suitable substrate for pullulan fermentation by Aureobasidium pullulans CGMCC1234? Enzyme and Microbial Technology.
Simon, L., Caye-Vaugien, C. & Bouchonne, M. (1993). Relation between pullulan production, morphological state and growth conditions in Aureobasidium pullulans: new observations. Journal of General Microbiology 139(5): 979-985.
Singh, R., Gaur, R., Tiwari, S. & Gaur, M. K. (2012). Production of pullulan by a thermotolerant Aureobasidium pullulans strain in non-stirred fed batch fermentation process. Brazilian Journal of Microbiology 43(3): 1042-1050.
Singh, R. S., Saini, G. K. & Kennedy, J. F. (2008). Pullulan: Microbial sources, production and applications. Carbohydrate Polymers 73(4): 515-531.
Smith, M. M. & Hartley, R. D. (1983). Occurrence and nature of ferulic acid substitution of cell-wall polysaccharides in graminaceous plants. Carbohydrate Research 118(16): 65-80.
Sogvar, O. B., Koushesh Saba, M. & Emamifar, A. (2016). Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biology and Technology 114: 29-35.
Sugawa-Katayama, Y., Kondou, F., Mandai, T. & Yoneyama, M. (1994). Effects of pullulan, polydextrose and pectin on cecal microflora. Oya Toshitu Kagaku 41: 413-418.
Sugumaran, K. R., Gowthami, E., Swathi, B., Elakkiya, S., Srivastava, S. N., Ravikumar, R., Gowdhaman, D. & Ponnusami, V. (2013). Production of pullulan by Aureobasidium pullulans from Asian palm kernel: a novel substrate. Carbohydrate Polymers 92(1): 697-703.
Sun, Y. & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review Bioresource Technology 83(1): 1-11.
Sun, Y., Cui, S. W., Gu, X. & Zhang, J. (2011). Isolation and structural characterization of water unextractable arabinoxylans from Chinese black-grained wheat bran. Carbohydrate Polymers 85(3): 615-621.
Synowiec, A., Gniewosz, M., Kraśniewska, K., Przybył, J. L., Bączek, K. & Węglarz, Z. (2014). Antimicrobial and antioxidant properties of pullulan film containing sweet basil extract and an evaluation of coating effectiveness in the prolongation of the shelf life of apples stored in refrigeration conditions. Innovative Food Science and Emerging Technologies 23: 171-181.
Tirpanalan, O., Reisinger, M., Huber, F., Kneifel, W. & Novalin, S. (2014). Wheat bran biorefinery: an investigation on the starch derived glucose extraction accompanied by pre- and post-treatment steps. Bioresource Technology 163: 295-299.
Van Craeyveld, V., Holopainen, U., Selinheimo, E., Poutanen, K., Delcour, J. A. & Courtin, C. M. (2009). Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation. Journal of Agricultural and Food Chemistry 57(18): 8467-8473.
van den Borne, J. J., Kabel, M. A., Briens, M., van der Poel, A. F. & Hendriks, W. H. (2012). Effects of pretreatment of wheat bran on the quality of protein-rich residue for animal feeding and on monosaccharide release for ethanol production. Bioresource Technology 124: 446-454.
Verjans, P., Dornez, E., Delcour, J. A. & Courtin, C. M. (2010). Selectivity for water-unextractable arabinoxylan and inhibition sensitivity govern the strong bread improving potential of an acidophilic GH11 Aureobasidium pullulans xylanase. Food Chemistry 123(2): 331-337.
Wu, S., Jin, Z., Tong, Q. & Chen, H. (2009). Sweet potato: A novel substrate for pullulan production by Aureobasidium pullulans. Carbohydrate Polymers 76(4): 645-649.
Wu, S., Lu, M., Chen, J., Fang, Y., Wu, L., Xu, Y. & Wang, S. (2016). Production of pullulan from raw potato starch hydrolysates by a new strain of Auerobasidium pullulans. International Journal of Biological Macromolecules 82: 740-743.
Xia, Z., Wu, S. & Pan, S. (2011). Effect of two-stage controlled pH and temperature on pullulan production by Auerobasidium pullulans. Carbohydrate Polymers 86(4): 1814-1816.
Xie, X., Cui, S. W., Li, W. & Tsao, R. (2008). Isolation and characterization of wheat bran starch. Food Research International 41(9): 882-887.
Youssef, F., Roukas, T. & Biliaderis, C. G. (1999). Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochemistry 34: 355-366.
Zhang, D., Spadaro, D., Garibaldi, A. & Gullino, M. L. (2010). Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Biological Control 54(3): 172-180.
Zhang, H., Yang, Q., Lin, H., Ren, X., Zhao, L. & Hou, J. (2013). Phytic acid enhances biocontrol efficacy of Rhodotorula mucilaginosa against postharvest gray mold spoilage and natural spoilage of strawberries. LWT - Food Science and Technology 52(2): 110-115.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top