跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/15 02:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇秋勇
研究生(外文):Chiou-Yeong Saw
論文名稱:纖維素水凝膠作為載體的開發
論文名稱(外文):Development of cellulose based hydrogel as carriers
指導教授:周志輝
指導教授(外文):Chi-Fai Chau
口試委員:許輔邱采新
口試委員(外文):Fuu SheuTsai-Hsin Chiu
口試日期:2016-07-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:60
中文關鍵詞:羧甲基纖維素水凝膠吸水率控制釋放
外文關鍵詞:carboxymethyl cellulosehydrogelwater absorptioncontrol release
相關次數:
  • 被引用被引用:1
  • 點閱點閱:813
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
載體的保護與控制釋放效果能增加活性物質的生物利用率,常被用作於活性物質的運輸與在體內特定部位的釋放。然而有關控制釋放的技術大部分只利用於製藥領域,因此控制釋放技術被使用在食品產業是非常值得研究的課題。
羧甲基纖維素為食品級的添加物,它可透過交聯反應形成纖維素水凝膠,其可作為吸水膨脹型之載體。然而市售的羧甲基纖維素之粘度太高並不適於載體的製作,因此本研究自行製備羧甲基纖維素,希望可製作出粘度較低之羧甲基纖維素,然而其在製備過程中常因氫氧化鈉與單氯醋酸之副反應產生,而降低其取代程度與產率。因此,本研究希望找出其最適合之酸鹼比例與條件來製作羧甲基纖維素,接著再評估其製作成纖維素水凝膠後的吸水與控制釋放效果。
結果顯示,製備羧甲基纖維素的最佳鹼酸重量比例為1:1.2並加熱反應4 hr。在吸水與控制釋放試驗中,增加高取代程度(D.S:0.567)之纖維素水凝膠中的纖維素含量(33 mg/cm3增加至48 mg/cm3)會降低其吸水率與活性物質的釋放率,在第5 min時的釋放率從49.03%降低至34.01%。高取代程度的纖維素水凝膠在酸性的檸檬酸溶液(pH 1.8)中之吸水率遠低於其在鹼性的碳酸氫鈉溶液(pH 9.0),其在第15 min的釋放率分別為50.52%及78.73%。因此推測降低水凝膠的吸水能力會減緩其活性物質的釋放。


中文摘要 i
英文摘要 iii
目錄 v
表次 vii
圖次 viii
1. 前言 1
1.1. 纖維素 1
1.1.1. 纖維素的前處理 3
1.1.2. 纖維素的溶解與凝聚 4
1.1.3. 纖維素之應用 9
1.2. 載體的控制釋放 9
1.3. 水凝膠 12
1.4. 羧甲基纖維素與纖維素水凝膠 13
2. 研究目的 16
3. 材料與方法 17
3.1. 實驗架構 17
3.2. 羧甲基纖維素的製備 17
3.3. 羧甲基纖維素的取代程度測定 19
3.4. 羧甲基纖維素溶液之視粘度測定 19
3.5. 纖維素水凝膠薄片之製作 20
3.6. 纖維素水凝膠的吸水膨脹實驗 20
3.7. 纖維素水凝膠之控制釋放實驗 20
3.8. 統計分析方法 21
4. 結果與討論 22
4.1. 羧甲基纖維素的製備 22
4.2. 不同取代程度對羧甲基纖維素視粘度之變化 32
4.3. 加熱反應時間對水凝膠的吸水率之影響 36
4.4. 不同環境對水凝膠的吸水率之影響 44
4.5. 纖維素水凝膠的控制釋放實驗 47
5. 結論 55
6. 參考文獻 56


黃凱易,張瑞豐,施元斌。2013。蒸爆轉化系統之設備建置。
吳炫慧。2015。多醣微球載體的開發與應用。
U.S EPA. Economic analysis of pollution regulations: miscellaneous cellulose manufacturing industry, 2000.
Ahmed, E. M. (2013). Hydrogel: preparation, characterization, and applications. Journal of advanced research, 6(2), 105-121.
Ambjörnsson, H. A., Schenzel, K., & Germgård, U. (2013). Carboxymethyl cellulose produced at different mercerization conditions and characterized by NIR FT Raman spectroscopy in combination with multivariate analytical methods. BioResources, 8(2), 1918-1932.
Bensah, E. C., & Mensah, M. (2013). Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. International Journal of Chemical Engineering, 2013, 1-21.
Biganska, O., Navard, P., & Bédué, O. (2002). Crystallisation of cellulose/N-methylmorpholine-N-oxide hydrate solutions. Polymer, 43(23), 6139-6145.
Bochek, A. (2003). Effect of hydrogen bonding on cellulose solubility in aqueous and nonaqueous solvents. Russian Journal of Applied Chemistry, 76(11), 1711-1719.
Cai, J., & Zhang, L. (2005). Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromolecular Bioscience, 5(6), 539-548.
Caló, E., & Khutoryanskiy, V. V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252-267.
Coughlan, M. P. (1991). Mechanisms of cellulose degradation by fungi and bacteria. Animal feed Science and technology, 32(1), 77-100.
DİLAVER, M. (2011). Preparation and characterization of carboxymethylcellulose based hydrogels. Master of science in chemistry thesis. Dokuz Eylul University.
El-Din, H. M. N., Alla, S. G. A., & El-Naggar, A. W. M. (2010). Swelling and drug release properties of acrylamide/carboxymethyl cellulose networks formed by gamma irradiation. Radiation Physics and Chemistry, 79(6), 725-730.
El‐Hag Ali, A., Abd El‐Rehim, H. A., Kamal, H., & Hegazy, D. E. S. A. (2008). Synthesis of Carboxymethyl Cellulose Based Drug Carrier Hydrogel Using Ionizing Radiation for Possible Use as Site Specific Delivery System. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 45(8), 628-634.
Heinze, T. (2005). Carboxymethyl ethers of cellulose and starch a review. Macromolecular Symposia, 233(1), 13-40.
Heinze, T., & Pfeiffer, K. (1999). Studies on the synthesis and characterization of carboxymethylcellulose. Macromolecular Materials and Engineering, 266(1), 37-45.
Isogai, A., & Atalla, R. (1998). Dissolution of cellulose in aqueous NaOH solutions. Cellulose, 5(4), 309-319.
Jung, Y. H., Kim, I. J., Kim, H. K., & Kim, K. H. (2013). Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresource technology, 132, 109-114.
Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358-3393.
Langer, R. (1990). New methods of drug delivery. Science, 249(4976), 1527-1533.
Liu, C.-F., & Sun, R.-C. (2010). Chapter 5 - Cellulose. In Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels, (pp. 131-167). Amsterdam: Elsevier.
McCormick, C. L., Callais, P. A., & Hutchinson Jr, B. H. (1985). Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules, 18(12), 2394-2401.
Niklas, K. J. (1992). Plant biomechanics: an engineering approach to plant form and function: University of Chicago press.
Omidian, H., & Park, K. (2008). Swelling agents and devices in oral drug delivery. Journal of Drug Delivery Science and Technology, 18(2), 83-93.
Omidian, H., & Park, K. (2012). Hydrogels. In Fundamentals and applications of controlled release drug delivery, (pp. 75-105): Springer.
Peppas, N. A., & Khare, A. R. (1993). Preparation, structure and diffusional behavior of hydrogels in controlled release. Advanced drug delivery reviews, 11(1), 1-35.
Podlas, T. (1976). Internally crosslinked carboxymethylcellulose fibers for absorbent nonwovens applications. In Nonwoven Technology—Challenges and Achievements, Technical Symposium, Atlanta, Georgia, (pp. 25-39).
Pothakamury, U. R., & Barbosa-Cánovas, G. V. (1995). Fundamental aspects of controlled release in foods. Trends in Food Science & Technology, 6(12), 397-406.
Rokhade, A. P., Agnihotri, S. A., Patil, S. A., Mallikarjuna, N. N., Kulkarni, P. V., & Aminabhavi, T. M. (2006). Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydrate Polymers, 65(3), 243-252.
Rosiak, J. M., & al., e. (1999). Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiation Physics and Chemistry, 55(2), 139-151.
Sannino, A., Demitri, C., & Madaghiele, M. (2009). Biodegradable cellulose-based hydrogels: design and applications. Materials, 2(2), 353-373.
Tassinari, T., Macy, C., Spano, L., & Ryu, D. D. (1980). Energy requirements and process design considerations in compression‐milling pretreatment of cellulosic wastes for enzymatic hydrolysis. Biotechnology and Bioengineering, 22(8), 1689-1705.
Trygg, J. (2015). Functional cellulose microspheres for pharmaceutical applications. Doctor of philosophy in chemical engineering thesis, Abo Akademi University.
Varshney, V., Gupta, P., Naithani, S., Khullar, R., Bhatt, A., & Soni, P. (2006). Carboxymethylation of α-cellulose isolated from Lantana camara with respect to degree of substitution and rheological behavior. Carbohydrate Polymers, 63(1), 40-45.
Wu, B.-C., & McClements, D. J. (2015). Engineering Hydrogel Microspheres for Healthy and Tasty Foods. Microencapsulation and Microspheres for Food Applications, 131-149.
Yang, X. H., & Zhu, W. L. (2007). Viscosity properties of sodium carboxymethylcellulose solutions. Cellulose, 14(5), 409-417.
Yeasmin, M. S., & Mondal, M. I. H. (2015). Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size. International journal of biological macromolecules, 80, 725-731.
Zhang, Y.-H. P., Cui, J., Lynd, L. R., & Kuang, L. R. (2006). A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules, 7(2), 644-648.
Zheng, Y., Pan, Z., & Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol production. International journal of agricultural and biological engineering, 2(3), 51-68.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top