(35.175.212.130) 您好!臺灣時間:2021/05/15 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:詹辰晧
研究生(外文):Chen-Hao Chan
論文名稱:2-(Hydroxymethyl)anthraquinone對IgE致敏及DNP-HSA抗原刺激之大鼠RBL-2H3細胞過敏之調控
論文名稱(外文):Allergy regulations of 2-(hydroxymethyl)anthraquinone in the IgE sensitized and DNP-HSA stimulated RBL-2H3 cells
指導教授:王苑春
口試委員:蔡國珍吳登強蘇南維
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:72
中文關鍵詞:抗過敏RBL-2H32-(hydroxymethyl)anthraquinone
外文關鍵詞:anti-allergy2-(hydroxymethyl)anthraquinoneRBL-2H3
相關次數:
  • 被引用被引用:1
  • 點閱點閱:75
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過敏性疾病為免疫系統對於無害物質過度敏感所產生過度反應之疾病,包含氣喘、蕁麻疹及異位性皮膚炎等。近年來過敏性疾病在台灣盛行率逐年升高。本研究探討2-(羫甲基)蒽醌[2-(hydroxymethyl)anthraquinone, HMAQ]對IgE致敏及DNP-HSA抗原刺激之大鼠嗜鹼性白血病細胞(RBL-2H3)誘發過敏反應之影響,並提出相關作用機轉。
實驗結果顯示,IgE致敏及DNP-HSA抗原刺激之RBL-2H3細胞,其β-hexosaminidase、訊息傳導因子、發炎物質等皆顯著增加。4 μg/mL HMAQ能有效抑制β-hexosaminidase釋放,為負控制組之76%,亦即有效抑制致敏之RBL-2H3細胞之脫顆粒(degranulation)作用。8 μg/mL之HMAQ處理顯著增加Lyn蛋白磷酸化,為負控制組1.6倍。8~16 μg/mL HMAQ能有效抑制Syk、LAT、Akt、ERK、JNK及p-38蛋白之表現,為負控制組之40~66%。因此下游發炎物質如COX-2、過氧化氫、IL-4及TNF-α之表現均顯著受到HMAQ抑制,分別為負控制組之88、57、68及74%。
綜合本研究成果,HMAQ於IgE致敏及DNP-HSA抗原刺激之RBL-2H3細胞表現出優異抗過敏之活性。作用機轉係藉由抑制Syk、LAT、Akt、ERK、JNK及p-38等蛋白。進而抑制下游發炎物質COX-2、IL-4及TNF-α之釋放。


Allergy is a disease in which the body’s immune system shows hypersensitivity to normally harmless substances, thus leading to some overreactions including asthma, urticaria and atopic dermatitis. Allergy-related diseases have become more prevalent in Taiwan in recent years. In this study, we investigated anti-allergic effects of 2-(hydroxymethyl)anthraquinone (HMAQ) in the IgE sensitized and dinitrophenyl-human serum albumin (DNP-HSA) stimulated RBL-2H3 cells and the related mechanisms.
In the results, β-hexosaminidase, signaling transduction proteins and proinflammatory substances expression in the IgE sensitized and DNP-HSA stimulated RBL-2H3 cells significantly increased. At 4 μg/mL treatment dosage, HMAQ significantly inhibited β-hexosaminidase release in the IgE sensitized and DNP-HSA stimulated RBL-2H3 cells to 76% of that of the negative control. HMAQ has anti-degranulation effect. Furthermore, HMAQ treatment (8 μg/mL) significantly increased p-Lyn protein expression to 1.6 times of that of the negative control. HMAQ treatment (8~16 μg/mL) significantly suppressed the expressions of p-Syk, p-LAT, p-Akt, p-ERK, p-JNK and p-p-38 proteins, between 40 and 66 % of that of the negative controls. Consequently, the releases of downstream proinflammatory substances such as COX-2, hydrogen peroxide, IL-4 and TNF-α decreased to 88, 57, 68 and 74% of that of the negative controls, respectively.
In conclusion, the present study demonstrated that HMAQ had anti-allergic effects in the IgE sensitized and DNP-HSA stimulated RBL-2H3 cells. The good relevant mechanisms may involve multiple targets including Sky, LAT, Akt, ERK, JNK and p-38. On the other hand, the releases of downstream proinflammatory substances such as COX-2, IL-4 and TNF-α were effectively depressed.


壹、 前言 1
貳、 文獻回顧 2
一、 免疫反應 2
(一)、 先天性免疫 2
(二)、 適應性免疫 2
(三)、 過度免疫反應(Hypersensitivity) 3
二、 過敏反應分類及相關疾病 3
(一)、 第一型過敏反應 4
(二)、 第二型過敏反應 4
(三)、 第三型過敏反應 6
(四)、 第四型過敏反應 6
三、 過敏反應之參與因子 6
(一)、 抗原 7
(二)、 抗體 7
(三)、 肥大細胞與嗜鹼性球 8
四、 肥大細胞及嗜鹼性球之免疫反應 9
(一)、 免疫反應之機轉 9
(二)、 細胞之訊息傳導 13
五、 過敏反應之治療 17
(一)、 抗組織胺 17
(二)、 皮質類固醇 18
(三)、 單株克隆抗體 18
(四)、 減敏治療(ASIT) 20
六、 天然物抗過敏之相關研究 20
(一)、 益生菌(probiotics) 20
(二)、 粗萃物及化合物 21
七、 2-(羥甲基)蒽醌 [2-(hydroxymethyl)anthraquinone, HMAQ] 26
(一)、 化學結構和來源 26
(二)、 生理活性 28
參、 研究目的 29
肆、 研究架構 30
伍、 材料與方法 31
一、 試驗化合物 31
二、 儀器 31
三、 細胞株 31
(一)、 細胞來源 31
(二)、 細胞活化 32
(三)、 細胞繼代 33
(四)、 細胞保存 33
四、 HMAQ對RBL-2H3細胞之存活率分析 33
(一)、 藥品配製 34
(二)、 細胞存活率分析 34
五、 HMAQ對IgE致敏DNP-HSA抗原刺激RBL-2H3細胞之β-hexosaminidase釋放分析 34
(一)、 藥品配製 34
(二)、 RBL-2H3細胞之抗體、抗原及藥物處理 35
(三)、 β-Hexosaminidase釋放分析 36
六、 HMAQ對IgE致敏及DNP-HSA抗原刺激之RBL-2H3細胞之蛋白表現分析~西方墨點法(Western blot) 36
(一)、 藥品配製 36
(二)、 RBL-2H3細胞之抗體、抗原及藥物處理 38
(三)、 Total cell lysate製備 39
(四)、 蛋白質定量 39
(五)、 SDS-PAGE電泳分析 39
(六)、 免疫轉漬 40
(七)、 顯影拍攝 40
七、 HMAQ對IgE致敏及DNP-HSA抗原刺激RBL-2H3細胞之過氧化氫及超氧陰離子分析 40
(一)、 藥品配製 40
(二)、 RBL-2H3細胞之抗體、抗原及藥物處理 41
(三)、 過氧化氫及超氧陰離子測定 41
八、 HMAQ對IgE致敏及DNP-HSA抗原刺激RBL-2H3細胞之IL-4及TNF-α測定 41
(一)、 藥品配製 41
(二)、 RBL-2H3細胞之抗體、抗原及藥物處理 42
(三)、 細胞激素含量測定 42
九、 統計分析 43
陸、 結果與討論 45
一、 HMAQ對RBL-2H3細胞之存活率 45
二、 HMAQ對IgE致敏及DNP-HSA抗原刺激RBL-2H3細胞β-hexosaminidase釋放之影響 45
三、 HMAQ對IgE致敏及DNP-HSA抗原刺激RBL-2H3細胞訊息傳導因子之影響 45
(一)、 Lyn 45
(二)、 Syk 48
(三)、 LAT 51
(四)、 Akt 51
(五)、 MAPK家族 51
四、 HMAQ對IgE致敏及DNP-HSA抗原刺激RBL-2H3細胞發炎物質之影響 55
(一)、 COX-2 55
(二)、 過氧化氫(H2O2)及超氧陰離子(O2−∙) 55
(三)、 IL-4及TNF-α 58
五、 討論 58
柒、 結論 62
捌、 參考文獻 63



Abraham, S. N., & John, A. L. S. (2010). Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol., 10, 440-452.
Akdis, C. A., & Akdis, M. (2011). Mechanisms of allergen-specific immunotherapy. J. Allergy Clin. Immunol., 127, 18-27.
Amin, K. (2012). The role of mast cells in allergic inflammation. Respir. Med., 106, 9-14.
Balachandran, V., Karpagam, V., Revathi, B., Kavimani, M., & Ilango, G. (2015). Conformational stability, spectroscopic and computational studies, HOMO–LUMO, NBO, ESP analysis, thermodynamic parameters of natural bioactive compound with anticancer potential of 2-(hydroxymethyl)anthraquinone. Spectrochim. Acta, Part A, 150, 631-640.
Beaven, M. A. (2009). Our perception of the mast cell from Paul Ehrlich to now. Eur. J. Immunol., 39, 11-25.
Berlin, A. A., Hogaboam, C. M., & Lukacs, N. W. (2006). Inhibition of SCF attenuates peribronchial remodeling in chronic cockroach allergen-induced asthma. Lab. Invest., 86, 557-565.
Blank, U., Madera-Salcedo, I. K., Danelli, L., Claver, J., Tiwari, N., Sanchez-Miranda, E., Vazquez-Victorio, G., Ramirez-Valadez, K. A., Macias-Silva, M. & Gonzalez-Espinosa, C. (2014). Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells. Front. Immunol., 5, 1-18.
Borriello, F., Granata, F., Varricchi, G., Genovese, A., Triggiani, M., & Marone, G. (2014). Immunopharmacological modulation of mast cells. Curr. Opin. Pharmacol., 17, 45-57.
Bowler, R. P., & Crapo, J. D. (2002). Oxidative stress in allergic respiratory diseases. J. Allergy Clin. Immunol., 110, 349-356.
Bradding, P., Walls, A. F., & Holgate, S. T. (2006). The role of the mast cell in the pathophysiology of asthma. J. Allergy Clin. Immunol., 117, 1277-1284.
Brombacher, F. (2000). The role of interleukin‐13 in infectious diseases and allergy. Bioessays, 22, 646-656.
Chan, T. K., Ng, D. S., Cheng, C., Guan, S. P., Koh, H. M., & Wong, W. F. (2013). Anti-allergic actions of rottlerin from Mallotus philippinensis in experimental mast cell-mediated anaphylactic models. Phytomedicine, 20, 853-860.
Chang, P., & Lee, K. H. (1984). Cytotoxic antileukemic anthraquinones from Morinda parvifolia. Phytochemistry, 23, 1733-1736.
Chaplin, D. D. (2010). Overview of the immune response. J. Allergy Clin. Immunol., 125, S3-S23.
Chatila, T. A. (2004). Interleukin-4 receptor signaling pathways in asthma pathogenesis. Trends Mol. Med., 10, 493-499.
Chen, B. H., Hung, M. H., Chen, J. Y. F., Chang, H. W., Yu, M. L., Wan, L., Tsai, F. J., Wang, T. P., Fu, T. F., & Chiu, C. C. (2012). Anti-allergic activity of grapeseed extract (GSE) on RBL-2H3 mast cells. Food Chem., 132, 968-974.
Chen, H. J., Shih, C. K., Hsu, H. Y., & Chiang, W. (2010). Mast cell-dependent allergic responses are inhibited by ethanolic extract of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) testa. J. Agric. Food Chem., 58, 2596-2601.
Chung, F. (2001). Anti-inflammatory cytokines in asthma and allergy: interleukin-10, interleukin-12, interferon-γ. Mediators Inflammation, 10, 51-59.
Chung, M. J., Sohng, J. K., Choi, D. J., & Park, Y. I. (2013). Inhibitory effect of phloretin and biochanin A on IgE-mediated allergic responses in rat basophilic leukemia RBL-2H3 cells. Life Sci., 93, 401-408.
Church, D. S., & Church, M. K. (2011). Pharmacology of antihistamines. World Allergy Organ. J., 4, S22-S27.
Cima, K., Vogelsinger, H., & Kahler, C. M. (2010). Sensory neuropeptides are potent chemoattractants for human basophils in vitro. Regul. Pept., 160, 42-48.
Descotes, J., & Choquet-Kastylevsky, G. (2001). Gell and Coombs''s classification: is it still valid?. Toxicology, 158, 43-49.
Draber, P., Sulimenko, V., & Draberova, E. (2012). Cytoskeleton in mast cell signaling. Front. Immunol., 3, 1-18.
Dvorak, A. M. (2005). Ultrastructural studies of human basophils and mast cells. J. Histochem. Cytochem., 53, 1043-1070.
Falcone, F. H., Haas, H., & Gibbs, B. F. (2000). The human basophil: a new appreciation of its role in immune responses. Blood, 96, 4028-4038.
Flajnik, M. F., & Du Pasquier, L. (2004). Evolution of innate and adaptive immunity: can we draw a line?. Trends Immunol., 25, 640-644.
Frew, A. J. (2004). Mold allergy. J. Allergy Clin. Immunol., 113, 216-218.
Galli, S. J. (1993). New concepts about the mast cell. N. Engl. J. Med., 328, 257-265.
Galli, S. J., & Tsai, M. (2012). IgE and mast cells in allergic disease. Nat. Med., 18, 693-704.
Galli, S. J., Tsai, M., & Piliponsky, A. M. (2008). The development of allergic inflammation. Nature, 454, 445-454.
Gell, P. G. H., & Coombs, R. R. A. (1963). Clinical aspects of immunology. Clin. Aspects Immunol.
Gilfillan, A. M., & Tkaczyk, C. (2006). Integrated signalling pathways for mast-cell activation. Nat. Rev. Immunol., 6, 218-230.
Gould, H. J., & Sutton, B. J. (2008). IgE in allergy and asthma today. Nat. Rev. Immunol., 8, 205-217.
Hagenlocher, Y., & Lorentz, A. (2015). Immunomodulation of mast cells by nutrients. Mol. Immunol., 63, 25-31.
Halova, I., Draberova, L., & Draber, P. (2012). Mast cell chemotaxis–chemoattractants and signaling pathways. Front. Immunol., 3, 1-19.
Han, E. H., Park, J. H., Kim, J. Y., Chung, Y. C., & Jeong, H. G. (2009). Inhibitory mechanism of saponins derived from roots of Platycodon grandiflorum on anaphylactic reaction and IgE-mediated allergic response in mast cells. Food Chem. Toxicol., 47, 1069-1075.
He, S. H., Zhang, H. Y., Zeng, X. N., Chen, D., & Yang, P. C. (2013). Mast cells and basophils are essential for allergies: mechanisms of allergic inflammation and a proposed procedure for diagnosis. Acta Pharmacol. Sin., 34, 1270-1283.
Ho, S. M. (2010). Environmental epigenetics of asthma: an update. J. Allergy Clin. Immunol., 126, 453-465.
Holgate, S. T. (1999). The epidemic of allergy and asthma. Nature, 402, 2-4.
Holgate, S., Casale, T., Wenzel, S., Bousquet, J., Deniz, Y., & Reisner, C. (2005). The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J. Allergy Clin. Immunol., 115, 459-465.
Huang, F., Yamaki, K., Tong, X., Fu, L., Zhang, R., Cai, Y., Yanagisawa, R., Inoue, K. I., Takano, H., & Yoshino, S. (2008). Inhibition of the antigen-induced activation of RBL-2H3 cells by sinomenine. Int. Immunopharmacol., 8, 502-507.
Ishida, M., Nishi, K., Watanabe, H., & Sugahara, T. (2013). Inhibitory effect of aqueous spinach extract on degranulation of RBL-2H3 cells. Food Chem., 136, 322-327.
Itoh, T., Hori, Y., Atsumi, T., Toriizuka, K., Nakamura, M., Maeyama, T., Ando, M., Tsukamasa, Y., Ida, Y., & Furuichi, Y. (2012). Hot Water Extract of Adzuki (Vigna angularis) Suppresses Antigen‐Stimulated Degranulation in Rat Basophilic Leukemia RBL‐2H3 Cells and Passive Cutaneous Anaphylaxis Reaction in Mice. Phytother. Res., 26, 1003-1011.
Itoh, T., Tsukane, M., Koike, M., Nakamura, C., Ohguchi, K., Ito, M., Akao, Y., Koshimizu, S., Nozawa, Y., Wakimoto, T., Nukaya, H., & Nukaya, H. (2010). Inhibitory effects of whisky congeners on IgE-mediated degranulation in rat basophilic leukemia RBL-2H3 cells and passive cutaneous anaphylaxis reaction in mice. J. Agric. Food Chem., 58, 7149-7157.
Jang, S. E., Ryu, K. R., Park, S. H., Chung, S., Teruya, Y., Han, M. J., Woo, J. T., & Kim, D. H. (2013). Nobiletin and tangeretin ameliorate scratching behavior in mice by inhibiting the action of histamine and the activation of NF-κB, AP-1 and p38. Int. Immunopharmacol., 17, 502-507.
Johansson, S. G. O., Bieber, T., Dahl, R., Friedmann, P. S., Lanier, B. Q., Lockey, R. F., Motala C., Martell, J. A. O., Platts-Mills, T. A. E., Ring, J., Thien, F., Cauwenberge, P. V. & Williams, H. C. (2004). Revised nomenclature for allergy for global use: Report of the Nomenclature Review Committee of the World Allergy Organization, October 2003. J. Allergy Clin. Immunol., 113, 832-836.
Juckmeta, T., Thongdeeying, P., & Itharat, A. (2014). Inhibitory Effect on β-Hexosaminidase Release from RBL-2H3 Cells of Extracts and Some Pure Constituents of Benchalokawichian, a Thai Herbal Remedy, Used for Allergic Disorders. J. Evidence-Based Complementary Altern. Med., 1-8.
Kalesnikoff, J., & Galli, S. J. (2008). New developments in mast cell biology. Nat. Immunol., 9, 1215-1223.
Kelly-Welch, A. E., Hanson, E. M., Boothby, M. R., & Keegan, A. D. (2003). Interleukin-4 and interleukin-13 signaling connections maps. Science, 300, 1527-1528.
Kim, E., Ahn, S., & Lee, D. C. (2015). Inhibitory Effect of Alpiniae officinarum Rhizoma Extract on Degranulation in RBL-2H3 Cells. Korean J. Plant Res., 28, 321-328.
Kim, J. D., Kim, D. K., Kim, H. S., Kim, A. R., Kim, B., Her, E., Park, K. H., Kim, H. S., Kim, Y. M., & Choi, W. S. (2013). Morus bombycis extract suppresses mast cell activation and IgE-mediated allergic reaction in mice. J. Ethnopharmacol., 146, 287-293.
Kim, J. H., Kim, A. R., Kim, H. S., Kim, H. W., Park, Y. H., You, J. S., Park, Y. M., Her, E., Kim, H. S., Kim, Y. M., & Choi, W. S. (2015). Rhamnus davurica leaf extract inhibits Fyn activation by antigen in mast cells for anti-allergic activity. BMC complementary Altern. Med., 15, 1-11.
Lee, B., Bae, E. A., Trinh, H. T., Shin, Y. W., Phuong, T. T., Bae, K. H., & Kim, D. H. (2007). Inhibitory effect of schizandrin on passive cutaneous anaphylaxis reaction and scratching behaviors in mice. Biol. Pharm. Bull., 30, 1153-1156.
Lee, J. H., Kim, J. W., Ko, N. Y., Mun, S. H., Her, E., Kim, B. K., Han, J. W., Lee, H. Y., Beaven, M. A., Kim, Y. M., & Choi, W. S. (2008). Curcumin, a constituent of curry, suppresses IgE-mediated allergic response and mast cell activation at the level of Syk. J. Allergy Clin. Immunol., 121, 1225-1231.
Lee, S. H., Shin, H. J., Kim, D. Y., Shim, D. W., Kim, T. J., Ye, S. K., Won, H. S., Koppula, S., Kang, T. B., & Lee, K. H. (2013). Streptochlorin suppresses allergic dermatitis and mast cell activation via regulation of Lyn/Fyn and Syk signaling pathways in cellular and mouse models. PLoS one, 8, 1-10.
Lim, S. J., Kim, M., Randy, A., & Nho, C. W. (2015). Inhibitory effect of the branches of Hovenia dulcis Thunb. and its constituent pinosylvin on the activities of IgE-mediated mast cells and passive cutaneous anaphylaxis in mice. Food Funct., 6, 1361-1370.
Lin, T. S., Tiecher, B. A., & Sartorelli, A. C. (1980). 2-Methylanthraquinone derivatives as potential bioreductive alkylating agents. J. Med. Chem., 23, 1237-1242.
Lu, Y., Yang, J. H., Li, X., Hwangbo, K., Hwang, S. L., Taketomi, Y., Murakami, M., Chang, Y. C., Kim, C. H., Son, J. K. & Chang, H. W. (2011). Emodin, a naturally occurring anthraquinone derivative, suppresses IgE-mediated anaphylactic reaction and mast cell activation. Biochem. Pharmacol., 82, 1700-1708.
Lukeman, M., Xu, M., & Wan, P. (2002). Excited state intramolecular redox reaction of 2-(hydroxymethyl) anthraquinone in aqueous solution. Chem. Commun., 136-137.
Lukmandaru, G., Ashitani, T., & Takahashi, K. (2009). Color and chemical characterization of partially black-streaked heart-wood in teak (Tectona grandis). J. For. Res., 20, 377-380.
Luster, A. D., Alon, R., & von Andrian, U. H. (2005). Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol., 6, 1182-1190.
Metcalfe, D. D., Peavy, R. D., & Gilfillan, A. M. (2009). Mechanisms of mast cell signaling in anaphylaxis. J. Allergy Clin. Immunol., 124, 639-646.
Meng, Q. X., Roubin, R. H., & Hanrahan, J. R. (2013). Ethnopharmacological and bioactivity guided investigation of five TCM anticancer herbs. J. Ethnopharmaco., 148, 229-238.
Moon, T. C., Befus, A. D., & Kulka, M. (2014). Mast cell mediators: their differential release and the secretory pathways involved. Front. Immunol., 5,1-18.
Naal, R. M. Z., Tabb, J., Holowka, D., & Baird, B. (2004). In situ measurement of degranulation as a biosensor based on RBL-2H3 mast cells. Biosens. Bioelectron., 20, 791-796.
Ninomiya, M., Itoh, T., Ishikawa, S., Saiki, M., Narumiya, K., Yasuda, M., Koshikawa, K., Nozawa, Y., & Koketsu, M. (2010). Phenolic constituents isolated from Fragaria ananassa Duch. inhibit antigen-stimulated degranulation through direct inhibition of spleen tyrosine kinase activation. Bioorg. Med. Chem., 18(16), 5932-5937.
Onishi, S., Nishi, K., Yasunaga, S., Muranaka, A., Maeyama, K., Kadota, A., & Sugahara, T. (2014). Nobiletin, a polymethoxy flavonoid, exerts anti-allergic effect by suppressing activation of phosphoinositide 3-kinase. J. Funct. Foods, 6, 606-614.
Park, B. S., Lee, H. K., Lee, S. E., Piao, X. L., Takeoka, G. R., Wong, R. Y., Ahn, Y. J. & Kim, J. H. (2006). Antibacterial activity of Tabebuia impetiginosa Martius ex DC (Taheebo) against Helicobacter pylori. J. Ethnopharmacol., 105, 255-262.
Qin, H. D., Shi, Y. Q., Liu, Z. H., Li, Z. G., Wang, H. S., Wang, H., & Liu, Z. P. (2010). Effect of chlorogenic acid on mast cell-dependent anaphylactic reaction. Int. Immunopharmacol., 10, 1135-1141.
Rajan, T. V. (2003). The Gell–Coombs classification of hypersensitivity reactions: a re-interpretation. Trends Immunol., 24, 376-379.
Rautava, S., Kalliomaki, M., & Isolauri, E. (2002). Probiotics during pregnancy and breast-feeding might confer immunomodulatory protection against atopic disease in the infant. J. Allergy Clin. Immunol., 109, 119-121.
Rautava, S., Kalliomaki, M., & Isolauri, E. (2005). New therapeutic strategy for combating the increasing burden of allergic disease: probiotics—a Nutrition, Allergy, Mucosal Immunology and Intestinal Microbiota (NAMI) Research Group report. J. Allergy Clin. Immunol., 116, 31-37.
Rivera, J., & Gilfillan, A. M. (2006). Molecular regulation of mast cell activation. J. Allergy Clin. Immunol., 117, 1214-1225.
Saxon, A., & Diaz-Sanchez, D. (2005). Air pollution and allergy: you are what you breathe. Nat. Immunol., 6, 223-226.
Schwartz, L. B., Austen, K. F., & Wasserman, S. I. (1979). Immunologic release of β-hexosaminidase and β-glucuronidase from purified rat serosal mast cells. J. Immuno., 123, 1445-1450.
Shi, Y. H., Zhu, S., Ge, Y. W., He, Y. M., Kazuma, K., Wang, Z., Yoshimatsu, K., & Komatsu, K. (2016). Monoterpene derivatives with anti-allergic activity from red peony root, the root of Paeonia lactiflora. Fitoterapia, 108, 55-61.
Siddiqui, B. S., Sattar, F. A., Begum, S., Gulzar, T., & Ahmad, F. (2007). Chemical constituents from the stems of Morinda citrifolia Linn. Arch. Pharmacal Res., 30, 793-798.
Siraganian, R. P. (2003). Mast cell signal transduction from the high-affinity IgE receptor. Curr. Opin. Immunol., 15, 639-646.
Sohn, E. H., Jang, S. A., Joo, H., Park, S., Kang, S. C., Lee, C. H., & Kim, S. Y. (2011). Anti-allergic and anti-inflammatory effects of butanol extract from Arctium Lappa L. Clin. Mol. Allergy, 9, 1-11.
Stavnezer, J. (1996). Immunoglobulin class switching. Curr. Opin. Immunol., 8, 199-205.
Stone, K. D., Prussin, C., & Metcalfe, D. D. (2010). IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol., 125, S73-S80.
Tang, F., Chen, F., Ling, X., Huang, Y., Zheng, X., Tang, Q., & Tan, X. (2015). Inhibitory effect of methyleugenol on IgE-mediated allergic inflammation in RBL-2H3 cells. Mediators Inflammation, 2015.
Thurmond, R. L., Gelfand, E. W., & Dunford, P. J. (2008). The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat. Rev. Drug Discovery, 7, 41-53.
Vatrella, A., Fabozzi, I., Calabrese, C., Maselli, R., & Pelaia, G. (2014). Dupilumab: a novel treatment for asthma. J. Asthma Allergy, 7, 123-130.
Vo, T. S., Ngo, D. H., Kang, K. H., Park, S. J., & Kim, S. K. (2014). The role of peptides derived from Spirulina maxima in downregulation of FcεRI‐mediated allergic responses. Mol. Nutr. Food Res., 58, 2226-2234.
Wang, W., Zhou, Q., Liu, L., & Zou, K. (2012). Anti-allergic activity of emodin on IgE-mediated activation in RBL-2H3 cells. Pharmacol. Rep., 64, 1216-1222.
Wenzel, S. E. (2012). Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med., 18, 716-725.
Wernersson, S., & Pejler, G. (2014). Mast cell secretory granules: armed for battle. Nat. Rev. Immunol., 14, 478-494.
Xu, K., Wang, P., Wang, L., Liu, C., Xu, S., Cheng, Y., Wang, Y., Li, Q., & Lei, H. (2014). Quinone Derivatives from the Genus Rubia and Their Bioactivities. Chem. Biodiversity, 11, 341-363.
Yen, G. C., Duh, P. D., & Chuang, D. Y. (2000). Antioxidant activity of anthraquinones and anthrone. Food Chem., 70, 437-441.
Yoo, J. M., Kim, J. H., Park, S. J., Kang, Y. J., & Kim, T. J. (2012). Inhibitory effect of eriodictyol on IgE/Ag-induced type I hypersensitivity. Biosci. Biotechnol., Biochem., 76, 1285-1290.
Yoo, J. M., Kim, N. Y., Seo, J. M., Kim, S. J., Lee, S. Y., Kim, S. K., Kim, H. D., Lee, S. W., & Kim, M. R. (2014). Inhibitory effects of mulberry fruit extract in combination with naringinase on the allergic response in IgE-activated RBL-2H3 cells. Int. J. Mol. Med., 33, 469-477.
Yoo, J. M., Park, E. S., Kim, M. R., & Sok, D. E. (2013). Inhibitory effect of N-Acyl dopamines on IgE-mediated allergic response in RBL-2H3 cells. Lipids, 48, 383-393.
Yuan, M., Li, J., Lv, J., Mo, X., Yang, C., Chen, X., Liu, Z., & Liu, J. (2012). Polydatin (PD) inhibits IgE-mediated passive cutaneous anaphylaxis in mice by stabilizing mast cells through modulating Ca 2+ mobilization. Toxicol. Appl. Pharmacol., 264, 462-469.
Zhang, T., Yang, C., Rupa, P., Jiang, B., & Mine, Y. (2012). Inhibitory effects of Quillaja saponin on IgE-mediated degranulation of rat basophilic leukemia RBL-2H3 Cells. J. Funct. Foods, 4, 864-871.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top