跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 12:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊婉莉
研究生(外文):Wan-Li Yang
論文名稱:苦丁茶甲醇萃取物中免疫調節有效成分之區分及其對人類前列腺癌PC-3細胞生長之抑制作用
論文名稱(外文):Isolation of immunomodulatory fractions from Ilex kudingcha methanol extracts and their inhibitory effects on the growth of human prostate cancer PC-3 cells
指導教授:林金源林金源引用關係
指導教授(外文):Jin-Yuarn Lin
口試委員:林璧鳳陳炳宏
口試委員(外文):Bi-Feng LinBing-Hung Chen
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:136
中文關鍵詞:細胞凋亡癌症免疫療法細胞激素人類前列腺癌細胞PC-3苦丁茶促凋亡(Bax)/抗凋亡(Bcl-2)基因
外文關鍵詞:apoptosiscancer immunotherapycytokineshuman prostate carcinoma PC-3 cellsIlex kudingchapro- (Bax)/anti-apoptotic (Bcl-2) genes
相關次數:
  • 被引用被引用:4
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
苦丁茶(Ilex kudingcha)被當作傳統飲品已有超過兩千年的歷史,其具有止渴、提神及明目之功效,近年來多項研究指出苦丁茶具有許多藥理功效,包含作為抗氧化劑、保肝劑、抗菌劑、抗組織胺劑及神經保護劑等,此外,本研究室於先前實驗中已發現苦丁茶甲醇萃取物具有免疫調節之功效,然而,其潛在活性成分與免疫調節機制仍尚不明,因此,本實驗使用不同溶劑(正己烷及70%酒精)將苦丁茶甲醇萃取物再進行區分,並利用小鼠初代脾臟細胞與巨噬細胞體外試驗,評估樣品對Th1/Th2平衡及巨噬細胞活性之免疫調節作用,最後,以單獨添加及癌症免疫療法模式,探討苦丁茶甲醇萃取物及其區分物對PC-3細胞之影響。
結果顯示苦丁茶甲醇萃取物(IKME)及其正己烷區分物(HFIKME)與酒精處理之上清液(ESIKME)具有調節免疫反應使之傾向Th1平衡,而酒精處理之沉澱物(EPIKME)則是調節免疫反應使之傾向Th2平衡。再者,單獨添加苦丁茶甲醇萃取物及其不同區分物,具有稍微刺激巨噬細胞活性之作用,推測其可促進先天性免疫反應,此外,以脂多醣(LPS)刺激模擬發炎模式下,IKME與HFIKME可藉由降低(IL-1β + IL-6 + TNF-α)/IL-10細胞激素分泌之比值而達到抗發炎效果,然而,ESIKME可透過提升(IL-1β + IL-6 + TNF-α)/IL-10細胞激素分泌之比值而增加巨噬細胞之活性,顯示不同區分物可能具有不同的免疫調節屬性。
以單獨添加與癌症免疫療法模式探討樣品對PC-3細胞生長之影響,結果顯示在不同區分物之中,以ESIKME之抗癌活性最高,進一步使用即時定量聚合酶連鎖反應(qPCR)測定PC-3細胞凋亡相關基因之表現,結果發現ESIKME及其初代脾臟細胞/巨噬細胞條件培養液可顯著增加促凋亡(Bax)/抗凋亡(Bcl-2)基因表現之比值,且於相同濃度下,其促凋亡活性明顯高於IKME。
綜合本實驗結果,顯示ESIKME可能為IKME中具免疫調節及抗癌潛力之區分物,並且可能透過調節免疫反應使之傾向Th1平衡以及增加巨噬細胞活性,進而使其分泌特定細胞激素(如: IL-2, TNF-α及IL-6),導致PC-3細胞促凋亡(Bax)/抗凋亡(Bcl-2)基因表現量之比值增加使其走向凋亡。


Ilex Kudingcha has been used for a traditional beverage to quench thirst, refresh the mind, and improve eyesight more than 2,000 years. In the recent years, a number of studies have reported that Ilex Kudingcha has numerous pharmacological properties, serving as antioxidants, hepatoprotectants, antibacterial agents, antihistamines and neuroprotective agents. Besides, our lab had demonstrated that Ilex Kudingcha methanol extract possessed immunomodulatory effects in the previous study. However, the potent active compounds in Ilex Kudingcha and its exact immunomodulatory mechanisms still remain unclear. To clarify the puzzle, in the present study Ilex Kudingcha methanol extract (IKME) was further fractionized using hexane and 70% alcohol. The crude extract and its fractions were then subjected to evaluate their immunomodulatory effects on Th1/Th2 balance and the activity of macrophages using mouse primary splenocytes and peritoneal macrophages in vitro. Next, in order to assess anti-cancer effects, the extract and its fractions were used to treat human prostate cancer PC-3 cells using direct addition and immunotherapy of primary splenocytes and peritoneal macrophages, respectively.
The results showed that IKME as well as its hexane fraction (HEIKME) and ethanol supernatant (ESIKME) fraction had potential to modulate Th1/Th2 immune response toward Th1 balance. In contrast to ESIKME, ethanol precipitate (EPIKME) fraction tended to regulate Th1/Th2 immune response toward Th2 balance. Moreover, IKME and its different fractions (HFIKME, EPIKME and ESIKME) treatments alone displayed a mild stimulatory activity to macrophages, suggesting that they might improve the innate immunity. Furthermore, in the presence of lipopolysaccharides (LPS), IKME and HFIKME treatments were identified to have an anti-inflammatory potency through decreasing (IL-1β + IL-6 + TNF-α)/IL-10 cytokines secretion ratio, however ESIKME treatment enhanced the activity of the LPS-stimulated macrophages through increasing (IL-1β + IL-6 + TNF-α)/IL-10 cytokines secretion ratio. Our results have indicated that different fractions of IKME might own distinct immunomodulatory properties.
Consequently, IKME and its different fractions (HFIKME, EPIKME and ESIKME) were further used to treat PC-3 cells by means of direct addition or immunotherapy. The results revealed that ESIKME showed the strongest anti-cancer activity among different fractions either by direct addition or immunotherapy. In order to elucidate mechanisms underlying the anticancer effect of ESIKME against PC-3 cells, the expression of genes associated with apoptosis were measured using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The results showed that expression ratios of pro-(Bax)/anti-apoptotic (Bcl-2) mRNA levels in PC-3 cells were significantly increased by ESIKME and its conditioned media of primary splenocytes and macrophages, respectively. The apoptosis-induced activity of ESIKME was significantly higher than that of IKME at the same concentration.
In conclusion, results from this study evidenced that ESIKME is a potent immunomodulatory and anti-cancer fraction from IKME. ESIKME prompted Th1/Th2 immune response toward Th1 balance and enhanced macrophages to secrete some specific cytokines, such as IL-2, TNF-α and IL-6, that could induced apoptosis of PC-3 cells via increasing Bax/Bcl-2 expression ratio.


摘要 i
Abstract iii
目錄 v
表目錄 x
圖目錄 xii
縮寫對照表 xiv
緒言 1
第一章 文獻回顧 2
第一節 免疫反應 2
一、 免疫系統 (Immune system) 2
二、 輔助型T細胞第一型與第二型之免疫平衡 6
三、 發炎反應 (Inflammation) 8
第二節 免疫與癌症 11
一、 免疫與癌症 11
二、 細胞死亡路徑-凋亡(apoptosis) 13
第三節 苦丁茶相關研究與介紹 15
第四節 多酚類之免疫調節作用 16
第五節 研究動機與目的 17
第六節 論文架構與實驗設計 18
第二章 苦丁茶甲醇萃取物及其不同區分物對初代脾臟細胞Th1/Th2免疫平衡之影響 19
第一節 前言 19
第二節 材料與方法 19
一、 樣品製備 19
二、 苦丁茶甲醇萃取物及其不同區分物之光譜掃描分析 22
三、 苦丁茶甲醇萃取物及其不同區分物之成分分析 22
四、 苦丁茶甲醇萃取物及其經酒精處理上清液之高效能液相層析法(HPLC)分析 26
五、 苦丁茶甲醇萃取物經酒精處理上清液之液相層析串聯質譜儀(LC/MS/MS)分析 28
六、 苦丁茶甲醇萃取物及其經酒精處理上清液之酚類化合物相對聚合程度測定 30
七、 苦丁茶甲醇萃取物及其不同區分物對BALB/c雌鼠初代脾臟細胞生長 之影響 31
八、 苦丁茶甲醇萃取物及其不同區分物對BALB/c雌鼠初代脾臟細胞分泌細胞激素之影響 35
九、 統計分析 39
第三節 結果 40
一、 苦丁茶甲醇萃取物及其不同區分物之萃取率 40
二、 苦丁茶甲醇萃取物及其不同區分物之光譜掃描 40
三、 苦丁茶甲醇萃取物及其不同區分物之成分分析 43
四、 以高效能液相層析法(HPLC)分析苦丁茶甲醇萃取物及其經酒精處理上清液之多酚類組成 45
五、 苦丁茶甲醇萃取物經酒精處理上清液(ESIKME)之液相層析串聯質譜儀(LC/MS/MS)分析 47
六、 苦丁茶甲醇萃取物及其經酒精處理上清液之酚類化合物相對聚合程度測定 51
七、 苦丁茶甲醇萃取物及其不同區分物對BALB/c雌鼠初代脾臟細胞生長 之影響 52
八、 苦丁茶甲醇萃取物及其不同區分物對BALB/c雌鼠初代脾臟細胞分泌細胞激素之影響 55
第四節 討論 61
第五節 結論 63
第三章 苦丁茶甲醇萃取物及其區分物對小鼠初代腹腔巨噬細胞發炎之影響 64
第一節 前言 64
第二節 材料與方法 64
一、 實驗架構 64
二、 苦丁茶甲醇萃取物及其區分物對BALB/c雌鼠初代巨噬細胞促發炎與抗發炎細胞激素之影響 65
三、 統計分析 68
第三節 結果 69
一、 苦丁茶甲醇萃取物及其區分物對BALB/c雌鼠初代巨噬細胞促發炎與抗發炎細胞激素之影響 69
(一) 模式A : 單獨添加樣品對初代巨噬細胞分泌細胞激素之影響 69
(二) 模式B : 模擬發炎模式下樣品對初代巨噬細胞分泌細胞激素之影響 75
第四節 討論 81
第五節 結論 83
第四章 苦丁茶甲醇萃取物及其不同區分物對人類前列腺癌PC-3細胞株生長之影響 84
第一節 前言 84
第二節 材料與方法 84
一、 實驗架構 84
二、 苦丁茶甲醇萃取物(IKME)及其區分物(HFIKME、EPIKME及ESIKME)製備 85
三、 苦丁茶甲醇萃取物(IKME)及其區分物(HFIKME、EPIKME及ESIKME)之初代脾臟細胞條件培養液製備 85
四、 苦丁茶甲醇萃取物(IKME)及其區分物(HFIKME、EPIKME及ESIKME)之初代巨噬細胞條件培養液製備 85
五、 人類前列腺癌PC-3細胞株之培養 86
六、 苦丁茶甲醇萃取物(IKME)及其區分物(HFIKME、EPIKME及ESIKME)與條件培養液對人類前列腺癌PC-3細胞株生長之影響 87
七、 苦丁茶甲醇萃取物(IKME)和其區分物(ESIKME)與免疫條件培養液對人類前列腺癌PC-3細胞株凋亡路徑相關基因mRNA表現量之影響 89
八、 統計分析 95
第三節 結果 96
一、 苦丁茶甲醇萃取物(IKME)及其區分物(HFIKME、EPIKME及ESIKME)與條件培養液對人類前列腺癌PC-3細胞株生長之影響 96
(一) 模式A : 直接添加樣品對人類前列腺癌細胞PC-3細胞株生長之影響 96
(二) 模式B : 初代脾臟細胞條件培養液對人類前列腺癌PC-3細胞株生長之影響 100
(三) 模式C : 初代巨噬細胞條件培養液對人類前列腺癌PC-3細胞株生長之影響 106
二、 苦丁茶甲醇萃取物(IKME)和其區分物(ESIKME)與免疫細胞條件培養液對人類前列腺癌PC-3細胞株凋亡路徑相關基因mRNA表現量之影響 112
(一) 模式A : 直接添加樣品對人類前列腺癌PC-3細胞株凋亡路徑相關基因mRNA表現之影響 112
(二) 模式B : 初代脾臟細胞條件培養液對人類前列腺癌PC-3細胞株凋亡路徑相關基因mRNA表現之影響 115
(三) 模式C : 初代巨噬細胞條件培養液對人類前列腺癌PC-3細胞株凋亡路徑相關基因mRNA表現之影響 118
三、 經苦丁茶甲醇萃取物(IKME)和其區分物(ESIKME)處理之免疫細胞條件培養液中細胞激素分泌量與人類前列腺癌細胞株促凋亡(Bax)與抗凋亡(Bcl-2)基因mRNA表現量比值之相關性分析 121
第四節 討論 124
第五節 結論 127
第五章 總討論與總結 128
第六章 參考文獻 129


蕭似帆。2013。香蕉不同萃取物對Th1/Th2免疫平衡、發炎及PC-3與MCF-7細胞凋亡之影響。國立國立中興大學食品暨應用生物科技學系碩士論文。
林姿廷。2014。苦丁茶與空心蓮子草不同萃取物對初代免疫細胞與自然殺手細胞免疫調節能力之影響及其與前列腺癌細胞和乳腺癌細胞間交互作用。國立國立中興大學食品暨應用生物科技學系碩士論文。
劉雅惠。2015。沉香萃取物之免疫調節功能及其對人類前列腺癌細胞和乳腺癌細胞的影響。國立國立中興大學食品暨應用生物科技學系碩士論文。
高永艷,胡建焜,李瑞明. (2014). 苦丁茶高效液相色譜指纹圖譜研究. 中醫學報, 29, 1479 - 1481.
Akira, S. (2011). Innate immunity and adjuvants. Philos Trans R Soc Lond B Biol Sci, 366, 2748-2755.
Annunziato, F., Cosmi, L., Liotta, F., Maggi, E., & Romagnani, S. (2014). Human Th1 dichotomy: origin, phenotype and biologic activities. Immunology.
Annunziato, F., Cosmi, L., Liotta, F., Maggi, E., & Romagnani, S. (2015). Human T helper type 1 dichotomy: origin, phenotype and biological activities. Immunology, 144, 343-351.
Ashkenazi, A., & Salvesen, G. (2014). Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol, 30, 337-356.
Bonilla, F. A., & Oettgen, H. C. (2010). Adaptive immunity. J Allergy Clin Immunol, 125, S33-40.
Bradley, J. R. (2008). TNF-mediated inflammatory disease. J Pathol, 214, 149-160.
Brglez Mojzer, E., Knez Hrncic, M., Skerget, M., Knez, Z., & Bren, U. (2016). Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules, 21.
Bronte, V., & Pittet, M. J. (2013). The spleen in local and systemic regulation of immunity. Immunity, 39, 806-818.
Butler, L. G. (1982). Relative degree of polymerization of sorghum tannin during seed development and maturation. J Agr Food Chem, 30, 1090-1094.
Butler, L. G., Price, M. L., & Brotherton, J. E. (1982). Vanillin Assay for Proanthocyanidins (condensed tannins) - modification of the solvent for estimation of the degree of polymerization. J Agr Food Chem, 30, 1087-1089.
Calder, P. C., Albers, R., Antoine, J. M., Blum, S., Bourdet-Sicard, R., Ferns, G. A., Folkerts, G., Friedmann, P. S., Frost, G. S., Guarner, F., Lovik, M., Macfarlane, S., Meyer, P. D., M''Rabet, L., Serafini, M., van Eden, W., van Loo, J., Vas Dias, W., Vidry, S., Winklhofer-Roob, B. M., & Zhao, J. (2009). Inflammatory disease processes and interactions with nutrition. Br J Nutr, 101 Suppl 1, S1-45.
Cannon, J. G. (2000). Inflammatory Cytokines in Nonpathological States. News Physiol Sci, 15, 298-303.
Casey, S. C., Amedei, A., Aquilano, K., Azmi, A. S., Benencia, F., Bhakta, D., Bilsland, A. E., Boosani, C. S., Chen, S., Ciriolo, M. R., Crawford, S., Fujii, H., Georgakilas, A. G., Guha, G., Halicka, D., Helferich, W. G., Heneberg, P., Honoki, K., Keith, W. N., Kerkar, S. P., Mohammed, S. I., Niccolai, E., Nowsheen, S., Vasantha Rupasinghe, H. P., Samadi, A., Singh, N., Talib, W. H., Venkateswaran, V., Whelan, R. L., Yang, X., & Felsher, D. W. (2015). Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol, 35 Suppl, S199-223.
Cavalcanti, Y. V., Brelaz, M. C., Neves, J. K., Ferraz, J. C., & Pereira, V. R. (2012). Role of TNF-Alpha, IFN-Gamma, and IL-10 in the Development of Pulmonary Tuberculosis. Pulm Med, 2012, 745483.
Chai, E. Z., Siveen, K. S., Shanmugam, M. K., Arfuso, F., & Sethi, G. (2015). Analysis of the intricate relationship between chronic inflammation and cancer. Biochem J, 468, 1-15.
Corren, J. (2012). Inhibition of interleukin-5 for the treatment of eosinophilic diseases. Discov Med, 13, 305-312.
Couper, K. N., Blount, D. G., & Riley, E. M. (2008). IL-10: the master regulator of immunity to infection. J Immunol, 180, 5771-5777.
Davies, L. C., & Taylor, P. R. (2015). Tissue-resident macrophages: then and now. Immunology, 144, 541-548.
Day, A. J., DuPont, M. S., Ridley, S., Rhodes, M., Rhodes, M. J. C., Morgan, M. R. A., & Williamson, G. (1998). Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver beta-glucosidase activity. Febs Letters, 436, 71-75.
de Araujo-Souza, P. S., Hanschke, S. C., & Viola, J. P. (2015). Epigenetic control of interferon-gamma expression in CD8 T cells. J Immunol Res, 2015, 849573.
de Pascual-Teresa, S., Johnston, K. L., DuPont, M. S., O''Leary, K. A., Needs, P. W., Morgan, L. M., Clifford, M. N., Bao, Y. P., & Williamson, G. (2004). Quercetin metabolites downregulate cyclooxygenase-2 transcription in human lymphocytes ex vivo but not in vivo. J Nutr, 134, 552-557.
Dranoff, G. (2004). Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer, 4, 11-22.
Estruch, M., Rajamaki, K., Sanchez-Quesada, J. L., Kovanen, P. T., Oorni, K., Benitez, S., & Ordonez-Llanos, J. (2015). Electronegative LDL induces priming and inflammasome activation leading to IL-1beta release in human monocytes and macrophages. Biochim Biophys Acta, 1851, 1442-1449.
Fuentes, E., Baez, M. E., Bravo, M., Cid, C., & Labra, F. (2012). Determination of Total Phenolic Content in Olive Oil Samples by UV-visible Spectrometry and Multivariate Calibration. Food Anal Method, 5, 1311-1319.
Green, D. R., & Llambi, F. (2015). Cell Death Signaling. Cold Spring Harb Perspect Biol, 7.
Harper, J., & Sainson, R. C. (2014). Regulation of the anti-tumour immune response by cancer-associated fibroblasts. Semin Cancer Biol, 25, 69-77.
Hui, L., & Chen, Y. (2015). Tumor microenvironment: Sanctuary of the devil. Cancer Lett, 368, 7-13.
Hung, P. V., & Morita, N. (2008). Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food Chem, 109, 325-331.
Idris, A., Ghazali, N. B., & Koh, D. (2015). Interleukin 1beta-A Potential Salivary Biomarker for Cancer Progression? Biomark Cancer, 7, 25-29.
Itankar, P. R., Sontakke, V. A., Tauqeer, M., & Charde, S. S. (2014). Antioxidant potential and its relationship with polyphenol content and degree of polymerization in Opuntia elatior Mill. fruits. Ayu, 35, 423-427.
Janeway, C. A., Jr., & Medzhitov, R. (2002). Innate immune recognition. Annu Rev Immuno Vol 33, 20, 197-216.
John, C. M., Sandrasaigaran, P., Tong, C. K., Adam, A., & Ramasamy, R. (2011). Immunomodulatory activity of polyphenols derived from Cassia auriculata flowers in aged rats. Cell Immunol, 271, 474-479.
Kalliolias, G. D., & Ivashkiv, L. B. (2016). TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol, 12, 49-62.
Khan, A., Ali, N. H., Santercole, V., Paglietti, B., Rubino, S., Kazmi, S. U., & Farooqui, A. (2016). Camellia sinensis Mediated Enhancement of Humoral Immunity to Particulate and Non-particulate Antigens. Phytother Res, 30, 41-48.
Kim, J., & Bae, J. S. (2016). Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment. Mediators Inflamm, 2016, 6058147.
Koff, J. L., Ramachandiran, S., & Bernal-Mizrachi, L. (2015). A time to kill: targeting apoptosis in cancer. Int J Mol Sci, 16, 2942-2955.
Kumar, S., Dwivedi, P. D., Das, M., & Tripathi, A. (2013). Macrophages in food allergy: an enigma. Mol Immunol, 56, 612-618.
Li, C., Tong, H., Yan, Q., Tang, S., Han, X., Xiao, W., & Tan, Z. (2016). L-Theanine Improves Immunity by Altering TH2/TH1 Cytokine Balance, Brain Neurotransmitters, and Expression of Phospholipase C in Rat Hearts. Med Sci Monit, 22, 662-669.
Li, C. C., Hou, Y. C., Yeh, C. L., & Yeh, S. L. (2014). Effects of eicosapentaenoic acid and docosahexaenoic acid on prostate cancer cell migration and invasion induced by tumor-associated macrophages. Plos One, 9, e99630.
Li, L., Xu, L. J., Ma, G. Z., Dong, Y. M., Peng, Y., & Xiao, P. G. (2013). The large-leaved Kudingcha (Ilex latifolia Thunb and Ilex kudingcha C.J. Tseng): a traditional Chinese tea with plentiful secondary metabolites and potential biological activities. J Nat Med, 67, 425-437.
Lin, W. W., & Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest, 117, 1175-1183.
Liu, L. X., Sun, Y., Laura, T., Liang, X. F., Ye, H., & Zeng, X. X. (2009). Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha C.J. Tseng. Food Chem, 112, 35-41.
Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol, 23, 549-555.
Martino, M., Rocchi, G., Escelsior, A., & Fornaro, M. (2012). Immunomodulation Mechanism of Antidepressants: Interactions between Serotonin/Norepinephrine Balance and Th1/Th2 Balance. Curr Neuropharmacol, 10, 97-123.
Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S. I., & Lee, Y. C. (2005). Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem, 339, 69-72.
Mendes, F., Domingues, C., Rodrigues-Santos, P., Abrantes, A. M., Goncalves, A. C., Estrela, J., Encarnacao, J., Pires, A. S., Laranjo, M., Alves, V., Teixo, R., Sarmento, A. B., Botelho, M. F., & Rosa, M. S. (2016). The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation. Biochim Biophys Acta, 1865, 168-175.
Mittal, S. K., & Roche, P. A. (2015). Suppression of antigen presentation by IL-10. Curr Opin Immunol, 34, 22-27.
Molfino, N. A., Gossage, D., Kolbeck, R., Parker, J. M., & Geba, G. P. (2012). Molecular and clinical rationale for therapeutic targeting of interleukin-5 and its receptor. Clin Exp Allergy, 42, 712-737.
Mortellaro, A., & Ricciardi-Castagnoli, P. (2011). From vaccine practice to vaccine science: the contribution of human immunology to the prevention of infectious disease. Immunol Cell Biol, 89, 332-339.
Moser, M., & Leo, O. (2010). Key concepts in immunology. Vaccine, 28 Suppl 3, C2-13.
Muenst, S., Laubli, H., Soysal, S. D., Zippelius, A., Tzankov, A., & Hoeller, S. (2016). The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med, 279, 541-562.
Nelson, D., Fisher, S., & Robinson, B. (2014). The "Trojan Horse" approach to tumor immunotherapy: targeting the tumor microenvironment. J Immunol Res, 2014, 789069.
Nikoletopoulou, V., Markaki, M., Palikaras, K., & Tavernarakis, N. (2013). Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta, 1833, 3448-3459.
Nishimura, K., Fukuda, T., Miyase, T., Noguchi, H., & Chen, X. M. (1999). Activity-guided isolation of triterpenoid acyl CoA cholesteryl acyl transferase (ACAT) inhibitors from Ilex kudincha. J Nat Prod, 62, 1061-1064.
Ohashi, W., Hattori, K., & Hattori, Y. (2015). Control of Macrophage Dynamics as a Potential Therapeutic Approach for Clinical Disorders Involving Chronic Inflammation. J Pharmacol Exp Ther, 354, 240-250.
Perez-Garijo, A., & Steller, H. (2015). Spreading the word: non-autonomous effects of apoptosis during development, regeneration and disease. Development, 142, 3253-3262.
Pitt, J. M., Marabelle, A., Eggermont, A., Soria, J. C., Kroemer, G., & Zitvogel, L. (2016). Ann Oncol.
Radogna, F., Dicato, M., & Diederich, M. (2015). Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol, 94, 1-11.
Rahat, M. A., & Shakya, J. (2016). Parallel Aspects of the Microenvironment in Cancer and Autoimmune Disease. Mediators Inflamm, 2016, 4375120.
Ribatti, D., Mangialardi, G., & Vacca, A. (2006). Stephen Paget and the ''seed and soil'' theory of metastatic dissemination. Clin Exp Med, 6, 145-149.
Rosalia, R. A., Arenas-Ramirez, N., Bouchaud, G., Raeber, M. E., & Boyman, O. (2014). Use of enhanced interleukin-2 formulations for improved immunotherapy against cancer. Curr Opin Chem Biol, 23, 39-46.
Sato, M., Ramarathnam, N., Suzuki, Y., Ohkubo, T., Takeuchi, M., & Ochi, H. (1996). Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agr Food Chem, 44, 37-41.
Shen, Y., Jin, L., Xiao, P., Lu, Y., & Bao, J. S. (2009). Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. J Cereal Sci, 49, 106-111.
Shimada, K., Park, J. K., & Daida, H. (2006). T helper 1/T helper 2 balance and HMG-CoA reductase inhibitors in acute coronary syndrome: statins as immunomodulatory agents? Eur Heart J, 27, 2916-2918.
Sim, G. C., & Radvanyi, L. (2014). The IL-2 cytokine family in cancer immunotherapy. Cytokine Growth Factor Rev, 25, 377-390.
Singh, A., Demont, A., Actis-Goretta, L., Holvoet, S., Leveques, A., Lepage, M., Nutten, S., & Mercenier, A. (2014). Identification of epicatechin as one of the key bioactive constituents of polyphenol-enriched extracts that demonstrate an anti-allergic effect in a murine model of food allergy. Br J Nutr, 112, 358-368.
Siveen, K. S., & Kuttan, G. (2009). Role of macrophages in tumour progression. Immunol Lett, 123, 97-102.
Song, C., Xie, C., Zhou, Z., Yu, S., & Fang, N. (2012). Antidiabetic Effect of an Active Components Group from Ilex kudingcha and Its Chemical Composition. Evid Based Complement Alternat Med, 2012, 423690.
Sprague, A. H., & Khalil, R. A. (2009). Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol, 78, 539-552.
Sun, S., Pan, S., Miao, A., Ling, C., Pang, S., Tang, J., Chen, D., & Zhao, C. (2013). Active extracts of black tea (Camellia Sinensis) induce apoptosis of PC-3 prostate cancer cells via mitochondrial dysfunction. Oncol Rep, 30, 763-772.
Suzuki, A., Leland, P., Joshi, B. H., & Puri, R. K. (2015). Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine, 75, 79-88.
Taga, M. S., Miller, E. E., & Pratt, D. E. (1984). Chia Seeds as a Source of Natural Lipid Antioxidants. J Am Oil Chem Soc, 61, 928-931.
Takeuchi, O., & Akira, S. (2010). Pattern recognition receptors and inflammation. Cell, 140, 805-820.
Tanaka, T., Narazaki, M., & Kishimoto, T. (2014). IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol, 6, a016295.
Tomek, M., Akiyama, T., & Dass, C. R. (2012). Role of Bcl-2 in tumour cell survival and implications for pharmacotherapy. J Pharm Pharmacol, 64, 1695-1702.
Turrini, E., Ferruzzi, L., & Fimognari, C. (2015). Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy. Oxid Med Cell Longev, 2015, 938475.
Van Dyken, S. J., & Locksley, R. M. (2013). Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immuno Vol 33, 31, 317-343.
Viola, J., & Soehnlein, O. (2015). Atherosclerosis - A matter of unresolved inflammation. Semin Immunol, 27, 184-193.
Wallach, D., Kang, T. B., & Kovalenko, A. (2008). The extrinsic cell death pathway and the elan mortel. Cell Death Differ, 15, 1533-1541.
Wang, J. Z., Zhang, Y. H., Guo, X. H., Zhang, H. Y., & Zhang, Y. (2016). The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy. Int Immunopharmacol, 36, 73-85.
Welty, F. K., Alfaddagh, A., & Elajami, T. K. (2016). Targeting inflammation in metabolic syndrome. Transl Res, 167, 257-280.
Wensveen, F. M., Valentic, S., Sestan, M., Turk Wensveen, T., & Polic, B. (2015). The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation. European J Immunol, 45, 2446-2456.
Wills-Karp, M., & Finkelman, F. D. (2008). Untangling the complex web of IL-4- and IL-13-mediated signaling pathways. Sci Signal, 1, pe55.
Xu, H. M. (2014). Th1 cytokine-based immunotherapy for cancer. Hepatobiliary Pancreat Dis Int, 13, 482-494.
Yamanaka, D., Motoi, M., Ishibashi, K., Miura, N. N., Adachi, Y., & Ohno, N. (2013). Modulation of interferon-gamma synthesis by the effects of lignin-like enzymatically polymerized polyphenols on antigen-presenting cell activation and the subsequent cell-to-cell interactions. Food Chem, 141, 4073-4080.
Yu, H., Zheng, L. L., Yin, L. H., Xu, L. N., Qi, Y., Han, X., Xu, Y. W., Liu, K. X., & Peng, J. Y. (2014). Protective effects of the total saponins from Dioscorea nipponica Makino against carbon tetrachloride-induced liver injury in mice through suppression of apoptosis and inflammation. Int Immunopharmacol, 19, 233-244.
Zhang, C., Zhang, X., & Chen, X. H. (2014). Inhibition of the interleukin-6 signaling pathway: a strategy to induce immune tolerance. Clin Rev Allergy Immunol, 47, 163-173.
Zhang, J. M., & An, J. (2007). Cytokines, inflammation, and pain. Int Anesthesiol Clin, 45, 27-37.
Zhao, R., Zhou, H., & Su, S. B. (2013). A critical role for interleukin-1beta in the progression of autoimmune diseases. Int Immunopharmacol, 17, 658-669.
Zhao, X., Wang, Q., Qian, Y., & Song, J. L. (2013). Ilex kudingcha C.J. Tseng (Kudingcha) prevents HCl/ethanolinduced gastric injury in SpragueDawley rats. Mol Med Rep, 7, 1613-1616.
Zhu, F., Cai, Y. Z., Sun, M., Ke, J., Lu, D., & Corke, H. (2009). Comparison of major phenolic constituents and in vitro antioxidant activity of diverse Kudingcha genotypes from Ilex kudingcha, Ilex cornuta, and Ligustrum robustum. J Agric Food Chem, 57, 6082-6089.
Zhu, J. (2015). T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine, 75, 14-24.
Zhu, K., Li, G. J., Sun, P., Wang, R., Qian, Y., & Zhao, X. (2014). In vitro and in vivo anti- cancer activities of Kuding tea ( Ilex kudingcha C. J. Tseng) against oral cancer. Exp Ther Med, 7, 709-715.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊