跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/15 00:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阮氏賢
研究生(外文):Nguyen Thi Hien
論文名稱:建立免疫磁珠系統快速檢測花生過敏原Ara h 1
論文名稱(外文):Develop an immunomagnetic bead assay for the rapid detection of a major peanut allergen - Ara h 1
指導教授:溫曉薇
指導教授(外文):Hsioa-Wei Wen
口試委員:周鳳英盧錫祺
口試委員(外文):Chou,Feng-YingLu,Hsi-Chi
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:74
中文關鍵詞:過敏原Ara h 1免疫磁珠花生
外文關鍵詞:allergenAra h 1immunomagnetic beadpeanut
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
花生是一種重要的食物過敏原,僅微量的花生及會產生嚴重的免疫反應,其中以Ara h 1為花生主要過敏原。目前沒有有效的方法可以治療食物過敏,最好的方法就是避免食用含有過敏原的食物,因此建立偵測過敏原的方法是必要的。皆由磁珠從樣品中捕捉與分離目標物,可以增加檢測系統的靈敏度。首先,從花生中以硫酸銨沉澱法(70-100% )與陰離子交換管柱純化得到花生過敏原Ara h 1。另外以Ara h 1全蛋白製備抗體,以領導胜肽(leader peptide) 的Epitope-L (KSSPYQKKTENPCAQR) 及核心區域胜肽(core region)的Epitope-M (SNREVRRYTARLKEG)製備胜肽抗體。抗Ara h 1與抗Epitope-M抗體對其他堅果與種子無非專一性結合,然而抗Epitope-L抗體對杏仁、夏威夷豆、亞麻、腰果、油菜籽有非專一性結合。因此選用抗Ara h 1抗體修飾在磁珠上形成免疫磁珠,作為捕捉抗體。選擇抗Epitope-M抗體作為偵測抗體。以100 µg/mL抗Ara h 1抗體製備免疫磁珠,此條件下抗體接合率達96.3%,而偵測抗體的最佳稀釋倍數為1/10,000。結果顯示本實驗所建立的免疫磁珠檢測系統具有良好的專一性,,其線性範圍在25-200 µg/ml,檢測極限為14 µg/ml。當用來偵測6種食用油發現有三種油品含有Ara h 1,故此建立的免疫磁珠檢測系統可以應用於油中花生過敏原Ara h 1的檢測。

Peanut plays an important role in food allergy because only small amounts of peanut proteins can induce severe allergic reactions, and the Ara h 1 is a major allergen. There is no effective treatment for food allergy and the only way is to avoid specific allergens in food. Therefore, a method to detect peanut allergen is necessary. The magnetic beads are an efficient tool to enhance sensitivity by capturing and isolating target molecules from samples. Firstly, crude peanut proteins were obtained from defatted peanut and then precipitated at higher concentrations of ammonium sulfate (70-100%). Subsequently, Ara h 1 was purified in a HiTrap Q HP with a linear salt gradient (0 - 1 M NaCl). Furthermore, three antibodies against Ara h 1 were produced, by immunizing rabbits with 2 immune-dominant epitopes of Ara h 1 and pure Ara h 1 whole protein. Epitope-L (KSSPYQKKTENPCAQR) was from the leader peptide region of Ara h 1, while Epitope-M (SNREVRRYTARLKEG) was from the core region of Ara h 1. Both anti-Ara h 1 antibodies and anti-Epitope-M antibodies have no cross-reactivity with other peanut proteins or proteins from 10 nuts and seeds; while anti-Epitope-L antibodies displayed the reactivity with proteins from almond, macadamia, cashew, flax, and rapeseed. Therefore, anti-Ara h 1 antibody was conjugated to the surface of immunomagnetic beads (IMBs) to capture the Ara h 1 in samples, and anti-Epitope-M Ab was used as the detection antibody to react with protein A-HRP conjugate. Because of 96.3 % of antibody conjugation, 100 µg/mL anti-Ara h 1 Ab was selected to be coated on the surface magnetic beads. The dilution of detection antibody was 1/10,000 due to the high optical density in the presence of the allergen and low blank signals. Furthermore, the specificity of the developed assay was testified by analyzing various nuts and seeds. The specificity of immunomagnetic beads assay was highly specific for Ara h 1 with no cross-reactivity. The developed assay allowed the quantification of Ara h 1 between 25 and 200 µg/ml with a limit of detection of 14 µg/ml. For the detection of Ara h 1 in commercial oil products, three oil among six specimens contained Ara h 1. Therefore, this developed assay would be a rapid method for detecting the major peanut allergen- Ara h 1 in oil samples.

摘要 i
Abstract ii
Contents iii
Figure contents v
Table contents vi
Chapter 1: Introduction 1
1.1 Peanut allergy 1
1.1.1. Prevalence 1
1.1.2. Symptoms 2
1.1.3. Diagnosis 4
1.2. Peanut allergen 6
1.2.1. Vicilin, Ara h 1 6
1.2.2. Glycinin, Ara h 3 and Ara h 4 7
1.2.3. Conglutins, Ara h 2, Ara h 6 and Ara h 7 8
1.2.4. Profilins, Ara h 5 8
1.2.5. Pathogenesis-Related Proteins (PRs), Ara h 8 9
1.2.6. The non-specific Lipid Transfer Protein, Ara h 9, Ara h 16 and Ara h 17 9
1.2.7. Oleosins 9
1.2.8. The Peanut Defensins Ara h 12 and Ara h 13 10
1.3. Detection methods 14
1.3.1. DNA-based methods 14
1.3.2. Immunoanalytical methods 15
1.4. Immunomagnetic beads 20
Chapter 2: Materials and Methods 23
2.1. Materials 23
2.2. RNA extraction protocol 23
2.3. Expression of recombinantAra h 1 24
2.4. Purification of Ara h 1 25
2.5. Protein extraction from oil 26
2.6. Production of antibodies against Ara h 1 27
2.7. Purification of antibody 27
2.8. The sensitivity and specificity of antibodies against Ara h 1 in Western blotting 27
2.9. The sensitivity and specificity of antibodies against Ara h 1 in magnetic bead assay…… 28
2.9.1. Preparation of immunomagnetic beads 28
2.9.2. Immunomagnetic beads assay 28
2.10. SDS-PAGE and Western Blot 29
3.1. Quantity and quality of isolated RNA extraction 32
3.2. PCR and DNA sequencing analysis 32
3.3. Cloning of Ara h 1 gene and the expression of recombinantAra h 1 33
3.4. Purification of peanut allergen Ara h 1 34
3.5. Protein extraction from peanut oil 35
3.6. Purification of antibody 35
3.7. The specificity of antibodies 36
3.8. Optimized the concentration of antibody coated on the surface immunomagnetic beads 37
3.9. Optimization of detection antibody in the immunomagnetic beads assay 38
3.10. Sensitivity and specificity of immunomagnetic beads assay 38
3.11. Application to the analysis of oil samples 39
Chapter 4: Conclusion and Future Work 41
References 58


1.Lewis SA, Grimshaw KEC, Warner JO & Hourihane O’B. (2005). The promiscuity of immunoglobulin E binding to peanut allergens, as determined by Western blotting, correlates with the severity of clinical symptoms. Clinical and experimental allergy, 35, 767-773.
2.Ben-Shoshan M, Harrington DW, Soller L, Fragapane J, Joseph L, St Pierre Y, Godefroy SB, Elliot SJ & Clarke AE. (2010). A population based study on peanut, tree nut, fish, shellfish, and sesame allergy prevalence in Canada. Journal of Allergy and Clinical Immunology, 125, 1327-1335.
3.Lee LA & Burks AW. (2006). Food allergies: prevalence, molecular characterization, and treatment/prevention strategies. Annals of Nutrition and Metabolism, 26, 539-565.
4.Finkelman FD. (2010). Peanut allergy and anaphylaxis. Current Opinion in Immunology, 22, 783-788.
5.Kanny G, Moneret-Vautrin DA, Flabbee J, Beaudouin E, Morisset M & Thevenin F. (2001). Population study of food allergy in France. Journal of Allergy and Clinical Immunology, 108, 133-140.
6.Skolnick HS, Conover-Walker MK, Koerner CB, Sampson HA, Burks W & Wood RA. (2001). The natural history of peanut allergy. Journal of Allergy and Clinical Immunology, 107, 367-374.
7.Sicherer SH, Wood RA, Stablein D, Burks AW, Liu AH, Jones SM, Fleischer DM, Leung DY, Grishin A, Mayer L, Shreffler W, Lindblad R & Sampson HA. (2010). Immunologic features of infants with milk or egg allergy enrolled in an observational study (Consortium of Food Allergy Research) of food allergy. Journal of Allergy and Clinical Immunology, 125, 1077-1083.
8.Sicherer SH & Sampson HA. (2010). Food allergy. Journal of Allergy and Clinical Immunology, 125, S116-S125.
9.Fernández-Rivas M & Asero R. (2014). Which foods cause food allergy and how if food allergy treated?. Risk Management for Food Allergy (chapter two), 25-43.
10.Vickery BP, Chin S & Burks AW. (2011). Pathophysiology of food allergy. Pediatric Clinics of North America, 58, 363-376.
11.Sáiz J, Montealegre C, Marina ML & García-Ruiz C. (2013). Peanut Allergens: An Overview. Critical Reviews in Food Science and Nutrition, 53, 722-737.
12.Becker WM & Jappe U. (2014). Peanut Allergens. Chemical immunology and allergy, 100, 256-267.
13.Sampson HA. (2002). Peanut allergy. New England Journal of Medicine, 346, 1294-1299.
14.Bock SA, Munoz-Furlong A & Sampson HA. (2001). Fatalities due to anaphylactic reactions to foods. Journal of Allergy and Clinical Immunology, 107, 191-193.
15.Liem JJ, Huq S, Kozyrskyj AL & Becker AB. (2008). Should younger siblings of peanut-allergic children be assessed by an allergist before being fed peanut?. Allergy Asthma Clinical Immunology, 4, 144-149.
16.Du Toit G, Roberts G, Sayre PH, Plaut M, Bahnson HT, Mitchell H, Radulovic S, Chan S, Fox A, Turcanu V & Lack G; Learning Early About Peanut Allergy (LEAP) Study Team. (2013). Identifying infants at high risk of peanut allergy: the Learning Early About Peanut Allergy (LEAP) screening study. Journal of Allergy and Clinical Immunology, 131, 135-143.
17.Al-Muhsen S, Clarke AE & Kagan RS. (2003). Peanut allergy: an overview. CMAJ, 168, 1279-1285.
18.Palmer GW, Dibbern DA, Burks AW, Bannon GA, Bock SA, Porterfield HS, McDermott RA & Dreskin SC. (2005). Comparative potency of Ara h 1 and Ara h 2 in immunochemical and functional assays of allergenicity. Clinical Immunology, 115, 302-312.
19.Scott HS & Robert AW. (2013). Advances in Diagnosing Peanut Allergy. Journal of Allergy and Clinical Immunology: In Practice, 1, 1-13.
20.Chassaigne H, Brohee M, Norgaard JV & van Hengel AJ. (2007). Investigation on sequential extraction of peanut allergens for subsequent analysis by ELISA and 2D gel electrophoresis. Food Chemistry. 105, 1671-1681.
21.Koppelman SJ, Wensing M, Ertmann M, Knulst AC & Knol EF. (2004). Relevance of Ara h 1, Ara h 2 and Ara h 3 in peanut-allergic patients, as determined by immunoglobulin E Western blotting, basophil-histamine releaseand intracutaneous testing: Ara h2 is the most important peanut allergen. Clinical and Experimental Allergy, 34, 583-590.
22.Breiteneder H & Radauer C. (2004). A classification of plant food allergens. Journal of Allergy and Clinical Immunology, 113, 821-830.
23.Jiang S, Wang S, Sun Y, Zhou Z & Wang G. (2011). Molecular characterization of major allergens Ara h 1, 2, 3 in peanut seed. Plant Cell Reports, 30, 1135-1143.
24.Cabanos C, Urabe H, Tandang-Silvas MR, Utsumi S, Mikami B & Maruyama N. (2011). Crystal structure of the major peanut allergen Ara h 1. Molecular Immunology, 49, 115-123.
25.Peng J, Song S, Xu L, Ma W, Liu L, Kuang H & Xu C. (2013). Development of a Monoclonal Antibody-Based Sandwich ELISA for Peanut Allergen Ara h 1 in Food. International Journal of Environmental Research and Public Health, 10, 2897-2905.
26.van Boxtel EL, van Beers MM, Koppelman SJ, van den Broek LA & Gruppen H. (2006). Allergen Ara h 1 occurs in peanuts as alarge oligomer rather than as a trimer. Journal of Agricultural and Food Chemistry, 54,7180-7186.
27.DeLong JH, Simpson KH, Wambre E, James EA, Robinson D & Kwok WW. (2011). Ara h 1–reactive T cells in individuals with peanut allergy. Journal of Allergy and Clinical Immunology, 127, 1211-1218.
28.Chung SY, Butts CL, Maleki SJ & Champagne ET. (2003). Linking peanut allergenicity to the processes of maturation, curing, and roasting. Journal of Agricultural and Food Chemistry, 51, 4273-4277.
29.Beyer K, Morrowa E, Li XM, Bardina L, Bannon G A, Burks W & Sampson HA. (2001). Effects of cooking methods on peanut allergenicity. Journal of Allergy and Clinical Immunology, 107, 1077-1081.
30.Nesbit JB, Hurlburt BK, Schein CH, Cheng H, Wei H & Maleki SJ. (2012). Ara h 1 structure is retained after roasting and is important for enhanced binding to IgE. Molecular Nutrition and Food Research, 56, 1739-1747.
31.Kang IH & Gallo M. (2007). Cloning and characterization of a novel peanut allergen Ara h 3 isoform displaying potentially decreased allergenicity. Plant Science,172, 345-353.
32.Becker WM, Kleber-Janke T & Lepp U. (2002). “Peanut allergy: Are clinical symptoms associated with IgE-reactivity to certain (recombinant) peanut allergens?”. In New Trends in Allergy V, 159-165.
33.Kleber-Janke T, Crameri R, Appenzeller U, Schlaak M & Becker WM. (1999). Selective cloning of peanut allergens, including profilin and 2S albumins, by phage display technology. International Archives of Allergy and Immunology, 119, 265-274.
34.Careri M, Costa A, Elviri L, Lagos JB, Mangia A, Terenghi M, Cereti A & Garoffo LP. (2007). Use of specific peptide biomarkers for quantitative confirmation of hidden allergenic peanut proteins Ara h 2 and Ara h 3/4 for food control by liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 389, 1901-1907.
35.Careri M, Costa A, Elviri L, Lagos JB, Mangia A, Terenghi M, Cereti A & Garoffo LP. (2007). Use of specific peptide biomarkers for quantitative confirmation of hidden allergenic peanut proteins Ara h 2 and Ara h 3/4 for food control by liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 389, 1901-1907.
36.Koppelman SJ, Knol EF, Vlooswijk RAA, Wensing M, Knulst AC, Hefle SL, Gruppen H & Piersma S. (2003). Peanut allergen Ara h 3: Isolation from peanuts and biochemical characterization. Allergy, 58, 1144-1151.
37.Wang F, Robotham J, Teuber SS, Tawde P, Sathe SK & Roux KH. (2002). Ana o 1, a cashew (Anacardium occidental) allergen of the vicilin seed storage protein family. Journal of Allergy and Clinical Immunology, 110, 160-166.
38.Jin T, Guo F, Chen Y, Howard A & Zhang ZZ. (2009). Crystal structure of Ara h 3, a major allergen in peanut. Molecular Immunology, 46, 1796-1804.
39.Koppelman SJ, Vlooswijk RA, Knippels LM, Hessing M, Knol EF, van Reijsen FC & Bruijnzeel-Koomen CA. (2001). Quantification of major peanut allergens Ara h 1 and Ara h 2 in the peanut varieties Runner, Spanish, Virginia, and Valencia, bred in different parts of the world. Allergy, 56, 132-137.
40.Blanc F, Adel-Patient K, Drumare MF, Paty E, Wal JM & Bernard H. (2009). Capacity of purified peanut allergens to induce degranulation in a functional in vitro assay: Ara h 2 and Ara h 6 are the most efficient elicitors. Clinical and Experimental Allergy, 39, 1277-1285.
41.Bublin M & Breiteneder H. (2014). Cross-Reactivity of Peanut Allergens. Current Allergy and Asthma Reports, 14, 426-438.
42.Lin J, Bruni FM, Fu Z, Maloney J, Bardina L, Boner AL, Gimenez G & Sampson HA. (2012). A bioinformatics approach to identify patients with symptomatic peanut allergy using peptide microarray immunoassay. Journal of Allergy and Clinical Immunology, 129, 1321-1328.
43.Nicolau N, Poorafshar M, Murray C, Simpson A, Winell H, Kerry G, Härlin A, Woodcock A, Ahlstedt S & Custovic A. (2010). Allergy or tolerance in children sensitized to peanut: Prevalence and differentiation using component-resolved diagnostics. Journal of Allergy and Clinical Immunology, 125, 191-197.
44.Chatel JM, Bernard H & Orson FM. (2003). Isolation and characterization of two complete Ara h 2 isoforms cDNA. International Archives of Allergy and Immunology, 131,14-18.
45.Koppelman SJ, Hefle SL, Taylor SL & de Jong GA. (2010). Digestion of peanut allergens Ara h 1, Ara h 2, Ara h 3, and Ara h 6: acomparative in vitro study and partial characterization of digestionresistant peptides. Molecular Nutrition and Food Research, 54, 1711-1721.
46.Flinterman AE, van Hoffen E, Jager CFD, Koppelman S, Pasmans SG, Hoekstra MO, Bruijnzeel-Koomen CA, Knulst AC & Knol EF. (2007). Children with peanut allergy recognize predominantly Ara h2 and Ara h6, which remains stable over time. Clinical and Experimental Allergy, 37, 1221-1228.
47.Porterfield HS, Murray KS, Schlichting DG, Chen X, Hansen KC, Duncan MW & Dreskin SC. (2009). Effector activity of peanut allergens: A critical role for Ara h 2, Ara h 6, and their variants. Clinical and Experimental Allergy, 39, 1099-1108.
48.Suhr M, Wicklein D, Lepp U & Becker WM. (2004). Isolation and characterization of natural Ara h 6: evidence for a further peanut allergen with putative clinical relevance based on resistance to pepsin digestion and heat. Molecular Nutrition and Food Research, 48, 390-399.
49.Codreanu F, Collignon O, Roitel O, Thouvenot B, Sauvage C, Vilain AC, Cousin MO, Decoster A, Renaudin JM, Astier C, Monnez JM, Vallois P, Morisset M, Moneret-Vautrin DA, Brulliard M, Ogier V, Castelain MC, Kanny G, Bihain BE & Jacquenet S. (2011). A novel immunoassay using recombinant allergens simplifies peanut allergy diagnosis. International Archives of Allergy and Immunology, 154, 216-226.
50.Cabanos C, Tandang-Silvas MR, Odijk V, Brostedt P, Tanaka A, Utsumi S & Maruyama N. (2010). Expression, purification, cross-reactivity and homology modeling of peanut profilin. Protein Expression and Purification, 73, 36-45.
51.Vereda A, van Hage M, Ahlstedt S, Ibañez MD, Cuesta-Herranz J, van Odijk J, Wickman M and Sampson HA. (2011). Peanut allergy: Clinical and immunologic differences among patients from 3 different geographic regions. Journal of Allergy and Clinical Immunology, 127, 603-607.
52.Asarnoj A, Movérare R, Ostblom E, Poorafshar M, Lilja G, Hedlin G, van Hage M, Ahlstedt S and Wickman M. (2010). IgE to peanut allergen components: relation to peanut symptoms and pollen sensitization in 8-year-olds. Allergy, 65, 1189-95.
53.Mittag D, Akkerdaas J, Ballmer-Weber BK, Vogel L, Wenising M, Becker WM, Koppelman SJ, Knulst AC, Helbling A, Hefle SL, van Ree R & Vieths S. (2004). Ara h 8, a Bet v 1-homologous allergen from peanut, is a major allergen in patients with combined birch pollen and peanut allergy. Journal of Allergy and Clinical Immunology, 114, 1410-1417.
54.Arkwright PD, Summers CW, Riley BJ, Alsediq N & Pumphrey RS. (2013). IgE Sensitization to the Nonspecific Lipid-Transfer Protein Ara h 9 and Peanut-Associated Bronchospasm. BioMed Research International, 746507.
55.Mari A, Riecken S, Quaratino D, Zennaro D, Reese G, Petersen A, Vieths S & Becker W. (2008). Identification of a Lipid Transfer Protein (LTP) in Peanut Extract and Cloning of Two LTP Isoallergens. Journal of Allergy and Clinical Immunology, 121, S212-S212.
56.Kobayashi S, Katsuyama S, Wagatsuma T, Okada S, Tanabe S. (2012). Identification of a new IgE-binding epitope of peanut oleosin that cross-reacts with buckwheat. Bioscience, biotechnology, and biochemistry, 76, 1182-1188.
57.Pons L, Chéry C, Mrabet N, Schohn H, Lapicque F & Guéant JL. (2005). Purification and cloning of two high molecular mass isoforms of peanut seed oleosin encoded by cDNAs of equal sizes. Plant Physiology and Biochemistry, 43, 659-668.
58.Schwager C, Kull S, Krause S, Schocker F, Petersen A, Becker WM & Jappe U. (2015). Development of a novel strategy to isolate lipophilic allergens (oleosins) from peanuts. PLoS One, 10, e0123419.
59.Montiel VR, Campuzanoa S, Pellicanòb A, Torrente-Rodrígueza RM, Reviejo AJ, Cosio MS & Pingarrón JM. (2015). Sensitive and selective magnetoimmunosensing platform for determination of the food allergen Ara h 1. Analytica Chimica Acta, 880, 52-59.
60.López-Calleja I, Cruz SD, Pegels N, González I, García T & Martin R. (2013). Development of a real time PCR assay for detection of allergenic trace amounts of peanut (Arachis hypogaea) in processed foods. Food Control, 30, 480-490.
61.Koppel R, Dvorak V, Zimmerli F, Breitenmoser A, Eugster A & Waiblinger HU. (2010). Two tetraplex real-time PCR for the detection and quantification of DNA from eight allergens in food. European Food Research and Technology, 230, 367-374.
62.Zhang WJ, Cai Q, Guan X & Chen Q. (2015). Detection of peanut (Arachis hypogaea) allergen by Real-time PCR method with internal amplification control. Food Chemistry, 174, 547-552.
63.Holzhauser T, Kleiner K, Janise A & Röder M. (2014). Matrix-normalised quantification of species by threshold-calibrated competitive real-time PCR: Allergenic peanut in food as one example. Food Chemistry, 163, 68-76.
64.Hird H, Lloyd J, Goodier R, Brown J & Reece P. (2003). Detection of peanut using real-time polymerase chain reaction. European Food Research and Technology, 217, 265-268.
65.Stephan O & Vieths. (2004). Development of a real-time PCR and a sandwich ELISA for detection of potentially allergenic trace amounts of peanut (Arachis hypogaea) in processed foods. Journal of Agricultural and Food Chemistry, 52, 3754-3760.
66.Scaravelli E, Brohee M, Marchelli R & Hengel AV. (2008). Development of three real-time PCR assays to detect peanut allergen residue in processed food products. European Food Research and Technology, 227, 857-869.
67.Hengel AJ. (2007). Food allergen detection methods and the challenge to protect food-allergic consumers. Analytical and Bioanalytical Chemistry, 389, 111-118.
68.Immer U & Lacorn M. (2015). Enzyme-linked immunosorbent assays (ELISAs) for detecting allergens in food. Handbook of Food Allergen Detection and Control. A volume in Woodhead Publishing Series in Food Science, Technology and Nutrition, 199-217.
69.Liu N, Nie D, Zhao Z, Meng X & Wu A. (2015). Ultrasensitive immunoassays based on biotin–streptavidin amplified system for quantitative determination of family zearalenones. Food Control, 57, 202-209.
70.Jayasena S, Smits M, Fiechter D, Jong A, Nordlee J, Baumert J, Taylor ST, Pieters RH & Koppelman SJ. (2015). Comparison of six commercial ELISA kits for their specificity and sensitivity in detecting different major peanut allergens. Journal of Agricultural and Food Chemistry, 63, 1849-1855.
71.Liu G, Han Z, Nie D, Yang J, Zhao Z, Zhang J, Li H, Liao Y, Song S, De Saeger S & Wu A. (2012). Rapid and sensitive quantitation of zearalenone in food and feed by lateral flow immunoassay. Food Control, 27, 200-205.
72.Dai X, Xu H, Zhang X, Zhu W, Gu H & Wei M. (2014). Determination of the affinity constant of streptavidin-coupled magnetic particles and a biotinylated antibody for high performance of magnetic solid carrier in immunoassays. Materials Science and Engineering: C, 34, 422-428.
73.Cucu T, Jacxsens L & De Meulenaer B. (2013). Analysis to support allergen risk management: which way to go?. Journal of Agricultural and Food Chemistry, 61, 5624–5633.
74.Wang Y, Deng R, Zhang G, Li Q, Yang J, Sun Y, Li Z & Hu X. (2015). Rapid and sensitive detection of the food allergen glycinin in powdered milk using a lateral flow colloidal gold immunoassay strip test. Journal of Agricultural and Food Chemistry, 63, 2172-2178.
75.Montserrat M, Sanz D, Juan T, Herrero A, Sánchez L, Calvo M & Pérez MD. (2015). Detection of peanut (Arachis hypogaea) allergens in processed foods by immunoassay: Influence of selected target protein and ELISA format applied. Food Control, 54, 300-307.
76.Laemmli UK. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685.
77.Ji KM, Chen JJ, Gao C, Liu X, Xia L, Liu ZG, Li L & Yang S. (2011). A two-site monoclonal antibody immunochromatography assay for rapid detection of peanut allergen Ara h 1 in Chinese imported and exported foods. Food Chemistry, 129, 541-545.
78.Careri M, Elviri L, Lagos JB, Mangia A, Speroni F & Terenghi M. (2008). Selective and rapid immunomagnetic bead-based sample treatment for the liquid chromatography–electrospray ion-trap mass spectrometry detection of Ara h3/4 peanut protein in foods. Journal of Chromatography A, 1206, 89-94.
79.Yunginger JW, Gauerke MB, Jones RT, Dahlberg MJE & Ackerman SJ. (1983). Use of radioimmunoassay to determine the nature, quantity and source of allergic contamination of sunflower butter. Journal of Food Protection, 46, 625-628.
80.Keating MU, Jones RT, Worley NJ, Shively CA & Yunginger JW. (1990). Immunoassay of peanut allergens in food-processing materials and finished foods. Journal of Allergy and Clinical Immunology, 86, 41-44.
81.Malmheden Yman I, Eriksson A, Everitt G, Yman L & Karlsson T. (1994). Analysis of food proteins for verification of contamination or mislabeling. Food and Agricultural Immunology, 6, 167-172.
82.Holzhauser T, Dehne LI, Hoffmann A, Haustein D & Vieths S. (1998). Rocket immunoelectrophoresis (RIE) for determination of potentially allergenic peanut proteins in processed foods as a simple means for quality assurance and food safety. European Food Research and Technology, 206, 1-8.
83.Mills ENC, Potts A, Plumb GW, Lambert N & Morgan MRA. (1997). Development of a rapid dipstick immunoassay for the detection of peanut contamination of food.Food and Agricultural Immunology, 9, 37-50.
84.Stephan O, Möller N, Lehmann S, Holzhauser T & Vieths S. (2002). Development and validation of two dipstick type immunoassays for determination of trace amounts of peanut and hazelnut in processed foods. European Food Research and Technology, 215, 431-436.
85.Schappi GF, Konrad V, Imhof D, Etter R & Wuthrich B. (2001). Hidden peanut allergens detected in various foods: findings and legal measures. Allergy, 56, 1216-20.
86.Blais BW, Gaudreault M & Phillippe LM. (2003). Multiplex enzyme immunoassay system for the simultaneous detection of multiple allergens in foods. Food Control, 14, 43-47.
87.Shefcheck KJ & Musser SM. (2004). Confirmation of the allergenic peanut protein, Ara h 1, in a model food matrix using liquid chromatography/tandem mass spectrometry (LC/MS/MS). Journal of Agricultural and Food Chemistry, 52, 2785-2790.
88.Wen HW, Borejsza-Wysocki W, DeCory TR & Durst RA. (2005). Development of a competitive liposome-based lateral flow assay for the rapid detection of the allergenic peanut protein Ara h 1. Analytical and Bioanalytical Chemistry, 382, 1217-1226.
89.Wen HW, Borejsza-Wysocki W, Decory RT, Baeumner A & Durst RA. (2005). A novel extraction method for peanut allergenic proteins in chocolate and their detection by a liposome-based lateral flow assay. European Food Research and Technology, 221, 564-569.
90.Wang YK, Wang YC, Wang H, Ji WH, Sun JH & Yan YX. (2014). An immunomagnetic-bead-based enzyme-linked immunosorbent assay for sensitive quantification of fumonisin B1. Food Control, 40, 41-45.
91.Wei B, Li F, Yang H, Yu L, Zhao K, Zhou R & Hu Y. (2012). Magnetic beads-based enzymatic spectrofluorometric assay for rapid and sensitive detection of antibody against ApxIVA of Actinobacillus pleuropneumoniae. Biosensors and Bioelectronics, 35, 390–393.
92.Lim MC, Lee GH, Huynh DT, Hong CE, Park SY, Jung JY, Park CS, Ko S & Kim YR. (2016). Biological preparation of highly effective immunomagnetic beads for the separation, concentration, and detection of pathogenic bacteria in milk. Colloids and Surfaces B: Biointerfaces,145, 854-861.
93.Hu Y, Shen G, Zhu H & Jiang G. (2010). A class-specific enzyme-linked immunosorbent assay based on magnetic particles for multiresidue organophosphorus pesticides. Journal of Agricultural and Food Chemistry, 58, 2801-2806.
94.Zheng Q, Mikš-Krajnik M, Yang Y, Lee SM, Lee SC & Yuk HG. (2016). Evaluation of real-time PCR coupled with immunomagnetic separation or centrifugation for the detection of healthy and sanitizer-injured Salmonella spp. on mung bean sprouts. International Journal of Food Microbiology, 222, 48-55.
95.Chen Q, Lin J, Gan C, Wang Y, Wang D, Xiong Y, Lai W, Li Y & Wang M. (2015). A sensitive impedance biosensor based on immunomagnetic separation and urease catalysis for rapid detection of Listeria monocytogenes using an immobilization-free interdigitated array microelectrode. Biosensors and Bioelectronics, 74, 504-511.
96.Wang Z, Yue T, Yuan Y, Cai R, Niu C & Guo C. (2013). Development and evaluation of an immunomagnetic separation-ELISA for the detection of Alicyclobacillus spp. in apple juice. International Journal of Food Microbiology, 166, 28-33.
97.Mao Y, Huang X, Xiong S, Xu H, Aguilar ZP & Xiong Y. (2016). Large-volume immunomagnetic separation combined with multiplex PCR assay for simultaneous detection of Listeria monocytogenes and Listeria ivanovii in lettuce. Food Control, 59, 601-608.
98.Qu S, Liu J, Luo J, Huang Y, Shi W, Wang B & Cai X. (2013). A rapid and highly sensitive portable chemiluminescent immunosensor of carcinoembryonic antigen based on immunomagnetic separation in human serum. Analytica Chimica Acta, 766, 94-99.
99.Chu PT, Hsieh MF, Yin SY & Wen HW. (2009). Development of a rapid and sensitive immunomagnetic-bead based assay for detecting Bacillus cereus in milk. European Food Research and Technology, 229, 73-81.
100.Song F, Zhou Y, Li YS, Meng XM, Meng XY, Liu JQ, Lu SY, Ren HL, Hu P, Liu ZS, Zhang YY & Zhang JH. (2014). A rapid immunomagnetic beads-based immunoassay for the detection of β-casein in bovine milk. Food Chemistry, 158, 445-448.
101.Rayani A & Nayeri FD. (2015). An improved method for extraction of high-quality total RNA from oil seeds. Biotechnology Letters, 37, 927-933.
102.Esteve C, D’Amato A, Marina ML, García MC & Righetti PG. (2013). Analytical Approaches for the Characterization and Identification of Olive (Olea europaea) Oil Proteins. Journal of Agricultural and Food Chemistry, 61, 10384-10391.
103.Martin-Hernandez C, Benet S & Obert L. (2008). Determination of Proteins in Refined and Nonrefined Oils. Journal of Agricultural and Food Chemistry, 56, 4348-4351.
104.Wieczorek D, Delauriere L & Schagat T. (2012). Methods of RNA Quality Assessment.Retrieved from http://www.promega.com/pubhub. (2016, July 7).
105.Vigneault F & Drouin R. (2005). Optimal conditions and specific characteristics of Vent exo– DNA polymerase in ligation-mediated polymerase chain reaction protocols. Biochemistry and Cell Biology, 83, 147-165.
106.Rosano GL & Ceccarelli EA. (2009). Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microbial Cell Factories, 24, 8-41.
107.Kleber-Janke T & Becker WM. (2000). Use of modified BL21(DE3) Escherichia coli cells for high-level expression of recombinant peanut allergens affected by poor codon usage. Protein Expression and Purification,19, 419-24.
108.Olszewski A, Pons L, Moutètè F, Aimone-Gastin I, Kanny G, Moneret-Vautrin D.A & Guèant J. L. (1998). Isolation and characterization of proteic allergens in refined peanut oil. Clinical & Experimental Allergy, 28, 850-859.
109.Teuber SS, Brown RL & Haapanen LA. (1997). Allergenicity of gourmet nut oils processed by different methods. Journal of Allergy and Clinical Immunology, 99,502-507.
110.Crevel RWR, Kerkhoff MAT & Koning MMG. (2000). Allergenicity of refined vegetable oils. Food and Chemical Toxicology, 38, 385–393.
111.Lauer I, Dueringer N, Pokoj S, Rehm S, Zoccatelli G, Reese G, Miguel-Moncin MS, Cistero-Bahima A, Enrique E, Lidholm J, Vieths S & Scheurer S. (2009). The non-specific lipid transfer protein, Ara h 9, is an important allergen in peanut. Clinical and Experimental Allergy, 39,1427-37.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top