跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/09 00:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊東儒
研究生(外文):Tung-Ju Yang
論文名稱:能量攝取與體能活動對體內單碳代謝之影響
論文名稱(外文):Energy balance and physical activity alter one carbon metabolic kinetics in vivo
指導教授:蔣恩沛
指導教授(外文):En-Pei Chiang
口試委員:黃介辰唐烽堯
口試委員(外文):Chieh-Chen HuangFeng-Yao Tang
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:93
中文關鍵詞:高脂飲食限制卡路里有氧運動阻力運動單碳代謝
外文關鍵詞:High fat dietcaloric restrictionphysical activityone carbon metabolismglycine N-methyltransferaseserine hydroxymethyltransferase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景 單碳代謝為生物體內甲基的代謝過程,包含了葉酸循環、同半胱氨酸轉硫及轉甲基反應、甲硫胺酸及腺苷甲硫胺酸生合成、核苷酸合成等重要代謝路徑。 不同的研究暗示能量平衡可能與單碳代謝關係密切:先前研究發現肥胖者其血中甘胺酸的濃度較低。此外運動則會降低正常馬模型的血中甘胺酸和絲氨酸的濃度。有研究顯示限制卡路里在果蠅模型中會增加二磷酸腺苷和單磷酸腺苷的合成。在酵母菌模型中則會維持三磷酸腺苷的濃度。這些變化可能會造成體內單碳代謝的改變。本研究的目的在於探討長期餵食高脂飲食、長期有氧運動、長期阻力運動以及和長期限制卡路里對於體內單碳代謝之影響。
實驗設計 實驗鼠在五周大時分為控制組、高脂飲食組、有氧運動組、阻力運動組,及卡路里限制等五組,三十週後犧牲,分析單碳代謝相關酵素活性、蛋白質表現,並進一步以穩定同位素追蹤單碳路徑動態變化。
結果 在動物模型中,不同類型的飲食和運動模式會影響單碳代謝產物和酵素表現,也會部份影響單碳代謝途徑在粒線體和胞內的變化。
結論 本研究提供多項證據顯示高脂飲食、有氧運動、阻力運動和限制卡路里對於單碳代謝的影響。


PART 1 Energy balance and physical activity
中文摘要-----------------------------------------------------------------------------------------
Abstract------------------------------------------------------------------------------------------
Abbreviations------------------------------------------------------------------------------------2
Introduction-------------------------------------------------------------------------------------3
Methods-------------------------------------------------------------------------------------------9
Results-------------------------------------------------------------------------------------------16
Discussions-------------------------------------------------------------------------------------27
Tables--------------------------------------------------------------------------------------------34
Figures------------------------------------------------------------------------------------------ 56

PART 2 Paternal high fat study
Tables--------------------------------------------------------------------------------------------61

PART 3 Amino acid method
Abstract------------------------------------------------------------------------------------------68
Introduction------------------------------------------------------------------------------------69
Methods-----------------------------------------------------------------------------------------70
Results-------------------------------------------------------------------------------------------73
Discussions-------------------------------------------------------------------------------------75
Tables--------------------------------------------------------------------------------------------76
Figures------------------------------------------------------------------------------------------ 83

References------------------------------------------------------------------------------------- 86


Reference List

Physical Activity and Health: A Report of the Surgeon General. 1996.
Ref Type: Generic
(2006). Curbing the obesity epidemic. Lancet 367, 1549.
(2009). Physical Activity Guidelines Advisory Committee report, 2008. To the Secretary of Health and Human Services. Part A: executive summary. Nutr. Rev. 67, 114-120.
Belalcazar,A.D., Ball,J.G., Frost,L.M., Valentovic,M.A., and Wilkinson,J. (2014). Transsulfuration Is a Significant Source of Sulfur for Glutathione Production in Human Mammary Epithelial Cells. ISRN. Biochem. 2013, 637897.
Bergeron,R., Ren,J.M., Cadman,K.S., Moore,I.K., Perret,P., Pypaert,M., Young,L.H., Semenkovich,C.F., and Shulman,G.I. (2001). Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am. J. Physiol Endocrinol. Metab 281, E1340-E1346.
Bizheh,N. and Jaafari,M. (2011). The Effect of a Single Bout Circuit Resistance Exercise on Homocysteine, hs-CRP and Fibrinogen in Sedentary Middle Aged Men. Iran J. Basic Med. Sci. 14, 568-573.
Bolster,D.R., Crozier,S.J., Kimball,S.R., and Jefferson,L.S. (2002). AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J. Biol. Chem. 277, 23977-23980.
Bontemps,F., Van den Berghe,G., and Hers,H.G. (1983). Evidence for a substrate cycle between AMP and adenosine in isolated hepatocytes. Proc. Natl. Acad. Sci. U. S. A 80, 2829-2833.
Burgomaster,K.A., Howarth,K.R., Phillips,S.M., Rakobowchuk,M., Macdonald,M.J., McGee,S.L., and Gibala,M.J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J. Physiol 586, 151-160.
Calder,A.G., Garden,K.E., Anderson,S.E., and Lobley,G.E. (1999). Quantitation of blood and plasma amino acids using isotope dilution electron impact gas chromatography/mass spectrometry with U-(13)C amino acids as internal standards. Rapid Commun. Mass Spectrom. 13, 2080-2083.
Carling,D. and Hardie,D.G. (1989). The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim. Biophys. Acta 1012, 81-86.
Chassaing,C., Gonin,J., Wilcox,C.S., and Wainer,I.W. (1999). Determination of reduced and oxidized homocysteine and related thiols in plasma by thiol-specific pre-column derivatization and capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. B Biomed. Sci. Appl. 735, 219-227.
Chawengsub,Y., Gauthier,K.M., and Campbell,W.B. (2009). Role of arachidonic acid lipoxygenase metabolites in the regulation of vascular tone. Am. J. Physiol Heart Circ. Physiol 297, H495-H507.
Choi,J.K., Moon,K.M., Jung,S.Y., Kim,J.Y., Choi,S.H., Kim,d.Y., Kang,S., Chu,C.W., and Kwon,S.M. (2014). Regular exercise training increases the number of endothelial progenitor cells and decreases homocysteine levels in healthy peripheral blood. Korean J. Physiol Pharmacol. 18, 163-168.
Choi,J.S. and Lee,C.K. (2013). Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast. Biochem. Biophys. Res. Commun. 439, 126-131.
Civitarese,A.E., Carling,S., Heilbronn,L.K., Hulver,M.H., Ukropcova,B., Deutsch,W.A., Smith,S.R., and Ravussin,E. (2007). Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS. Med. 4, e76.
Deminice,R., Rosa,F.T., Franco,G.S., Jordao,A.A., and de Freitas,E.C. (2013). Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition 29, 1127-1132.
Deminice,R., Vannucchi,H., Simoes-Ambrosio,L.M., and Jordao,A.A. (2011). Creatine supplementation reduces increased homocysteine concentration induced by acute exercise in rats. Eur. J. Appl. Physiol 111, 2663-2670.
Donato,A.J., Walker,A.E., Magerko,K.A., Bramwell,R.C., Black,A.D., Henson,G.D., Lawson,B.R., Lesniewski,L.A., and Seals,D.R. (2013). Life-long caloric restriction reduces oxidative stress and preserves nitric oxide bioavailability and function in arteries of old mice. Aging Cell 12, 772-783.
Egan,B. and Zierath,J.R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17, 162-184.
Elokda,A.S. and Nielsen,D.H. (2007). Effects of exercise training on the glutathione antioxidant system. Eur. J. Cardiovasc. Prev. Rehabil. 14, 630-637.
Fan,J., Ye,J., Kamphorst,J.J., Shlomi,T., Thompson,C.B., and Rabinowitz,J.D. (2014). Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298-302.
Feillet-Coudray,C., Sutra,T., Fouret,G., Ramos,J., Wrutniak-Cabello,C., Cabello,G., Cristol,J.P., and Coudray,C. (2009). Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: Involvement of mitochondrial and NAD(P)H oxidase systems. Free Radic. Biol. Med. 46, 624-632.
Fletcher,G.F., Blair,S.N., Blumenthal,J., Caspersen,C., Chaitman,B., Epstein,S., Falls,H., Froelicher,E.S., Froelicher,V.F., and Pina,I.L. (1992). Statement on exercise. Benefits and recommendations for physical activity programs for all Americans. A statement for health professionals by the Committee on Exercise and Cardiac Rehabilitation of the Council on Clinical Cardiology, American Heart association. Circulation 86, 340-344.
Fonseca,V., Dicker-Brown,A., Ranganathan,S., Song,W., Barnard,R.J., Fink,L., and Kern,P.A. (2000). Effects of a high-fat-sucrose diet on enzymes in homocysteine metabolism in the rat. Metabolism 49, 736-741.
Frajacomo,F.T., Kannen,V., Deminice,R., Geraldino,T.H., Pereira-Da-Silva,G., Uyemura,S.A., Jordao-Jr,A.A., and Garcia,S.B. (2015). Aerobic Training Activates Interleukin 10 for Colon Anticarcinogenic Effects. Med. Sci. Sports Exerc. 47, 1806-1813.
Galosy,R.A., Clarke,L.K., and Mitchell,J.H. (1979). Cardiac changes during behavioral stress in dogs. Am. J. Physiol 236, H750-H758.
Gelecek,N., Teoman,N., Ozdirenc,M., Pinar,L., Akan,P., Bediz,C., and Kozan,O. (2007). Influences of acute and chronic aerobic exercise on the plasma homocysteine level. Ann. Nutr. Metab 51, 53-58.
Grare,M., Mourer,M., Fontanay,S., Regnouf-de-Vains,J.B., Finance,C., and Duval,R.E. (2007). In vitro activity of para-guanidinoethylcalix[4]arene against susceptible and antibiotic-resistant Gram-negative and Gram-positive bacteria. J. Antimicrob. Chemother. 60, 575-581.
Gupta,A., Kaur,R., Malhotra,R., and Kale,S. (2006). Comparative evaluation of different doses of propofol preceded by fentanyl on intubating conditions and pressor response during tracheal intubation without muscle relaxants. Paediatr. Anaesth. 16, 399-405.
Guttormsen,A.B., Solheim,E., and Refsum,H. (2004). Variation in plasma cystathionine and its relation to changes in plasma concentrations of homocysteine and methionine in healthy subjects during a 24-h observation period. Am. J. Clin. Nutr. 79, 76-79.
Guzel,N.A., Pinar,L., Colakoglu,F., Karacan,S., and Ozer,C. (2012). "Long-term callisthenic exercise-related changes in blood lipids, homocysteine, nitric oxide levels and body composition in middle-aged healthy sedentary women". Chin J. Physiol 55, 202-209.
Hammouda,O., Chtourou,H., Chaouachi,A., Chahed,H., Ferchichi,S., Kallel,C., Chamari,K., and Souissi,N. (2012). Effect of short-term maximal exercise on biochemical markers of muscle damage, total antioxidant status, and homocysteine levels in football players. Asian J. Sports Med. 3, 239-246.
Henning,B.F., Tepel,M., Riezler,R., Gillessen,A., and Doberauer,C. (1998). Vitamin supplementation during weight reduction--favourable effect on homocysteine metabolism. Res. Exp. Med. (Berl) 198, 37-42.
Herbig,K., Chiang,E.P., Lee,L.R., Hills,J., Shane,B., and Stover,P.J. (2002). Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J. Biol. Chem. 277, 38381-38389.
Herrmann,M., Schorr,H., Obeid,R., Scharhag,J., Urhausen,A., Kindermann,W., and Herrmann,W. (2003). Homocysteine increases during endurance exercise. Clin. Chem. Lab Med. 41, 1518-1524.
Hoffmann,L., Brauers,G., Gehrmann,T., Haussinger,D., Mayatepek,E., Schliess,F., and Schwahn,B.C. (2013). Osmotic regulation of hepatic betaine metabolism. Am. J. Physiol Gastrointest. Liver Physiol 304, G835-G846.
Hornberger,T.A., Jr. and Farrar,R.P. (2004). Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. Can. J. Appl. Physiol 29, 16-31.
Horsburgh,S., Todryk,S., Toms,C., Moran,C.N., and Ansley,L. (2015). Exercise-conditioned plasma attenuates nuclear concentrations of DNA methyltransferase 3B in human peripheral blood mononuclear cells. Physiol Rep. 3.
Howlett,R.A., Parolin,M.L., Dyck,D.J., Hultman,E., Jones,N.L., Heigenhauser,G.J., and Spriet,L.L. (1998). Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs. Am. J. Physiol 275, R418-R425.
Iglesias-Gutierrez,E., Egan,B., Diaz-Martinez,A.E., Penalvo,J.L., Gonzalez-Medina,A., Martinez-Camblor,P., O''Gorman,D.J., and Ubeda,N. (2012). Transient increase in homocysteine but not hyperhomocysteinemia during acute exercise at different intensities in sedentary individuals. PLoS. One. 7, e51185.
Jager,A., Kostense,P.J., Nijpels,G., Dekker,J.M., Heine,R.J., Bouter,L.M., Donker,A.J., and Stehouwer,C.D. (2001). Serum homocysteine levels are associated with the development of (micro)albuminuria: the Hoorn study. Arterioscler. Thromb. Vasc. Biol. 21, 74-81.
Jager,S., Handschin,C., St-Pierre,J., and Spiegelman,B.M. (2007). AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. U. S. A 104, 12017-12022.
Kahn,B.B., Alquier,T., Carling,D., and Hardie,D.G. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1, 15-25.
Kingston,E.E. and Duffield,A.M. (1978). Plasma amino acid quantitation using gas chromatography chemical ionization mass spectrometry and 13C amino acids as internal standards. Biomed. Mass Spectrom. 5, 621-626.
Kolvraa,S. (1979). Inhibition of the glycine cleavage system by branched-chain amino acid metabolites. Pediatr. Res. 13, 889-893.
Kongsgaard,M., Backer,V., Jorgensen,K., Kjaer,M., and Beyer,N. (2004). Heavy resistance training increases muscle size, strength and physical function in elderly male COPD-patients--a pilot study. Respir. Med. 98, 1000-1007.
Konig,D., Bisse,E., Deibert,P., Muller,H.M., Wieland,H., and Berg,A. (2003). Influence of training volume and acute physical exercise on the homocysteine levels in endurance-trained men: interactions with plasma folate and vitamin B12. Ann. Nutr. Metab 47, 114-118.
Kubica,N., Bolster,D.R., Farrell,P.A., Kimball,S.R., and Jefferson,L.S. (2005). Resistance exercise increases muscle protein synthesis and translation of eukaryotic initiation factor 2Bepsilon mRNA in a mammalian target of rapamycin-dependent manner. J. Biol. Chem. 280, 7570-7580.
Lamarre,S.G., MacMillan,L., Morrow,G.P., Randell,E., Pongnopparat,T., Brosnan,M.E., and Brosnan,J.T. (2014). An isotope-dilution, GC-MS assay for formate and its application to human and animal metabolism. Amino. Acids 46, 1885-1891.
Lanza,I.R., Zabielski,P., Klaus,K.A., Morse,D.M., Heppelmann,C.J., Bergen,H.R., III, Dasari,S., Walrand,S., Short,K.R., Johnson,M.L., Robinson,M.M., Schimke,J.M., Jakaitis,D.R., Asmann,Y.W., Sun,Z., and Nair,K.S. (2012). Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab 16, 777-788.
Lewis,C.A., Parker,S.J., Fiske,B.P., McCloskey,D., Gui,D.Y., Green,C.R., Vokes,N.I., Feist,A.M., Vander Heiden,M.G., and Metallo,C.M. (2014). Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 55, 253-263.
Lichtenstein,A.H., Cohn,J.S., Hachey,D.L., Millar,J.S., Ordovas,J.M., and Schaefer,E.J. (1990). Comparison of deuterated leucine, valine, and lysine in the measurement of human apolipoprotein A-I and B-100 kinetics. J. Lipid Res. 31, 1693-1701.
Liu,J. and Lloyd,S.G. (2013). High-fat, low-carbohydrate diet alters myocardial oxidative stress and impairs recovery of cardiac function after ischemia and reperfusion in obese rats. Nutr. Res. 33, 311-321.
MacFarlane,A.J., Liu,X., Perry,C.A., Flodby,P., Allen,R.H., Stabler,S.P., and Stover,P.J. (2008). Cytoplasmic serine hydroxymethyltransferase regulates the metabolic partitioning of methylenetetrahydrofolate but is not essential in mice. J. Biol. Chem. 283, 25846-25853.
Maddocks,O.D., Berkers,C.R., Mason,S.M., Zheng,L., Blyth,K., Gottlieb,E., and Vousden,K.H. (2013). Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 493, 542-546.
Maddocks,O.D., Labuschagne,C.F., Adams,P.D., and Vousden,K.H. (2016). Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells. Mol. Cell 61, 210-221.
Maroto-Sanchez,B., Lopez-Torres,O., Palacios,G., and Gonzalez-Gross,M. (2016). What do we know about homocysteine and exercise? A review from the literature. Clin. Chem. Lab Med.
Maroto-Sanchez,B., Valtuena,J., Albers,U., Benito,P.J., and Gonzalez-Gross,M. (2013). [Acute physical exercise increases homocysteine concentrations in young trained male subjects]. Nutr. Hosp. 28, 325-332.
Martin-Montalvo,A. and de,C.R. (2013). Mitochondrial metabolic reprogramming induced by calorie restriction. Antioxid. Redox. Signal. 19, 310-320.
Matheny,R.W., Merritt,E., Zannikos,S.V., Farrar,R.P., and Adamo,M.L. (2009). Serum IGF-I-deficiency does not prevent compensatory skeletal muscle hypertrophy in resistance exercise. Exp. Biol. Med. (Maywood. ) 234, 164-170.
Mendelsohn,A.R. and Larrick,J.W. (2013). The DNA methylome as a biomarker for epigenetic instability and human aging. Rejuvenation. Res. 16, 74-77.
Merrill,G.F., Kurth,E.J., Hardie,D.G., and Winder,W.W. (1997). AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol 273, E1107-E1112.
Molina-Lopez,J., Molina,J.M., Chirosa,L.J., Florea,D.I., Saez,L., and Planells,E. (2013). Effect of folic acid supplementation on homocysteine concentration and association with training in handball players. J. Int. Soc. Sports Nutr. 10, 10.
Neuman, Joshua Charles. Exercise prevents hyperhomocysteinemia in a
folate-deficient mouse model. 2010. Graduate College at Digital Repository @ Iowa State University.
Ref Type: Generic
Okura,T., Rankinen,T., Gagnon,J., Lussier-Cacan,S., Davignon,J., Leon,A.S., Rao,D.C., Skinner,J.S., Wilmore,J.H., and Bouchard,C. (2006). Effect of regular exercise on homocysteine concentrations: the HERITAGE Family Study. Eur. J. Appl. Physiol 98, 394-401.
Phillips,S.M., Parise,G., Roy,B.D., Tipton,K.D., Wolfe,R.R., and Tamopolsky,M.A. (2002). Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Can. J. Physiol Pharmacol. 80, 1045-1053.
Powers,S.K., Duarte,J., Kavazis,A.N., and Talbert,E.E. (2010). Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp. Physiol 95, 1-9.
Randeva,H.S., Lewandowski,K.C., Drzewoski,J., Brooke-Wavell,K., O''Callaghan,C., Czupryniak,L., Hillhouse,E.W., and Prelevic,G.M. (2002). Exercise decreases plasma total homocysteine in overweight young women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab 87, 4496-4501.
Real,J.T., Merchante,A., Gomez,J.L., Chaves,F.J., Ascaso,J.F., and Carmena,R. (2005). Effects of marathon running on plasma total homocysteine concentrations. Nutr. Metab Cardiovasc. Dis. 15, 134-139.
Rivera,S., Lopez-Soriano,F.J., Azcon-Bieto,J., and Argiles,J.M. (1987). Blood amino acid compartmentation in mice bearing Lewis lung carcinoma. Cancer Res. 47, 5644-5646.
Sarna,L.K., Wu,N., Wang,P., Hwang,S.Y., Siow,Y.L., and O K (2012). Folic acid supplementation attenuates high fat diet induced hepatic oxidative stress via regulation of NADPH oxidase. Can. J. Physiol Pharmacol. 90, 155-165.
Seo,D.Y., Lee,S.R., Kim,N., Ko,K.S., Rhee,B.D., and Han,J. (2014). Humanized animal exercise model for clinical implication. Pflugers Arch. 466, 1673-1687.
Sofi,F., Capalbo,A., Cesari,F., Abbate,R., and Gensini,G.F. (2008). Physical activity during leisure time and primary prevention of coronary heart disease: an updated meta-analysis of cohort studies. Eur. J. Cardiovasc. Prev. Rehabil. 15, 247-257.
Sotgia,S., Carru,C., Caria,M.A., Tadolini,B., Deiana,L., and Zinellu,A. (2007). Acute variations in homocysteine levels are related to creatine changes induced by physical activity. Clin. Nutr. 26, 444-449.
Sreekumar,A., Poisson,L.M., Rajendiran,T.M., Khan,A.P., Cao,Q., Yu,J., Laxman,B., Mehra,R., Lonigro,R.J., Li,Y., Nyati,M.K., Ahsan,A., Kalyana-Sundaram,S., Han,B., Cao,X., Byun,J., Omenn,G.S., Ghosh,D., Pennathur,S., Alexander,D.C., Berger,A., Shuster,J.R., Wei,J.T., Varambally,S., Beecher,C., and Chinnaiyan,A.M. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910-914.
Sreekumar,R., Unnikrishnan,J., Fu,A., Nygren,J., Short,K.R., Schimke,J., Barazzoni,R., and Nair,K.S. (2002). Impact of high-fat diet and antioxidant supplement on mitochondrial functions and gene transcripts in rat muscle. Am. J. Physiol Endocrinol. Metab 282, E1055-E1061.
Stenesen,D., Suh,J.M., Seo,J., Yu,K., Lee,K.S., Kim,J.S., Min,K.J., and Graff,J.M. (2013). Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab 17, 101-112.
Tarasov,A.I., Griffiths,E.J., and Rutter,G.A. (2012). Regulation of ATP production by mitochondrial Ca(2+). Cell Calcium 52, 28-35.
Venta,R., Cruz,E., Valcarcel,G., and Terrados,N. (2009). Plasma vitamins, amino acids, and renal function in postexercise hyperhomocysteinemia. Med. Sci. Sports Exerc. 41, 1645-1651.
Vincent,H.K., Bourguignon,C., and Vincent,K.R. (2006). Resistance training lowers exercise-induced oxidative stress and homocysteine levels in overweight and obese older adults. Obesity. (Silver. Spring) 14, 1921-1930.
Vincent,K.R., Braith,R.W., Bottiglieri,T., Vincent,H.K., and Lowenthal,D.T. (2003). Homocysteine and lipoprotein levels following resistance training in older adults. Prev. Cardiol. 6, 197-203.
Vizi,E., Huszar,E., Csoma,Z., Boszormenyi-Nagy,G., Barat,E., Horvath,I., Herjavecz,I., and Kollai,M. (2002). Plasma adenosine concentration increases during exercise: a possible contributing factor in exercise-induced bronchoconstriction in asthma. J. Allergy Clin. Immunol. 109, 446-448.
Volek,J.S., Gomez,A.L., Love,D.M., Weyers,A.M., Hesslink,R., Jr., Wise,J.A., and Kraemer,W.J. (2002). Effects of an 8-week weight-loss program on cardiovascular disease risk factors and regional body composition. Eur. J. Clin. Nutr. 56, 585-592.
Wang,W., Wu,Z., Dai,Z., Yang,Y., Wang,J., and Wu,G. (2013). Glycine metabolism in animals and humans: implications for nutrition and health. Amino. Acids 45, 463-477.
Watkins,D., Schwartzentruber,J.A., Ganesh,J., Orange,J.S., Kaplan,B.S., Nunez,L.D., Majewski,J., and Rosenblatt,D.S. (2011). Novel inborn error of folate metabolism: identification by exome capture and sequencing of mutations in the MTHFD1 gene in a single proband. J. Med. Genet. 48, 590-592.
Windelberg,A., Arseth,O., Kvalheim,G., and Ueland,P.M. (2005). Automated assay for the determination of methylmalonic acid, total homocysteine, and related amino acids in human serum or plasma by means of methylchloroformate derivatization and gas chromatography-mass spectrometry. Clin. Chem. 51, 2103-2109.
Winder,W.W. and Hardie,D.G. (1996). Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol 270, E299-E304.
Wojtaszewski,J.F., Nielsen,P., Hansen,B.F., Richter,E.A., and Kiens,B. (2000). Isoform-specific and exercise intensity-dependent activation of 5''-AMP-activated protein kinase in human skeletal muscle. J. Physiol 528 Pt 1, 221-226.
Woo,H.I., Chun,M.R., Yang,J.S., Lim,S.W., Kim,M.J., Kim,S.W., Myung,W.J., Kim,D.K., and Lee,S.Y. (2015). Plasma amino acid profiling in major depressive disorder treated with selective serotonin reuptake inhibitors. CNS. Neurosci. Ther. 21, 417-424.
Xu,M., Nagasaki,M., Obayashi,M., Sato,Y., Tamura,T., and Shimomura,Y. (2001). Mechanism of activation of branched-chain alpha-keto acid dehydrogenase complex by exercise. Biochem. Biophys. Res. Commun. 287, 752-756.
Yu-Chun, Huang. The effects of dietary consumption and physical activity on one-carbon metabolism. 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top