跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 18:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃婕婷
研究生(外文):Jie-Ting Huang
論文名稱:微奈米化黏土對細胞與小鼠毒性之評估
論文名稱(外文):Evaluation of micro/nano clays on cytotoxicity and acute toxicity of mice
指導教授:陳洵一
口試委員:黃三元余祺陳珠亮
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:126
中文關鍵詞:微奈米黏土細胞毒性口服急性毒性基因毒性小鼠
外文關鍵詞:Micro/nano claysCytotoxicityAcute oral toxicityGenotoxicityMice
相關次數:
  • 被引用被引用:1
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
黏土是一種產量豐富且價格便宜的無機礦物,由於其獨特的物化特性,其應用層面與領域相當多元。黏土奈米化後,其細小顆粒具有迥異新穎的物理特性,也因此應用於生物體時,潛在的傷害風險需進行評估。本研究的目的旨在評估微奈米化黏土 (TB、TBB1、TBI1) 與奈米矽片 (nanosilcate platelets, NSP) 對細胞 (NIH-3T3) 與小鼠之毒性。體外培養試驗結果顯示細胞形態上,500 µg/mL高劑量的微奈米黏土會抑制細胞生長。細胞凋亡試驗亦顯示100 µg/mL的微奈米黏土會輕微引發細胞凋亡,但是對細胞壞死沒有影響。添加活性氧 (reactive oxygen species, ROS) 清除劑 (N-MPG; n-2-mercaptopropionyl-glycine and PDTC; ammonium pyrrolidinedithiocarbamate)、NADPH oxidase抑制劑 (DPI; diphenyleneiodonium chloride and Apo; apocynin) 以及胞吞作用 (endocytosis) 抑制劑 (Cyto D; cytochalasin D) 探討其對細胞凋亡之結果顯示,NSP組在300 µM N-MPG處理下顯著地降低細胞凋亡,而TB和NSP組在2 mM PDTC處理下亦顯著地降低細胞凋亡。NADPH氧化酶抑制劑結果顯示微奈米黏土與10 µM DPI和30 µM Apo處理可輕微降低微奈米黏土誘發細胞凋亡,但對NSP誘發之細胞凋亡則沒有影響。微奈米黏土和NSP處理組在1 µg/mL Cyto D 處理下,都有顯著降低細胞凋亡。DPI和Cyto D的處理皆可顯著降低微奈米黏土與NSP所誘發ROS的產生。但是在添加Apo情況下,微奈米黏土與NSP組反而會促進ROS的產生。LDH (lactate dehydrogenase) 的釋放結果顯示微奈米黏土與NSP會引起小幅度細胞膜的損傷。微奈米黏土對細胞的SOD (superoxide dismutase) 活性沒有顯著影響。TB、TBI1與NSP對細胞的GSH (glutathione) 含量也沒有影響,但TBB1處理則會降低細胞的GSH含量。微奈米黏土與NSP在100 µg/mL會明顯影響粒線體膜通透性,造成膜電位損失,N-MPG處理無法減緩此膜電位損失,但是NSP添加N-MPG或Cyto D可減緩膜電位損失。DPI處理能降低NSP誘發的caspase-6活性。Caspase抑制劑zVAD.fmk處理,其會輕微降低NSP誘發細胞凋亡和壞死的比例。N-MPG與PDTC對NSP誘導NIH-3T3細胞的HSP70表達沒有顯著影響。單獨NSP或在添加N-MPG、DPI與Cyto D下對NIH-3T3細胞的gelsolin表達與JNK活化也是沒有明顯影響。小鼠每天口服微奈米化黏土、經14 天後結果顯示體重、採食量行為及肝腎病理組織切片在TB、TBB1、TBI1處理組與對照組之間沒有顯著的差異。微核化 (micronucleus, MN) 試驗顯示在測試的濃度中並不會誘導紅血球細胞微核化。口服急性毒性B6小鼠的LD50值大於4 g/kg。總體而言,本研究顯示微奈米化黏土在體外培養的細胞具有輕微細胞毒性,但是在活體內幾乎是無顯著動物毒性與基因毒性。

Clay is an abundant and inexpensive inorganic mineral. As nano clays show unique physicochemical properties, it has been applied in a variety of fields. The novel physical properties of nano clays draw serious concerns by the public for its biosafety when applied to the organisms, and thus it is critical to evaluate its toxicity. The purpose of this study was to evaluate the cytotoxicity and acute toxicity of micro/nano clays (TB, TBB1, TBI1) and nanosilcate platelets (NSP) in mice. In vitro morphological observations showed that high doses at 500 μg/mL micro/nano clays resulted in cell growth arrest and 100 μg/mL micro/nano clays slightly caused cell apoptosis, but had no significant effect on necrosis. ROS scavenger (N-MPG and PDTC), NADPH oxidase inhibitor (DPI and Apo) and endocytosis inhibitor (Cyto D) were used to investigate the mechanisms of cell apoptosis induced by micro/nano clays. 300 μM N-MPG treatment significantly rescued cell apoptosis induced by NSP, and 2 mM PDTC treatment also significantly ameliorated cell apoptosis by TB or NSP. 10 µM DPI and 30 µM Apo also slightly ameliorated apoptosis by TB, TBB1 and TBI1, but had no effect on apoptosis induced by NSP. Treatment of Cyto D at 1 µg/mL significantly rescued cell apoptosis induced by micro/nano clays or NSP. Both DPI and Cyto D treatment significantly suppressed ROS generation induced by micro/nano clays or NSP, but Apo treatment exacerbated ROS production. Analysis of LDH release suggested that micro/nano clays and NSP could damage cell membranes and lead to a slightly higher LDH activity. TB, TBI1 and NSP had no significant effect on cellular GSH content, but TBB1 significantly reduced GSH content. Neither micro/nano clays nor NSP exerted an effect on SOD activity. Micro/nano clays and NSP at 100 μg/mL significantly caused mitochondrial damage leading to membrane potential loss and treatment of N-MPG failed to rescue the mitochondrial membrane potential loss by micro/nano clays, but NSP add N-MPG or Cyto D treatment significantly rescued the mitochondrial membrane potential loss. Treatment of DPI significantly suppressed caspase-6 activity induced by NSP. Furthermore, treatment of zVAD.fmk, a caspase inhibitor, ameliorated cell apoptosis and necrosis induced by NSP. N-MPG and PDTC treatment failed to affect HSP70 expression by NSP. N-MPG, DPI or Cyto D exerted no effect on gelsolin expression and JNK activation induced by NSP. In acute toxicity of mice with daily oral administration of micro/nano clays for 14 days, body weight and feed intake and histopathology were not different between micro/nano clay treated and control groups. Micronucleus analysis suggested that there was no significant micronucleus formation in the erythrocytes induced by micro/nano clays at various concentrations. Results from the acute toxicity study suggested that micro/nano clays have a lethal dose (LD50) greater than 4 g/kg body weight and further tests suggested that micro/nano clays of LD50 is greater than 4 g/kg body weight for male and female B6 mice. In conclusion, results from this study suggested that micro/nano clays showed slight cytoxicity, but had no significant acute toxicity and genotoxicity in living animals.

壹、前言1
貳、文獻探討2
一、黏土2
(一)黏土的種類2
(二)黏土的改質4
二、黏土之奈米化5
(一)黏土奈米化的種類5
(二)黏土奈米化的製備方法7
三、微奈米化黏土8
四、奈米化黏土13
五、奈米材料的毒性16
六、細胞凋亡 (apoptosis)18
(一)經由胱天蛋白酶活化引起之細胞死亡 (caspases-dependent cell apoptosis)19
(二)不經由胱天蛋白酶活化引起之細胞死亡 (caspases-independent cell apoptosis)24
七、奈米材料對細胞造成毒性的作用以及細胞的防禦機制25
(一)活性氧類物質 (reactive oxygen species, ROS) 的種類26
(二)活性氧類物質 (reactive oxygen species, ROS) 形成的途徑27
(三)氧化壓力 (oxidative stress)29
(四)抗氧化機制與氧化壓力的指標31
八、活性氧類物質清除劑 (reactive oxygen species scavengers, ROS scavengers)33
(一)N-2-mercaptopropionyl-glycine (N-MPG)33
(二)Ammonium pyrrolidinedithiocarbamate (PDTC)33
九、NADPH氧化酶抑制劑 (nicotinamide adenine dinucleotide phosphate oxidase inhibitor)34
(一)Diphenyleneiodonium chloride (DPI)34
(二)Apocynin (Apo)35
十、胞吞作用抑制劑 (endocytosis inhibitor) -Cytochalasin D (Cyto D)35
十一、研究目的36
參、材料與方法37
一、微奈米黏土與奈米矽片的來源37
二、細胞培養37
三、細胞形態分析38
四、細胞凋亡 (Annexin V apoptosis) 分析38
五、活性氧類物質清除劑 (ROS scavenger)、NADPH氧化酶抑制劑 (NADPH oxidase inhibitor) 與胞吞作用抑制劑 (endocytosis inhibitor) 於細胞凋亡中之作用39
六、NADPH氧化酶抑制劑 (NADPH oxidase inhibitor) 與胞吞作用抑制劑 (endocytosis inhibitor) 於ROS的檢測分析40
七、乳酸脫氫酶 (lactate dehydrogenase, LDH) 活性分析41
八、超氧化物岐化酶 (superoxide dismutase, SOD) 活性分析41
九、穀胱甘肽 (glutathione, GSH) 含量分析42
十、粒線體膜電位 (mitochondrial membrane potential, MMP) 分析43
十一、Casepase-6活性分析44
十二、Casepase-independent apoptosis分析45
十三、西方吸漬法分析Heat shock protein 70、Gelsolin、JNK蛋白45
十四、小鼠生長性狀47
十五、體內微核化試驗 (micronucleus assay in vivo) 以及肝腎組織學47
十六、掃描式電子顯微鏡 (scanning electron microscopy, SEM) 之觀察48
十七、統計分析 (statistical analysis)49
肆、結果50
一、微奈米黏土誘導NIH-3T3細胞的形態變化50
二、微奈米黏土對NIH-3T3細胞的細胞凋亡之影響52
三、ROS清除劑、NADPH氧化酶抑制劑與胞吞作用抑制劑對微奈米黏土與NSP誘導NIH-3T3細胞的細胞凋亡之影響55
四、NADPH氧化酶抑制劑與胞吞作用抑制劑對微奈米黏土與NSP誘導NIH-3T3細胞ROS產生之影響75
五、微奈米黏土與NSP對NIH-3T3細胞的粒線體膜電位 (mitochondrial membrane potential, MMP) 之影響78
六、微奈米黏土與NSP對NIH-3T3細胞的乳酸脫氫酶 (lactate dehydrogenase, LDH) 活性之影響82
七、微奈米黏土對NIH-3T3細胞的超氧化物岐化酶 (superoxide dismutase, SOD) 活性之影響84
八、微奈米黏土與NSP對NIH-3T3細胞的穀胱甘肽 (glutathione, GSH) 含量之影響85
九、NSP對NIH-3T3細胞的caspase-6活性之影響88
十、zVAD.fmk對NSP誘導NIH-3T3細胞的細胞凋亡之影響89
十一、NSP對NIH-3T3細胞的熱休克蛋白70 (heat shock protein 70, HSP70) 活性之影響91
十二、NSP對NIH-3T3細胞的gelsolin活性之影響92
十三、NSP對NIH-3T3細胞的JNK活化之影響93
十四、NIH-3T3細胞暴露於微奈米黏土的掃描式電子顯微鏡 (scanning electron microscopy, SEM) 觀察94
十五、雌性小鼠口服不同劑量的微奈米黏土在14天期間之體重與採食變化與其組織病理觀察96
十六、微奈米黏土處理48小時之後,微核化嗜多染紅血球 (micronucleated polychromatic erythrocytes, MNPCEs) 的頻率100
十七、雄性與雌性B6小鼠口服急性毒性於14天期間之體重與採食變化102
伍、討論106
一、微奈米黏土與NSP對小鼠纖維母細胞 (NIH-3T3) 的細胞毒性106
二、微奈米黏土對B6小鼠的毒性作用110
陸、結論111
柒、參考文獻112


吳仁傑。1997。奈米複合材料聚合技術。工業材料125:115-119。
蔡宗燕。1998。奈米黏土-高分子複合材料之發展與應用。化工資訊。2月刊。
林江珍。2003。藉由天然黏土分離擷取「奈米矽片」的新技術。國立中興大學。台中,台灣。
鄭崇偲。2012。快速評估奈米材料之細胞毒性對動物細胞免疫功能與存活。碩士論文。國立中興大學。台中,台灣。
蘇佳琪、申永輝。2007。非離子界面活性劑吸附對黏土懸浮液流變與表面性質之影響。博士論文。成功大學。高雄,台灣。
Ailenberg, M., and M. Silverman. 2003. Cytochalasin D disruption of actin filaments in 3T3 cells produces an anti-apoptotic response by activating gelatinase A extracellularly and initiating intracellular survival signals. Biochim. Biophys. Acta 1593:249-258.
Alemdar, A., O. Atıcı, and N. Gungor. 2000. The influence of cationic surfactants on rheological properties of bentonite–water systems. Mater. Lett. 43:57-61.
Alnemri, E. S. 1997. Mammalian cell death proteases: a family of highly conserved aspartate specific cysteine proteases. J. Cell. Biochem. 64:33.
Arias, I. M., and W. B. Jakoby. 1976. Glutathione: metabolism and function. Raven Press, New York. pp. 115-118.
Armstrong, D., and R. Browne. 1994. The analysis of free radicals, lipid peroxides, antioxidant enzymes and compounds to oxidative stress as applied to the clinical chemistry laboratory. Free Radic. Diogn. Med. 366:43-58.
Baek, M., J. A. Lee, and S. J. Choi. 2012. Toxicological effects of a cationic clay, montmorillonite in vitro and in vivo. Mol. Cell Toxicol. 8:95-101.
Baillie, T. A., and J. G. Slatter. 1991. Glutathione: a vehicle for the transport of chemically reactive metabolites in vivo. Acc. Chem. Res. 24:264-270.
Bell, A. T. 2003. The impact of nanoscience on heterogeneous catalysis. Science 299:1688-1691.
Brakebusch, C. and R. Fassler. 2005. Beta 1 integrin function in vivo: adhesion, migration and more. Cancer Metastasis Rev. 24:403-411.
Bray, D. 1992. Actin filaments: structure and assembly. In “cell movement”(D. Bray. ed.). Garland Publishing Co., New York. pp. 75-92.
Burridge, K., and M. Chrzanowska-Wodnicka. 1996. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12:463-519.
Chang, L., and M. Karin. 2001. Mammalian MAP kinase signaling cascades. Nature 410:37-40.
Chiao, S. H., S. H. Lin, C. I. Shen, J. W. Liao, I. J. Bau, J. C. Wei, L. P. Tseng, S. H. Hsu, P. S. Lai, S. Z. Lin, J. J. Lin, and H. L. Su. 2012. Efficacy and safety of nanohybrids comprising silver nanoparticles and silicate clay for controlling Salmonella infection. Int. J. Nanomed. 7:2421-2432.
Colvin, V. L. 2003. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21:1166-1170.
Critchly, D. R. 2000. Focal adhesions—the cytoskeletal connection. Curr. Opin. Cell Biol. 12:133-139.
Dasu, M. R., and I. Jialal. 2011. Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors. Am. J. Physiol. Endocrinol. Metab. 300:E145- E154.
Davis, R. J. 2000. Signal transduction by the JNK group of MAP kinases. Cell 103:239-252.
Date, M., T. Morita, N. Yamashita, K. Nishida, O. Yamaguchi, Y. Higuchi, S. Hirotani, Y. Matsumura, M. Hori, M. Tada, and K. Otsu. 2002. The antioxidant n-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. J. Am. Coll. Cardiol. 39: 907-912.
Dawn-Linsley, M., F. J. Ekinci, D. Ortiz, E. Rogers, and T. B. Shea. 2005. Monitoring thiobarbituric acid reactive substances (TBARS) as an assay for oxidative damage in neuronal cultures and central nervous system. J. Neurosci. Meth. 141:219-222.
Delavalle´e, L., L. Cabon, P. Gala´n-Malo, H. K. Lorenzo, and S. A. Susin. 2011. AIF-mediated caspase-independent necroptosis: a new chance for targeted therapeutics. Iubmb Life 63:221-232.
Diaz, B., C. Sanchez-Espinel, M. Arruebo, J. Faro, E. de Miguel, S. Magadan, C. Yagüe, R. Fernández-Pacheco, M. R. Ibarra, J. Santamaría, and A. González-Fernández. 2008. Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small 4:2025-2034.
Donaldson, K., V. Stone, A. Clouter, L. Renwick, and W. MacNee. 2001. Ultrafine particles. Occup. Environ. Med. 58:211-216.
Donovan, M., and T. G. Cotter. 2004. Control of mitochondrial integrity by Bcl-2 family members and caspase-independent cell death. Biochim. Biophys. Acta 1644:133-147.
Draper, H. H., E. J. Squires, H. Mahmoodi, J. Wu, S. Agarwal, and M. Hadley. 1993. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic. Biol. Med. 15:353-363.
Egger, L., J. Schneider, C. Rheme, M. Tapernoux, J. Hacki, and C. Borner. 2003. Serine proteases mediate apoptosis-like cell death and phagocytosis under caspase-inhibiting conditions. Cell Death Differ. 10:1188-1203.
Eiserich, J. P., Patel, R. P., and O’Donnel, V. B. 1998. Pathophysiology of nitric oxide and related species: free radical reactions and modification of biomolecules. Mol. Aspects Med. 19:221.
El Eter, E., H. H. Hagar, A. Al-Tuwaijiri, and M. Arafa. 2005. Nuclear factor-kappaB inhibition by pyrrolidinedithiocarbamate attenuates gastric ischemia-reperfusion injury in rats. Can. J. Physiol. Pharmacol. 83:483-492.
Ellis, H. M., and H. R. Horvitz. 1986. Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817-829.
Faleiro, L., R. Kobayashi, H. Feamhead, and Y. Lazebnik. 1997. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J. 16:2271.
Fan, T. J., L. H. Han, R. S. Cong, and J. Liang. 2005. Caspase family proteases and apoptosis. Acta Biochim. Biophys. Sin. (Shanghai). 37:719-727.
Fehrenbach, E., and H. Northo. 2001. Free radicals exercise apoptosis and heat shock proteins. Immunol. Rev. 7:66-89.
Fiers, W., R. Beyaert, W. Declercq, and P. Vandenabeele. 1999. More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719-7730.
Floyd, R. A. 1999. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc. Soc. Exp. Biol. Med. 222:236-245.
Foyer, C. H., M. Lelandais, and K. J. Kunert. 1994. Photooxidative stress in plants. Physiol. Plant 92:696-717.
Frisch, S. M., and H. Hfrancis. 1994. Disruption of epithelial cell—matrix interactions induces apoptosis. J. Cell Biol. 124:619-626.
Frisch, S. M., and E. Ruoslahti. 1997. Integrins and anoikis. Curr. Opin. Cell Biol. 9:701-706.
Gabai, V. L., A. B. Meriin, D. D. Mosser, A. W. Caron, S. Rits, V. I. Shifrin, and M. Y. Sherman. 1997. Hsp 70 prevents activation of stress kinases A novel pathway cellular thermotolerance. J. Biol. Chem. 272:18033-18037.
Giorgio, M., M. Trinei, E. Migliaccio, and P. G. Pelicci. 2007. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat. Rev. Mol. Cell Biol. 8:722-728.
Green, D. R., and J. C. Reed. 1998. Mitochondria and apoptosis. Science 281:1309-1312.
Gungor. N. 2000. Effect of the adsorption of surfactants on the rheology of Na-bentonite slurries. J. Appl. Polym. Sci. 75:107-110.
Halliwell, B., and J. M. C. Gutteridge. 1999. Free radicals in biology and medicine. Oxford Univ. Press. 617-783.
Hartl, F. U., and J. Martin. 1995. Molecular chaperones in cellular protein folding. Curr. Opin. Struct. Biol. 5:92-102.
Hoffmann, F., and U. Rinas. 2004. Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli. Adv. Biochem. Eng. Biotechnol. 89:143-161.
Hsin, Y. H., C. F. Chen, S. Huang, T. S. Shih, P. S. Lai, and P. J. Chueh. 2008. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 179:130-139.
Hsu, S. H., H. J. Tseng, H. S. Hung, M. C. Wang, C. H. Hung, P. R. Li, and J. J. Lin. 2009. Antimicrobial activities and cellular responses to natural silicate clays and derivatives modified by cationic alkylamine salts. ACS Appl. Mater. Inter. 11:2556-2564.
Hynes, R.O. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11-25.
Inoue, M. 1985. Interorgan metabolism and membrane transport of glutathione and related compounds. Chapter 6, in renal biochemistry. (R. Kinne, ed.). Elsevier Science Publishers B.V., London. pp. 225-269.
Inoue, M., Y. Saito, E. Hirata, Y. Morino, and S. Nagase. 1987. Regulation of redox states of plasma proteins by metabolism and transport of glutathione and related compounds. J. Protein Chem. 6:207-225.
Iseki, A., F. Kambe, K. Okumura, S. Niwata, R. Yamamoto, T. Hayakawa, and H. Seo. 2000. yrrolidine dithiocarbamate inhibits TNF-alpha-dependent activation of NF-kappaB by increasing intracellular copper level in human aortic smooth muscle cells. Biochem. Biophys. Res. Commun. 276:88-92.
Jain, T. K., M. K. Reddy, M. A. Morales, D. L. Leslie-Pelecky, and V. Labhasetwar. 2008. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm. 5:316-327.
Kagan, V. E., Y. Y. Tyurina, V. A. Tyurin, N. V. Konduru, A. I. Potapovich, A. N. Osipov, E. R. Kisin, D. Schwegler-Berry, R. Mercer, V. Castranova, and A. A. Shvedova. 2006. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol. Lett. 165:88-100.
Kamada, H., S. Honda, S. Maeda, L. Chang, H. Hirata, and M. Karin. 2005. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649-661.
Kamada, S., H. Kusano, H. Fujita, M. Ohtsu, R. C. Koya, N. Kuzumaki, and Y. Tsujimoto. 1998. A cloning method for caspase substrates that uses the yeast two-hybrid system: cloning of the antiapoptotic gene gelsolin. Proc. Natl. Acad. Sci. USA 95:8532-8537.
Kedziorek, D. A., N. Muja, P. Walczak, J. Ruiz-Cabello, A. A. Gilad, C. C. Jie, and J. W. M. Bulte. 2010. Gene expression profiling reveals early cellular responses to intracellular magnetic labeling with superparamagnetic iron oxide nanoparticles. Magn. Reson. Med. 63:1031-1043.
Kothakota, S., T. Azuma, C. Reinhard, A. Klippel, J. Tang, K. Chu, T. J. McGarry, M. W. Kirschner, K. Koths, D. J. Kwiatkowski, and L. T. Williams. 1997. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science. 278:294-298.
Koya, R. C., H. Fujita, S. Shimizu, M. Ohtsu, M. Takimoto, Y. Tsujimoto, and N. Kuzumaki. 2000. Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J. Biol. Chem. 275:15343-15349.
Kuwana T., M. R. Mackey, G. Perkins, M. H. Ellisman, M. Latterich, R. Schneiter, D. R. Green, and D. D. Newmeyer. 2002. Bid, bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331-342.
Lambeth, J. D. 2004. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4:181-189.
Lash, L. H., and D. P. Jones. 1985. Distribution of oxidized and reduced forms of glutathione and cysteine in rat plasma. Arch. Biochem. Biophys. 240:583-592.
Lassus, P., X. Opitz-Araya, and Y. Lazebnik. 2002. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1290-1291.
Launay, S., O. Hermine, M. Fontenay, G. Kroemer, E. Solary, and C. Garrido. 2005. Vital functions for lethal caspases. Oncogene 24:5137-5148.
Lee, Y. H., T. F. Kuo, B. Y. Chen, Y. K. Feng, Y. R. Wen, W. C. Lin, and F. H. Lin. 2005. Toxicity assessment of montmorillonite as a drug carrier for pharmaceutical applications: yeast and rats model. Biomed. Eng. Appl. Basis Commun. 17:12-18.
Leist, M., and M. Jaattela. 2001. Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol. 2:589-598.
Lenzen, S. 2008. Oxidative stress: the vulnerable beta-cell. Biochem. Soc. Trans. 36:343-347.
Levee, M. G., M. I. Dabrowska, J. L. Lelli Jr., and D. B. Hinshaw. 1996. Actin polymerization and depolymerization during apoptosis in HL-60 cells. Am. J. Physiol. 271:C1981-C1992.
Li, P. R., J. C. Wei, Y. F. Chiu, H. L. Su, F. C. Peng, and J. J. Lin. 2010. Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay. ACS Appl. Mater. Interfaces 6:1608-1613.
Li, Q., Y. Zhang, J. J. Marden, B. Banfi, and J. F. Engelhardt. 2008. Endosomal NADPH oxidase regulates c-Src activation following hypoxia/reoxygenation injury. Biochem. J. 411:531-541.
Lin, A. 2002. Activation of the JNK signaling pathway: breaking the brake on apoptosis. BioEssays 25:17-24.
Liu, Y., G. Fiskum, and D. Schubert. 2002. Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80:780-787.
Long, S. M., V. E. Laubach, C. G. Tribble, A. K. Kaza, S. M. Fiser, D. C. Cassada, J. A. Kern, and I. L. Kron. 2003. Pyrrolidine dithiocarbamate reduces lung reperfusion injury. J. Surg. Res. 112:12-18.
Lu, Y., W. Z. Zhao, Z. Chang, W. X. Chen, and L. Li. 2004. Procyanidins from grape seeds protect against phorbol ester-induced oxidative cellular and genotoxic damage. Acta Pharmacol. Sin. 25:1083-1089.
Lu schen, S., S. Ussat, G. Scherer, D. Kabelitz, and S. Adam-Klages. 2000. Sensitization to death receptor cytotoxicity by inhibition of Fas-associated death domain protein (FADD)/caspase signaling. J. Biol. Chem. 275:24670-24678.
Malstrom, B., L. Andreasson, and B. Reinhammer. 1975. In the Enzymes. (P. Boyer, ed.). XIIB, Academic Press, New York, pp. 533.
Marhaba, R. and M. Zo ller. 2004. CD44 in cancer progression: adhesion, migration and growth regulation. J. Mol. Histol. 35:211-231.
Marklund S. 1980. Distribution of CuZn superoxide dismutase and Mn superoxide dismutase in human tissues and extracellular fluids. Acta Physiol. Scand. Suppl. 492:19-23.
Miller, I. S., I. Lynch, D. Dowling, K. A. Dawson, and W. M. Gallagher. 2010. Surface-induced cell signaling events control actin rearrangements and motility. J. Biomed. Mater. Res. A. 93:493-504.
Montaner, B., S. Navarro, M. Pique, M. Vilaseca, M. Martinell, E. Giralt, J. Gil, and R. Perez-Tomas. 2000. Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines. Br. J. Pharmacol. 131:585-593.
Mosser, D. D., A. W. Caron, L. Bourget, A. B. Meriin, M. Y. Sherman, R. I. Morimoto, and B. Massie. 2000. The chaperone function of Hsp70 is required for protection against stress inducer apoptosis. Mol. Cell. Biol. 20:7146-7159.
Mylona, E., K. A. Jones, S. T. Mills, and G. K. Pavlath. 2006. CD44 regulates myoblast migration and differentiation. J. Cell Physiol. 209:314-321.
Nabeshi, H., T. Yoshikawa, K. Matsuyama, Y. Nakazato, S. Tochigi, S. Kondoh, T. Hirai, T. Akase, K. Nagano, Y. Abe, Y. Yoshioka, H. Kamada, N. Itoh, S. Tsunoda, and Y. Tsutsumi. 2011. Amorphous nanosilica induce endocytosis dependent ROS generation and DNA damage in human keratinocytes. Part. Fibre Toxicol. 8:1-10.
Nel, A. 2005. Air pollution-related illness: effect of particles. Science 308:804-806.
Nel, A., T. Xia, L. Madler, and N. Li. 2006. Toxic potential of materials at the nanolevel. Science 311:622-627.
Nicholson, D. W. 1999. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6:1028.
Oberdörster, G., E. Oberdörster, and J. Oberdörster. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113:823-839.
O''Donnell, V. B., D. G. Tew, O. T. G. Jones, and P. J. England. 1993. Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem. J. 290:41-49.
Ohkaea, H., N. Ohishi, and K. Yagi. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95:351-358.
Ohtsu, M., N. Sakai, H. Fujita, M. Kashiwagi, S. Gasa, S. Shimizu, Y. Eguchi, Y. Tsujimoto, Y. Sakiyama, K. Kobayashi, and N. Kuzumaki. 1997. Inhibition of apoptosis by the actin-regulatory protein gelsolin. EMBO J. 16:4650-4656.
Parrish, J. Z., and D. Xue. 2003. Functional genomic analysis of DNA degradation in C. elegans. Mol. Cell. 11:987-996.
Penugonda, S., W. Wu, S. Mare, and N. Ercal. 2004. Liquid chromatography analysis of n-(2-mercaptopropionyl)-glycine in biological samples by ThioGloTM 3 derivatization. J. Chromatogr. B. 807:251-256.
Pisanic, T. R. 2nd, J. D. Blackwell, V. I. Shubayev, R. R. Finones, and S. Jin. 2007. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28:2572-2581.
Pisanic, T. R., S. Jin, and V. I. Shubayev. 2009. Nanotoxicity: from in vivo and in vitro models to health risks. In: S.C. Sahu, D.A. Casciano (Eds.). John Wiley & Sons, Ltd., London. pp. 397-425.
Podoll, R. T., K. C. Irwin, and S. Brendlinger. 1987. Sorption of water-soluble oligomers on sediments. Environ. Sci. Technol. 21:562-568.
Polla, B. S., S. Kantengwa, and D. Francois. 1996. Mitochondria are selective targets for the protective effects of heat shock against oxidative injury. Proc. Natl. Acad. Sci. 93:6458-6463.
Ravagnan, L., S. Gurbuxani, S. A. Susin, C. Maisse, E. Daugas, N. Zamzami, T. Mak, M. Jaattela, J. M. Penninger, C. Garrido, and G. Kroemer. 2001. Heat shock protein 70 antagonizes apoptosis-inducing factor. Nat. Cell Biol. 3:839-843.
Richard, M. J., B. Portal, J. Meo, C. Coudray, A. Hadjian, and A. Favier. 1992. Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid. Clin. Chem. 38:704-709.
Saleh, A., S. M. Srinivasula, L. Balkir, P. D. Robbins, and E. S. Alnemri. 2000. Negative regulation of the Apaf-1 apoptosome by Hsp 70. Nat. Cell Biol. 2:476-483.
Salvesen, G. S., and V. M. Dixit. 1999. Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. 96:10964.
Sandstrom, J., P. Nilsson, K. Karlsson, and S. L. Marklund. 1994. 10-Fold increase in human plasma extracellular superoxide dismutase content caused by a mutation in heparin-binding domain. J. Biol. Chem. 269:19163-19166.
Schlaepfer, D. D., S.K. Hanks, T. Hunter, and P. Van der Geer. 1994. Integrin mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372:786-791.
Schonfeld, P., and L. Wojtczak. 2008. Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic. Biol. Med. 45:231-241.
Scoccia, A. E., M. S. Molinuevo, A. D. McCarthy, and A. M. Cortizo. 2001. A simple method to assess the oxidative susceptibility of low density lipoproteins. BMC Clin. Pathol. 1:1-7.
Service, R. F. 2004. Nanotechnology grows up. Science 304:1732-1734.
Seufferlein, T., and E. Rozengurt. 1994. Lypophosphatidic acid stimulates tyrosine phosphorylation of focal adhesion kinase, paxillin, and p130. J. Biol. Chem. 269:9345-9351.
Simons, J. M., B. A. Hart, T. R. Ip. Vai Ching, H. Van Dijk, and R. P. Labadie. 1990. Metabolic activation of natural phenols into selective oxidative burst agonists by activated human neutrophils. Free Radic. Biol. Med. 8:251-258.
Singh, N., B. Manshian, G. J. Jenkins, S. M. Griffiths, P. M. Williams, T. G. Maffeis, C. J. Wright, and S. H. Doak. 2009. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891-3914.
Slee, E. A., C. Adrain, and S. J. Martin. 2001. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J. Biol. Chem. 276:7320.
Soenen, S. J., U. Himmelreich, N. Nuytten, T. R. Pisanic 2nd, A. Ferrari, and M. De Cuyper. 2010. Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small 6:2136-2145.
Soenen, S. J., P. Rivera-Gil, J. M. Montenegro, W. J. Parak, S. C. De Smedt, and K. Braeckmans. 2011. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6:446-465.
Soto, K., K. M. Garza, and L. E. Murr. 2007. Cytotoxic effects of aggregated nanomaterials. Acta Biomater. 3:351-358.
Stankiewicz, A. R., G. Lachapelle, C. P. Foo, S. M. Radicioni, and D. D. Mosser. 2005. Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J. Biol. Chem. 280:38729-38739.
Stolk, J., T. J. Hiltermann, J. H. Dijkman, and A. J. Verhoeven. 1994. Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am. J. Respir. Cell Mol. 11:95-102.
Stroh, A., C. Zimmer, C. Gutzeit, M. Jakstadt, F. Marschinke, and T. Jung. 2004. Free radical. Biol. Med. 36:976.
Su, H. L., C. C. Chou, D. J. Hung, S. H. Lin, I. C. Pao, J. H. Lin, F. L. Huang, R. X. Dong, J. J. Lin. 2009. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30:5979-5987.
Sun, E., H. Xu, Q. Liu, J. Zhou, P. Zuo, and J. Wang. 1995. The mechanism for the effect of selenium supplementation on immunity. Biol. Trace. Elem. Res. 48:231-238.
Susin, S. A., H. K. Lorenzo, N. Zamzami, I. Marzo, B. E. Snow, G. M. Brothers, J. Mangion, E. Jacotot, P. Costantini, M. Loeffler, N. Larochette, D. R. Goodlett, R. Aebersold, D. P. Siderovski, J. M. Penninger, and G. Kroemer. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441-446.
Takahashi, A., E. S. Alnemri, Y. A. Lazebnik, T. Fernandes-Alnemri, G. Litwack, R. D. Moir, R. D. Goldman, G. G. Poirier, S. H. Kaufmann, and W. C. Earnshaw. 1996. Cleavage of lamin A by Mch2α but not CPP32: multiple interleukin 1β-converting enzyme-related proteases with distinct substrate recognition properties are active in apoptosis. Proc. Natl. Acad. Sci. USA 93:8395.
Teke, Z., B. Kabay, F. O. Aytekin, C. Yenisey, N. C. Demirkan, M. Sacar, E. Erdem, and A. Ozden. 2007. Pyrrolidine dithiocarbamate prevents 60 minutes of warm mesenteric ischemia/reperfusion injury in rats. Am. J. Surg. 194:255-262.
Turrens, J. F. 2003. Mitochondrial formation of reactive oxygen species. J. Physiol. 552:335-344.
Ushio-Fukai, M. 2006. Localizing NADPH oxidase-derived ROS. Sci. STKE re8.
Valko, M., D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39:44-84.
Vejrazˇka, M., R. Mı´cˇek, and S. S ˇ tı´pek. 2005. Apocynin inhibits NADPH oxidase in phagocytes but stimulates ROS production in non-phagocytic cells. Biochim. Biophys. Acta 1722:143-147.
Walden, P. D., Y. Globina, and A. Nieder. 2004. Induction of anoikis by doxazosin in prostate cancer cells is associated with activation of caspase-3 and a reduction of focal adhesion kinase. Urol. Res. 32:261-265.
Walter, L., F. Rauh, and E. Gunther. 1994. Comparative analysis of the three major histocompatibility complexed-linked heat shock protein 70 genes of the rat. Immunogenetics 40:325-330.
Wang, X. 2001. The expanding role of mitochondria in apoptosis. Genes Dev. 15:2922-2933.
Wang, Y. X., C. I. Poon, K. S. Poon, and C. C. Pang. 1993. Inhibitory actions of diphenyleneiodonium on endothelium-dependent vasodilatations in vitro and in vivo. Br. J. Pharmacol. 110:1232-1238.
Wang, L. H., A. Tsai, and P. Y. Hsu. 2001. Substrate binding is the rate-limiting step in thromboxane synthase catalysis. J. Biol. Chem. 276:14737-14743.
Waterhouse, N. J., J. C. Goldstein, O. von Ahsen, M. Schuler, D. D. Newmeyer, and D. R. Green. 2001. Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J. Cell. Biol. 153:319-328.
Wendel, A., and P. Cikryt. 1980. The level and half-life of glutathione in human plasma. Febs Lett. 120:209-211.
Wolf, B. B., and D. R. Green. 1999. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J. Biol. Chem. 274:20049.
Wolf, B. B., and D. R. Green. 2002. Apoptosis: letting slip the dogs of war. Curr. Biol. 12:R177-R179.
Wyllie, A. H., J. F. R. Kerr, and A. R. Currie. 1980. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68:251-306.
Xia, T., N. Li., and A. E. Nel. 2009. Potential health impact of nanoparticles. Annu. Rev. Public Health. 30:I37-I50.
Xiao, G. G., M. Wang, N. Li, J. A. Loo, and A. E. Nel. 2003. Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J. Biol. Chem. 278:50781-50790.
Xu, Y. M., L. F. Wang, L. T. Jia, X. C. Qiu, J. Zhao, C. J. Yu, R. Zhang, F. Zhu, C. J. Wang, B. Q. Jin, S. Y. Chen, and A. G. Yang. 2004. A caspase-6 and anti-human epidermal growth factor receptor-2 (HER2) antibody chimeric molecule suppresses the growth of HER2-overexpressing tumors. J. Immunol. 173:61-67.
Yagi, K. 1998. Simple assay for the level of total lipid peroxides in serum or plasma. Methods Mol. Biol. 108:101-106.
Yeh, J. M., and C. J. Weng. 2004. Organic-inorganic hybrid nanocomposite materials. Chin. Chem. Soc. 62:473-482.
Yoshida, T., Y. Yoshioka, S. Tochigi, T. Hirai, M. Uji, K. I. Ichihashi, K. Nagano, Y. Abe, H. Kamada, S. I. Tsunoda, H. Nabeshi, K. Higashisaka, T. Yoshikawa, and Y. Tsutsumi. 2013. Intranasal exposure to amorphous nanosilica particles could activate intrinsic coagulation cascade and platelets in mice. Par. Fibre Toxicol. 10:41.
Yoshida, T., Y. Yoshioka, H. Takahashi, K. Misato, T. Mori, T. Hirai, K. Nagano, Y. Abe, Y. Mukai, H. Kamada, S. I. Tsunoda, H. Nabeshi, T. Yoshikawa, K. Higashisaka, and Y. Tsutsumi. 2014. Intestinal absorption and biological effects of orally administered amorphous silica particles. Nanoscale Res. Lett. 9:532.
Yu, C., Y. Minemoto, J. Zhang, J. Liu, F. Tang, T. N. Bui, J. Xiang, and A. Lin. 2004. JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol. Cell. 13:329-340.
Zwirska-korczala, K., J. Jochem, M. Adamczyk-sowa, P. Sowa, R. Polaniak, E. Birkner, M. Latocha, K. Pilc, and R. Suchanek. 2005. Influence of melatonin on cell proliferation, antioxidative enzyme activities and lipid peroxidation in 3T3-L1 preadipocytes—an in vitro study. J. Physiol. Pharmacol. 56:91-99.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top