# 臺灣博碩士論文加值系統

(34.204.172.188) 您好！臺灣時間：2023/09/27 15:26

:::

### 詳目顯示

:

• 被引用:0
• 點閱:132
• 評分:
• 下載:0
• 書目收藏:0
 工件在切削加工中所產生的扭曲變形會提高自身的折損率與製造成本，這種扭曲變形的主因為工件因前續製程所產生的殘留應力在逐次切削過程當中因部分的材料移除導致工件內部的重新變形，這種現象現在幾乎無可避免，為改善此種問題，本文使用優化切削路徑的方法降低最大扭曲變形程度。為了模擬並評估最佳切削順序，首先要建立一切削用模型，並設好邊界，再透過鄔詩賢教授開發的有限元素軟體(FEAST)對所建立的模型進行切削路徑模擬，分析過程為藉由分段線性階段求得切削過程的非線性變形行為，在數種順序排列組合當中藉由變形與應力分佈情行判斷何種切削順序是最好的。並根據分析結果，給與實際加工方面一些數據上的參考，以達到降低工件扭曲變形程度，進一步達到節省成本的作用。
 The distortion of workpieces forms during cutting machining canresult high scrap rates and increased manufacturing costs. The cause ofdistortion appearing mainly comes from residual stress exists inworkpiece. The residual stress might be produced when workpieces gothrough several manufacturing steps like forging、casting and heattreatment etc. When the part material of workpieces is taken duringcutting machining step by step, the non-equilibrium between theworkpiece and residual stress makes the workpiece distort into anotherdeformation appearance. This condition is difficult to avoid. This researchprovides an optimum procedure design to reduce the maximum distortionand scrap rate.At first, this research creates a model for simulating cuttingprocedure and estimating the best cutting path arrangement. Then webuild its boundary and use the Finite Element Analysis of structure(FEAST) which developed by professor Wu to simulate the cuttingprocedure of the model. We use the piecewise linear steps to solve thenonlinear behavior deformation during the cutting processes. We planseveral path arrangements and decide the optimum procedure with thedeformation and Von mises stress distribution in these procedures.According to the final analysis, we can produce some useful data for thepractical cutting processes about reducing the distortion of the workpiece.Then the cost will be reduced by this research successfully.
 目錄誌謝 .......................................................................................................... ii中文摘要 ................................................................................................. iiiAbstract .................................................................................................... iv目錄 .......................................................................................................... v圖目錄 .................................................................................................... viii表目錄 ..................................................................................................... xii符號說明 ............................................................................................... xvii第一 章 緒論 ........................................................................................ 11.1 前言 ........................................................................................ 11.2 文獻回顧 ................................................................................ 21.3 研究目的與方法 .................................................................... 7第二 章 有限元素公式及切削理論 ..................................................... 92.1 有限元素公式(Finite Element Formulation) ................................... 92.2 切削分析理論 ................................................................................ 132.2.1. 切削順序規劃說明 ............................................................... 132.2.2. 執行過程 ............................................................................... 13vi第三 章 FEAST 前置處理與MACHCUT 軟體說明 ........................ 163.1. 有限元素的模型建立 ................................................................... 163.2. 建立FEAST 有限元素模型 ......................................................... 173.3. 切削路徑規劃 ...................................................................... 193.4. 軟體說明 .............................................................................. 20第四 章 加工實例模擬 ....................................................................... 214.1 機械組件加工實例一 ..................................................................... 224.1.1 邊界條件 ................................................................................ 244.1.2 路徑順序模擬 ......................................................................... 244.2 實例二 : 2050-T84 鋁合金航空薄板模型 .................................... 754.2.2 切削分析過程與模型建立 ..................................................... 804.2.2.1.3 位移量與應力分析 ........................................................... 844.3 實例二:鎳合金圓盤模型 .............................................................. 1104.3.1 文獻內容 ............................................................................... 1104.3.2 切削分析過程與模型建立 ................................................... 1164.3.3 初始殘留應力置入 ............................................................... 1174.3.4 位移量與應力分析 ............................................................... 117vii4.3.5 結論 ....................................................................................... 119第五 章 結論與未來展望 ................................................................. 1215.1.結論 ............................................................................................... 1215.2.未來展望 ....................................................................................... 123參考文獻 .............................................................................................. 124
 參考文獻[1] Jitender K.Rai, Paul Xirouchakis, “Finite element method basedmachining simulation environment for analyzing part errors inducedduring milling of thin-walled components”, International Journal ofMachine Tools and Manufacture, Vol.48, 2008: pp.629-643.[2] Jitender K.Rai, Paul Xirouchakis, “FEM-based prediction ofworkpiece transient temperature distribution and deformationsduring milling”, The International Journal of AdvancedManufacturing Technology, DOI 10.1007/s00170-008-1610-6, 2009:pp.429-449.[3] H. Z. Li, Zhang W.B., X. P. Li, “Modelling of cutting forces inhelical end milling using a predictive machining theory”,International Journal of Mechanical Sciences, Vol.43, 2001:pp.1711-1730.[4] Ying lin KE, Yun bo BI, “Study on Numerical Simulation andExperiment of Machining Process for Aerospace MonolithicComponents”, PhD Thesis, Zhejiang University of Mechanical andEnergy Engineering, 2006.[5] Ying lin KE, Yun bo BI, “Evaluation and Relief of ResidualStresses in Aluminum alloys for Aircraft Structures”, PhD Thesis,Zhejiang University of Mechanical and Energy Engineering, 2003.[6] Ying lin KE, Yun bo BI, “Physics-Based Milling ProcessSimulation and Applications in Machining Distortion Prediction ofAeronautical Monolithic Components”, PhD Thesis, ZhejiangUniversity of Mechanical and Energy Engineering, 2007.[7] M. Dassisti, K.Y. Benyounis, A.G. Olabi, “Methods of measuringresidual stresses in components”, Materials & Design, Vol.35, 2012:pp.572-588.[8] Shuyuan Zhang, Yunxin Wu, Hai Gong, “A modeling of residualstress in stretched aluminum alloy plate”, Journal of MaterialsProcessing Technology, Vol.212, 2012: pp.2463-2473.[9] Michael B. Prime,Michael R. Hill “Residual stress, stress relief,and inhomogeneity in aluminum plate”, Scripta Materialia, Vol.46,2012: pp.77-82.[10] 柯映林,孫杰, “殘留應力對航空整體結構件加工變形的影響分析”, 浙江大学制造工程研究所, Vol.41, 2005: pp.117-122.[11] D. Hornbach, P. Prevéy, “Development of Machining Proceduresto Minimize Distortion During Manufacture”, Proceedings of the17th Heat Treating Society Conference and Exposition, ASM,Metals Park, OH, 1998, pp.13-18.[12] M. Salio,T. Berruti, G. De Poli, “Prediction of residual stressdistribution after turning in turbine disks”, International Journal ofMechanical Sciences, Vol.48, 2006: pp.976-984.[13] Yu Wei, X. W. Wang, “Computer simulation and experimentalstudy of machining deflection due to original residual stress ofaerospace thin-walled parts”, The International Journal ofAdvanced Manufacturing Technology, Vol.33, 2007: pp.260-265.[14] Guang Yu Wang, Yun Xin Wu, Peng Fei Yan, Yong Hui Hu,“Prediction model for machining deformation of aeronauticalaluminum alloy thin-walled workpiece”, Journal of Central SouthUniversity (Science and Technology), Vol.43, 2012.[15] Wanjin Bai, Rufu Hu, Xuxia Zhu, “Finite Element Simulation andAnalysis of Part Deformation Induced Durin Milling of Thinwalled Aerospace Monolithic Structure Parts”, IntelligentComputing and Intelligent Systems, Vol.2, 2010: pp.440-444.[16] X. Cerutti and K. Mocellin, “Parallel finite element tool to predictdistortion induced by initial residual stresses during machining ofaeronautical parts”, International Journal of Material Forming,Vol.8, 2015: pp.255-268.[17] X. Cerutti, S. Arsene, K. Mocellin, “Prediction of machiningquality due to the initial Residual stress redistribution of aerospacestructural parts made of low- density aluminium alloy rolled plates”, International Journal of Material Forming, DOI 10.1007/s12289-015-1254-7, 2015: pp.1-14.[18] Vincent Wagner1, Arnaud Vissio, Emmanuel Duc, MichelePijolat, “Relationship between cutting conditions and chipsmorphology during milling of aluminium Al-2050”, InternationalJournal of Material Forming, DOI 10.1007/s00170-015-7490-7,2015: pp.1-17.[19] Ph. Lequeu, K.P. Smith,A. Danie´ lou, “Aluminum-Copper-Lithium Alloy 2050 Developed for Medium to Thick Plate”,Journal of Materials Engineering and Performance, Vol.19, 2009:pp.841-847.[20] X. Cerutti1, K. Mocellin, “Influence of the machining sequence onthe residual stress redistribution and machining quality: analysisand improvement using numerical simulations”, The InternationalJournal of Advanced Manufacturing Technology, DOI10.1007/s00170-015-7521-4, 2015: pp.1-15.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 無相關期刊

 1 輪胎壓痕之有限元素超彈性分析研究 2 橡膠輪胎胎塊之基本設計(理論與超彈性有限元素分析) 3 結構件之拓撲優化設計 4 假性狂犬病毒vhs蛋白之分子及生化分析 5 馬利人道危機與國際干預正當性之研究 6 利用SRAP分子標誌進行Brassica rapa與Brassica napus及其雜交後代的鑑別 7 應用 APP 定位系統於山難防治之研究 8 台灣行動資安技術發展與產業趨勢 9 豬正常及病變組織中明膠酶活性及前降血鈣素濃度之差異 10 大學研究成果中的專利權運用_以學校與企業互動為中心 11 歐盟、土耳其與俄羅斯三方關係研究 12 清代臺灣中部屯區沿山地帶開墾之研究 13 匯率選擇權之個案探討:以英鎊對紐幣之倍多息外幣掛鈎存款為例 14 大學圖書館員對MOOCs之認知與態度 15 旅遊虛擬社群參與者資訊分享及使用行為

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室