跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/17 06:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇芳琪
研究生(外文):Fang-Ci Su
論文名稱:無酵素葡萄糖感測器研發
論文名稱(外文):Development of Non-enzymatic Glucose Sensor
指導教授:王國禎
口試委員:張健忠林宜玲
口試日期:2016-06-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:49
中文關鍵詞:無酵素葡萄糖感測器黃光微影製程奈微米複合結構電極
外文關鍵詞:Non-enzymatic glucose sensorphotolithographynanoparticle gold deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出無酵素葡萄糖感測器,首先,以半導體黃光微影製程於6吋再生矽晶圓上製作規則排列之微米半球陣列結構,再於其上濺鍍一層金薄膜,最後,以溶膠凝膠方法製作奈米金顆粒,並均勻沉積於金薄膜表面,形成奈、微米複合結構之感測電極,進行電化學量測。由量測結果顯示此電極感測區域為平面結構之金電極的10.2倍,實際進行葡萄糖量測,此感測器可檢測葡萄糖濃度之線性範圍為55.6 µM到13.89 mM,靈敏度達749.2 µA·mM-1·cm-2,檢測極限為9 µM,顯示此無酵素葡萄感測器有極佳之檢測效能。此外;本感測器可有效檢測葡萄糖變化,精確度達±0.18 mg/dL,遠優於FDA規範之±20 mg/dL與ISO 15197規範之±15 mg/dL。本研究所提出之無酵素葡萄糖感測器有製程簡單、成本低廉、高靈敏度且無酵素活性降解之問題等優點,有極佳之商品化可行性。

This study proposes a non-enzymatic glucose sensor fabricated by utilizing photolithography commonly used in the semiconductor industry. First, an ordered array of microhemispherical features was formed on a 6-inch regenerated silicon wafer through photolithography. Next, a thin gold layer was sputtered onto the hemispheres and then gold nanoparticles were uniformly deposited via sol-gel to form a microstructural composite sensing electrode substrate for electrochemistry. It was observed from the results that the effective sensing area of the proposed glucose sensor was 10.2 times greater than a planar gold electrode. Further investigation revealed that the sensor’s linear detection range for glucose was from 55.6 µM to 13.89 mM, with a sensitivity of 749.2 µA·mM-1·cm-2 and a detection limit of 9 µM. In addition, the proposed sensor can also effectively detect changes in glucose levels to an accuracy of ±0.18 mg/dL; far greater than the FDA specification of ±20 mg/dL and ISO15197 specification of ±15 mg/dL. The simple and low-cost manufacturing combined with a high sensitivity, enzyme-free and excellent sensing performace indicates that the proposed non-enzymatic glucose sensor is commercially feasible.

目錄
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1糖尿病概述 3
2.1.1糖尿病類型 3
2.1.2糖尿病判定標準 4
2.2血糖檢測方式 5
2.3葡萄糖感測器之發展 6
2.3.1酵素葡萄糖生物感測器 7
2.3.2無酵素葡萄糖生物感測器 10
2.4葡萄糖生物感測器於抗干擾之方法 12
第三章 實驗材料與方法 14
3.1實驗藥品 14
3.2溶液配置 15
3.3實驗設備與分析儀器 16
3.4實驗原理 17
3.4.1黃光微影製程 18
3.4.2電化學分析法 22
3.5實驗方法與步驟 27
3.5.1矽基微米半球陣列結構晶片製備 27
3.5.2沉積奈米金顆粒 30
3.5.3抗干擾層建立 31
3.5.4電化學量測分析 31
第四章 實驗結果與討論 32
4.1無酵素葡萄糖感測電極 32
4.1.1微米結構製備結果 32
4.1.2奈米金顆粒沉積結果 32
4.1.3平面金電極與奈米金電極之探討 34
4.2奈米金電極偵測葡萄糖之電化學分析 35
4.2.1電子擴散速率 35
4.2.2葡萄糖濃度檢測 36
4.2.3葡萄糖與電流響應之關係 37
4.2.4偵測葡萄糖之操作電位的探討 38
4.2.5無酵素葡萄糖感測器之干擾物試驗 39
4.2.6探討奈米金電極的穩定性 40
第五章 結論與未來展望 43
參考文獻 45

圖目錄
圖2.1、葡萄糖氧化酵素電極偵測葡萄糖反應機制圖[5] 8
圖2.2、無酵素葡萄糖感測器之反應機制示意圖[23] 11
圖3.1、無酵素葡萄糖感測電極製作流程圖 18
圖3.2、板狀光阻結構之熱成型質量傳遞機制[36] 21
圖3.3、熱成型之光阻輪廓變化過程 21
圖3.4、光阻熱熔前與熱熔後體積示意圖 21
圖3.5、三電極系統配置圖 23
圖3.6、循環伏安法的電位變化示意圖[37] 24
圖3.7、典型的可逆氧化還原反應循環伏安圖。R為還原;O為氧化[38]。 24
圖3.8、計時安培法示意圖。(a)電位-時間之關係圖 (b)時間-濃度之關係圖 (c)電流-時間之關係圖[39] 26
圖3.9、黃光微影搭配熱熔法製作半球陣列晶片。(A)晶圓清洗及塗佈光阻;(B)本研究之光罩圖案;(C)黃光微影製程;(D)熱熔處理 27
圖3.10、(A)以黃光微影製作完成之 6 吋晶圓電極陣列(B)封裝示意圖 30
圖4.1、無酵素葡萄糖感測電極在不同製造階段之SEM圖。(A)微米半球陣列結構濺鍍金薄膜;(B)為(A)之放大圖;(C)溶膠凝膠法沉積奈米金顆粒;(D)為(C)之放大圖;(E)微米半球結構之剖面圖;(F)溶膠凝膠法所製作之奈米金顆粒 33
圖4.2、無酵素葡萄糖感測電極之EDS元素分析圖 34
圖4.3、表面積檢測結果。(A)電位與電流(E-I)之關係圖;(B)時間與電流(I-T)之關係圖 35
圖4.4、(A) 溶膠凝膠法無酵素葡萄糖感測器於不同掃速的CV圖;(B)溶膠凝膠法奈米金電極與平面金電極之Randles-Sevcik氧化曲線圖 36
圖4.5、溶膠凝膠法無酵素葡萄糖感測器(A)檢測不同葡萄糖濃度之CV圖;(B)峰值電流與濃度關係的校準曲線 37
圖4.6、溶膠凝膠法無酵素葡萄糖感測器(A)偵測葡萄糖的電流響應圖;(B)葡萄糖電流響應的校準曲線 38
圖4.7、溶膠凝膠法無酵素葡萄糖感測器於不同電位下之葡萄糖電流響應 39
圖4.8、溶膠凝膠法無酵素葡萄糖感測器之葡萄糖與干擾物的影響測試 40
圖4.9、溶膠凝膠法無酵素葡萄糖感測器測試電極的穩定性 41

表目錄
表4.1、基於奈米結構的溶膠凝膠法無酵素葡萄糖感測器之特性比較 42



[1]J. Kottmann, J. M. Rey, J. Luginbühl, E. Reichmann, and M. W. Sigrist, "Glucose sensing in human epidermis using mid-infrared photoacoustic detection," Biomedical optics express, vol. 3, pp. 667-680, 2012.
[2]S. Ramachandran, P. Fontanille, A. Pandey, and C. Larroche, "Gluconic acid: properties, applications and microbial production," Food Technology and Biotechnology, vol. 44, pp. 185-195, 2006.
[3]D. Keilin and E. Hartree, "Properties of glucose oxidase (notatin): Addendum. Sedimentation and diffusion of glucose oxidase (notatin)," Biochemical Journal, vol. 42, p. 221, 1948.
[4]L. C. Clark and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Annals of the New York Academy of sciences, vol. 102, pp. 29-45, 1962.
[5]K. E. Toghill and R. G. Compton, "Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation," Int J Electrochem Sci, vol. 5, pp. 1246-1301, 2010.
[6]J. Shen, L. Dudik, and C.-C. Liu, "An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor," Sensors and Actuators B: Chemical, vol. 125, pp. 106-113, 2007.
[7]J.-J. Xu, Z.-H. Yu, and H.-Y. Chen, "Glucose biosensors prepared by electropolymerization of p-chlorophenylamine with and without Nafion," Analytica Chimica Acta, vol. 463, pp. 239-247, 2002.
[8]M. Yuqing, C. Jianrong, and H. Yong, "Electrodeposited nonconducting polytyramine for the development of glucose biosensors," Analytical biochemistry, vol. 339, pp. 41-45, 2005.
[9]C. Deng, M. Li, Q. Xie, M. Liu, Y. Tan, X. Xu, and S. Yao, "New glucose biosensor based on a poly (o-phenylendiamine)/glucose oxidase-glutaraldehyde/Prussian blue/Au electrode with QCM monitoring of various electrode-surface modifications," Analytica chimica acta, vol. 557, pp. 85-94, 2006.
[10]C. J. Yuan, C. L. Hsu, S. C. Wang, and K. S. Chang, "Eliminating the interference of ascorbic acid and uric acid to the amperometric glucose biosensor by cation exchangers membrane and size exclusion membrane," Electroanalysis, vol. 17, pp. 2239-2245, 2005.
[11]M. Yang, Y. Yang, Y. Yang, G. Shen, and R. Yu, "Microbiosensor for acetylcholine and choline based on electropolymerization/sol–gel derived composite membrane," Analytica Chimica Acta, vol. 530, pp. 205-211, 2005.
[12]J. Wang, L. Fang, D. Lopez, and H. Tobias, "Highly selective and sensitive amperometric biosensing of glucose at ruthenium-dispersed carbon paste enzyme electrodes," Analytical letters, vol. 26, pp. 1819-1830, 1993.
[13]J. Wang, J. Liu, L. Chen, and F. Lu, "Highly selective membrane-free, mediator-free glucose biosensor," Analytical Chemistry, vol. 66, pp. 3600-3603, 1994.
[14]Z. Zhang, H. Liu, and J. Deng, "A glucose biosensor based on immobilization of glucose oxidase in electropolymerized o-aminophenol film on platinized glassy carbon electrode," Analytical chemistry, vol. 68, pp. 1632-1638, 1996.
[15]K. Derwinska, K. Miecznikowski, R. Koncki, P. J. Kulesza, S. Glab, and M. A. Malik, "Application of Prussian blue based composite film with functionalized organic polymer to construction of enzymatic glucose biosensor," Electroanalysis, vol. 15, pp. 1843-1849, 2003.
[16]T. Li, Z. Yao, and L. Ding, "Development of an amperometric biosensor based on glucose oxidase immobilized through silica sol–gel film onto Prussian Blue modified electrode," Sensors and Actuators B: Chemical, vol. 101, pp. 155-160, 2004.
[17]W. Zhao, J.-J. Xu, C.-G. Shi, and H.-Y. Chen, "Multilayer membranes via layer-by-layer deposition of organic polymer protected Prussian blue nanoparticles and glucose oxidase for glucose biosensing," Langmuir, vol. 21, pp. 9630-9634, 2005.
[18]M. Ferreira, P. A. Fiorito, O. N. Oliveira, and S. I. C. de Torresi, "Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique," Biosensors and Bioelectronics, vol. 19, pp. 1611-1615, 2004.
[19]M. Zayats, E. Katz, and I. Willner, "Electrical contacting of glucose oxidase by surface-reconstitution of the apo-protein on a relay-boronic acid-FAD cofactor monolayer," Journal of the American Chemical Society, vol. 124, pp. 2120-2121, 2002.
[20]S. Park, T. D. Chung, and H. C. Kim, "Nonenzymatic glucose detection using mesoporous platinum," Analytical chemistry, vol. 75, pp. 3046-3049, 2003.
[21]Y. Bai, W. Yang, Y. Sun, and C. Sun, "Enzyme-free glucose sensor based on a three-dimensional gold film electrode," Sensors and Actuators B: Chemical, vol. 134, pp. 471-476, 2008.
[22]L. Kang, D. He, L. Bie, and P. Jiang, "Nanoporous cobalt oxide nanowires for non-enzymatic electrochemical glucose detection," Sensors and Actuators B: Chemical, vol. 220, pp. 888-894, 2015.
[23]R. Prehn, M. Cortina-Puig, and F. X. Muñoz, "A non-enzymatic glucose sensor based on the use of gold micropillar array electrodes," Journal of The Electrochemical Society, vol. 159, pp. F134-F139, 2012.
[24]R. Subbiah, M. Veerapandian, and K. S Yun, "Nanoparticles: functionalization and multifunctional applications in biomedical sciences," Current medicinal chemistry, vol. 17, pp. 4559-4577, 2010.
[25]G. Cao and D. Liu, "Template-based synthesis of nanorod, nanowire, and nanotube arrays," Advances in colloid and interface science, vol. 136, pp. 45-64, 2008.
[26]G.-J. Wang and H.-T. Chen, "Fabrication of 3D nano-structured ITO films by RF magnetron sputtering," Current Nanoscience, vol. 5, pp. 297-301, 2009.
[27]Y. Li, N. Koshizaki, and W. Cai, "Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices," Coordination Chemistry Reviews, vol. 255, pp. 357-373, 2011.
[28]D. Feng, F. Wang, and Z. Chen, "Electrochemical glucose sensor based on one-step construction of gold nanoparticle–chitosan composite film," Sensors and Actuators B: Chemical, vol. 138, pp. 539-544, 2009.
[29]F. Xu, K. Cui, Y. Sun, C. Guo, Z. Liu, Y. Zhang, Y. Shi, and Z. Li, "Facile synthesis of urchin-like gold submicrostructures for nonenzymatic glucose sensing," Talanta, vol. 82, pp. 1845-1852, 2010.
[30]M. Fleischmann, K. Korinek, and D. Pletcher, "The oxidation of organic compounds at a nickel anode in alkaline solution," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 31, pp. 39-49, 1971.
[31]C. Zhao, C. Shao, M. Li, and K. Jiao, "Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode," Talanta, vol. 71, pp. 1769-1773, 2007.
[32]H. Cao, A. Yang, H. Li, L. Wang, S. Li, J. Kong, X. Bao, and R. Yang, "A non-enzymatic glucose sensing based on hollow cuprous oxide nanospheres in a Nafion matrix," Sensors and Actuators B: Chemical, vol. 214, pp. 169-173, 2015.
[33]C. Anjalidevi, V. Dharuman, and J. S. Narayanan, "Non enzymatic hydrogen peroxide detection at ruthenium oxide–gold nano particle–Nafion modified electrode," Sensors and Actuators B: Chemical, vol. 182, pp. 256-263, 2013.
[34]J. Huang, Z. Dong, Y. Li, J. Li, J. Wang, H. Yang, S. Li, S. Guo, J. Jin, and R. Li, "High performance non-enzymatic glucose biosensor based on copper nanowires–carbon nanotubes hybrid for intracellular glucose study," Sensors and Actuators B: Chemical, vol. 182, pp. 618-624, 2013.
[35]X. Wang, E. Liu, and X. Zhang, "Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution," Electrochimica Acta, vol. 130, pp. 253-260, 2014.
[36]H. Yang, C.-K. Chao, M.-K. Wei, and C.-P. Lin, "High fill-factor microlens array mold insert fabrication using a thermal reflow process," Journal of micromechanics and microengineering, vol. 14, p. 1197, 2004.
[37]J. Wang, Analytical electrochemistry: John Wiley & Sons, 2006.
[38]D. A. Skoog and D. M. West, Principles of instrumental analysis vol. 158: Saunders College Philadelphia, 1980.
[39]D. Aikens, "Electrochemical methods, fundamentals and applications," Journal of Chemical Education, vol. 60, p. A25, 1983.
[40]H. Qiu, L. Xue, G. Ji, G. Zhou, X. Huang, Y. Qu, and P. Gao, "Enzyme-modified nanoporous gold-based electrochemical biosensors," Biosensors and Bioelectronics, vol. 24, pp. 3014-3018, 2009.
[41]E. Seker, M. L. Reed, and M. R. Begley, "Nanoporous gold: fabrication, characterization, and applications," Materials, vol. 2, pp. 2188-2215, 2009.
[42]J. Li, Z. Wang, P. Li, N. Zong, and F. Li, "A sensitive non-enzyme sensing platform for glucose based on boronic acid–diol binding," Sensors and Actuators B: Chemical, vol. 161, pp. 832-837, 2012.
[43]L. Chen, X. Lang, T. Fujita, and M. Chen, "Nanoporous gold for enzyme-free electrochemical glucose sensors," Scripta Materialia, vol. 65, pp. 17-20, 2011.
[44]H. Shu, L. Cao, G. Chang, H. He, Y. Zhang, and Y. He, "Direct electrodeposition of gold nanostructures onto glassy carbon electrodes for non-enzymatic detection of glucose," Electrochimica Acta, vol. 132, pp. 524-532, 2014.
[45]S. Cherevko and C.-H. Chung, "Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection," Sensors and Actuators B: Chemical, vol. 142, pp. 216-223, 2009.
[46]C. Shen, J. Su, X. Li, J. Luo, and M. Yang, "Electrochemical sensing platform based on Pd–Au bimetallic cluster for non-enzymatic detection of glucose," Sensors and Actuators B: Chemical, vol. 209, pp. 695-700, 2015.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top