跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 22:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馮姿貌
研究生(外文):Tzu-Mao Feng
論文名稱:雷射相移干涉術於表面輪廓還原之研究
論文名稱(外文):A Study of Laser Phase Shift Interferometry for the Surface Profile Restoration
指導教授:陳政雄陳政雄引用關係
口試委員:盧銘詮高永洲蔡明義
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:相移干涉術雷射輪廓還原
外文關鍵詞:Phase shiftinglaserprofile restoration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
相移干涉術還原表面輪廓是一個常見的量測技術,其中的隨機相位干涉術能夠克服環境震動的影響,適合在工廠上進行量測,常搭配的光源為LED光,因LED光同調性低不會產生光斑(Speckle),能有效還原表面粗糙度,但所能量測的範圍只能在幾個微米,若要提升量測範圍則必須將光源改為同調性高的雷射光,然而同調性高的雷射光容易產生光斑而影響表面的還原。
為了改善光斑影響輪廓的還原,因此以Matlab影像處理的方式,使用擴展對比度、更改相位解纏順序以及三種不同的濾波器進行光斑對於輪廓還原不佳的改善測試。
在均勻的雷射背景光線與高CCD的畫素下進行實驗,使用不同深度的凹槽試片與鋼球進行表面輪廓還原之研究,結果為均值濾波器擁有較佳的結果。
研究結果為量測KNT 2060/01試片的R2凹槽,布滿3-5條的干涉條紋圖使用均值濾波後去執行還原結果能有90%的還原效果,而同樣的方法量測鋼球也讓Laser光源原本只能還原到5000nm提升到與LED相近的還原效果5500nm,但以整個還原的輪廓與實際的輪廓相較來說,雷射相移干涉術的還原效果仍然沒有LED光源來的好,主因是數位影像處理的方式仍然無法完全的消除光斑,因此若是能在光學架構中做改善,直接的消除光斑應該會擁有較好的還原結果。


Phase shifting interferometry is a common measurement technique to reduce the surface profile. The random phase interferometry can overcome the environmental vibration and suit for measurements on the factory. It often completely reconstructs surface with the LED light, because of low coherence can’t exist speckles. But the range of the LED light source measuring depth only a few micrometers. If you want to enhance the measurement range, you must be replaced with laser but incompletely restore profile caused by speckles.
In order to improve the impact on the contour of reconstruction, using image processing with Matlab to test the contrast stretching, the order of phase unwrapping and filters for improving the results of contour.
Experiments carried out at a uniform background laser light and the high pixels CCD, measuring different grooves and steel ball to rebuild surface, the best way to improve results of reduction is mean filter.
After the experiments, A frame is full of three to five fringes with mean filter will achieve reduction result of 90%, and then steel ball reconstruct the depth of surface to 5000nm by laser light and 5500nm the same as the reduction of LED by the improved method. But for entire contour, The LED is better than the laser to measure the surface profile, the main reason is using image processing can’t entirely eliminate speckles. Therefore, if you attempt to improve the optical architecture, the direct elimination of speckles should have a better result.


目錄
中文摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 - 1 -
1.1 前言 - 1 -
1.2 研究動機 - 1 -
1.3 研究之進步性與目標 - 2 -
1.4 論文架構 - 2 -
第二章 文獻回顧 - 4 -
2.1 相位取出 - 4 -
2.2 隨機相位移演算法 - 10 -
2.3 誤差的原因與改善方法 - 12 -
第三章 數位干涉顯微鏡理論基礎 - 17 -
3.1 數位干涉顯微鏡系統 - 17 -
3.2 基本干涉原理 - 18 -
3.3 相移干涉術 - 20 -
3.4 各式等間距相位移演算法 - 21 -
3.4.1 三步相位移法 - 22 -
3.4.2 四步相位移法 - 23 -
3.4.3 Carre''演算法 - 23 -
3.4.4 五步相移演算法 - 24 -
3.5 隨機相位移演算法【15】 - 24 -
3.6 相位展開 - 29 -
第四章 系統規格與元件設計 - 32 -
4.1 本實驗之顯微鏡系統 - 32 -
4.2.1 顯微鏡之規格 - 34 -
4.2.2 照明光源 - 37 -
4.2.3 CCD - 42 -
4.2PI 位移平台 - 44 -
4.3 實驗系統架構 - 44 -
第五章 雷射光源量測物體表面還原測試與結果 - 46 -
5.1 雷射光之干涉圖 - 46 -
5.2 輪廓還原 - 50 -
5.3 影響輪廓還原的因素 - 54 -
5.3.1 光斑的影響 - 54 -
5.3.2 干涉條紋寬度的影響 57
5.3.3 解纏的影響 58
5.4 雷射光源還原表面輪廓之改善 59
5.4.1 調整pixel光強與CCD截取的像素大小 59
5.4.2 相位展開之順序 60
5.4.3 濾波器濾雜訊 67
5.5 使用鋼球量測作改善之驗證 74
5.5.1紅光LED量測鋼球並還原 75
5.5.2 紅光Laser量測鋼球並還原 77
5.6 紅光LED與紅光Laser高深度量測實驗 83
第六章 結論與未來展望 90
6.1 研究結論 90
6.2 未來展望 91
參考文獻 92



【1】J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio "Digital wavefront measuring interferometer for testing optical surfaces and lenses." Applied optics 13.11 (1974): 2693-2703.
【2】Ichirou Yamaguchi and Tong Zhang "Phase-shifting digital holography."Optics letters 22.16 (1997): 1268-1270.
【3】Tong Zhang and Ichirou Yamaguchi "Three-dimensional microscopy with phase-shifting digital holography." Optics letters 23.15 (1998): 1221-1223.
【4】Ichirou Yamaguchi, Jun-ichi Kato, Sohgo Ohta, and Jun Mizuno "Image formation in phase-shifting digital holography and applications to microscopy." Applied Optics 40.34 (2001): 6177-6186.
【5】Ichirou Yamaguchi, Takashi Ida, Masayuki Yokota, and Kouji Yamashita "Surface shape measurement by phase-shifting digital holography with a wavelength shift." Applied optics 45.29 (2006): 7610-7616.
【6】C. Quan, S.H. Wang, C.J. Tay "Nanoscale surface deformation inspection using FFT and phase-shifting combined interferometry." Precision engineering 30.1 (2006): 23-31.
【7】Chuen-Lin Tien, Huei-Min Yang, and Ming-Chung Liu. "The measurement of surface roughness of optical thin films based on fast Fourier transform." Thin Solid Films 517.17 (2009): 5110-5115.
【8】U. Paul Kumar, Basanta Bhaduri, M.P. Kothiyal, N. Krishna Mohan "Two-wavelength micro-interferometry for 3-D surface profiling." Optics and Lasers in Engineering 47.2 (2009): 223-229.
【9】Jiancheng Xu, Yong Li, Hui Wang, Liqun Chai, and Qiao Xu. "Phase-shift extraction for phase-shifting interferometry by histogram of phase difference." Optics express 18.23 (2010): 24368-24378.
【10】Vargas, Javier, J. Antonio Quiroga, and T. Belenguer. "Phase-shifting interferometry based on principal component analysis." Optics letters 36.8 (2011): 1326-1328.
【11】Chuen-Lin Tien, Kuo-Chang Yu, Tsung-Yo Tsai, Chern-Sheng Lin, and Chi-Yuan Li "Measurement of surface roughness of thin films by a hybrid interference microscope with different phase algorithms." Applied optics 53.29 (2014): H213-H219.
【12】Morgan, C. J. "Least-squares estimation in phase-measurement interferometry." Optics Letters 7.8 (1982): 368-370.
【13】Kong, In-Bok, and Seung-Woo Kim. "General algorithm of phase-shifting interferometry by iterative least-squares fitting." Optical Engineering 34.1 (1995): 183-188.
【14】Kong, In-Bok, and Seung-Woo Kim. "Portable inspection of precision surfaces by phase-shifting interferometry with automatic suppression of phase-shift errors." Optical Engineering 34.5 (1995): 1400-1404.
【15】Wang, Zhaoyang, and Bongtae Han. "Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms." Optics letters 29.14 (2004): 1671-1673.
【16】X. F. Xu, L. Z. Cai, Y. R. Wang, X. F. Meng, W. J. Sun, H. Zhang, X. C. Cheng, G. Y. Dong, and X. X. Shen. "Simple direct extraction of unknown phase shift and wavefront reconstruction in generalized phase-shifting interferometry: algorithm and experiments." Optics letters 33.8 (2008): 776-778.
【17】Jiancheng Xu, Weimin Jin, Liqun Chai, and Qiao Xu "Phase extraction from randomly phase-shifted interferograms by combining principal component analysis and least squares method." Optics express 19.21 (2011): 20483-20492.
【18】Min-Sik Jo, and Moon-Su Oh. "Data Averaging Effect on Roughness Measurement using Phase-Shifting Interferometry for a Few-Ten-Angstrom and Sub-Angstrom Rough Surfaces." Japanese Journal of Applied Physics 40.7R (2001): 4736.
【19】Sivakumar, N. R., Hui, W. K., Venkatakrishnan, K., & Ngoi, B. K. A. "Large surface profile measurement with instantaneous phase-shifting interferometry." Optical Engineering 42.2 (2003): 367-372.
【20】Rhee, H. G., Vorburger, T. V., Lee, J. W., & Fu, J. "Discrepancies between roughness measurements obtained with phase-shifting and white-light interferometry." Applied optics 44.28 (2005): 5919-5927.
【21】Dhanasekar, B., and B. Ramamoorthy. "Digital speckle interferometry for assessment of surface roughness." Optics and Lasers in Engineering 46.3 (2008): 272-280.
【22】Liang-Chia Chena, Sheng-Lih Yehb, Abraham Mario Tapilouwa, Jui-Chin Changa "3-D surface profilometry using simultaneous phase-shifting interferometry." Optics Communications 283.18 (2010): 3376-3382.
【23】Wiesner, Bernhard, Ondrej Hybl, and Gerd Häusler. "Improved white-light interferometry on rough surfaces by statistically independent speckle patterns."Applied optics 51.6 (2012): 751-757.
【24】Creath, Katherine. "V phase-measurement interferometry techniques." Progress in optics 26 (1988): 349-393.
【25】Cheng, Yeou-Yen, and James C. Wyant. "Two-wavelength phase shifting interferometry." Applied optics 23.24 (1984): 4539-4543.
【26】Carré, P. "Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures." Metrologia 2.1 (1966): 13.
【27】Hariharan, P. "Digital phase-stepping interferometry: effects of multiply reflected beams." Applied optics 26.13 (1987): 2506-2507.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top