跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/14 19:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:沈暐鈞
研究生(外文):Wei-Chun Shen
論文名稱:聚口比咯/石墨烯複合物之微型低濃度氨氣感測器
論文名稱(外文):Low concentration ammonia micro sensor with polypyrrole coated graphene
指導教授:戴慶良
口試委員:施文彬施博仁張以全蔡燿全
口試日期:2016-07-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:84
中文關鍵詞:氨氣氣體感測器低濃度聚口比咯石墨烯CMOS-MEMS
外文關鍵詞:ammoniagas sensorlow concentrationCMOS-MEMSpolypyrrolegraphene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究利用台灣積體電路製造公司的0.18 μm CMOS-MEMS標準製程技術進行設計和製作微型氨氣氣體感測晶片,並使用化學氧化還原法製作聚口比咯/石墨烯複合材料作為感測薄膜,及使用不同劑量的口比咯單體進行不同長度的還原時間,製作出不同複合/還原程度的聚口比咯/石墨烯複合材料,對所製備的材料分別利用元素分析儀、場發射掃描式電子顯微鏡、化學分析電子能譜儀和高解析X光繞射儀進行材料分析與檢測。晶片經過蝕刻、滴覆薄膜、銲線等後製程之後,利用電阻式的感測方法,即可在常溫下檢測低濃度的氨氣。感測電路則是自製電路板,在將SMD電阻、SMD放大器與氣體感測區域晶片銲接或黏貼,並進行打線使晶片與電路板做連結,完成微型氨氣感測器之製作。
  經過研究比較發現,使用2 ml口比咯單體與進行還原時間4小時所製作出的聚口比咯/石墨烯複合材料(PPy/RGO-8)作為感測薄膜,對氨氣的感測性能最佳,因此本研究最終選用PPy/RGO-8作為感測薄膜,製作低濃度微型氨氣感測器。量測的結果顯示,此感測器對0.1 ppm之氨氣具有1.83 %的電阻反應性與為16 mV的輸出電壓變化量,並表現出良好的可重複性和選擇性。此外本研究所述之感測器具有體積小、低成本、低功耗且易於製造等優點。


  This study presents a micro NH3 sensor. An NH3 sensing chip with a thermometer is fabricated through the commercial 0.18 μm CMOS-MEMS process of TSMC (Taiwan Semiconductor Manufacturing Company). Chemically reduced graphene oxide, polypyrrole coated graphene (PPy/RGO), is prepared by the oxidation-reduction method. We use different reductant dosage and reducing time to prepare different PPy/RGO. All sensing films are characterized by elemental analyzer (EA), field emission scanning electron microscope (FE-SEM), electron spectroscope for chemical analysis (ESCA) and high resolution X-ray diffraction (HR-XRD). In order to obtain the best sensing film, we compare their gas sensing properties. The sensing circuit board is made by photolithography. The SMD resistor and amplifier are bonded on the sensing circuit board. The sensing chip is attached on the sensing circuit board, and connected to each other by wire bonding.
  The results reveal that PPy/RGO-8 is the best ammonia sensitive film. Therefore, this study adopts PPy/RGO-8 as the sensing film. PPy/RGO-8 sensing film is coated on the sensing electrodes of the sensing chip. The micro NH3 gas sensor can detect low concentration NH3 gas at room temperature. The sensing mechanism of the gas sensor is chemoresistor. The measurement results show that the NH3 gas sensor has a response of 1.83 % and 16 mV with the NH3 concentration of 0.1 ppm. The sensor has a good repeatability and selectivity to NH3. The sensor has the benefits of small size, low cost, low power consumption and easy fabrication.


中文摘要 i
Abstract ii
目錄 iii
表目錄 iv
圖目錄 v
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機 7
第二章 微型氨氣感測器之設計 8
2.1 氣體感測區域的設計與模擬 9
2.1.1 感測電極的設計 9
2.1.2 溫度計的設計 11
2.2 電路區域的設計及模擬 12
第三章 聚口比咯/石墨烯薄膜感測氨氣之介紹與原理 14
3.1 導電高分子材料-聚口比咯簡介 14
3.2 碳家族成員-石墨烯簡介 17
3.3 聚口比咯/石墨烯複合材料簡介與制備方法 20
3.4 聚口比咯/石墨烯複合材料與氨氣之吸附機制 21
3.4.1 半導體薄膜感測氣體機制 21
3.4.2 聚口比咯與石墨烯感測氨氣之機制 22
第四章 氣體感測器之製作 24
4.1 微型氨氣感測器製程 24
4.2 感測薄膜制備方法 29
4.2.1 製備聚口比咯/石墨烯複合材料 30
4.2.2 利用不同的製程參數製備 36
第五章 實驗結果 37
5.1 量測架構 37
5.2 晶片內溫度計之量測結果 39
5.3 低濃度氨氣感測器之性能量測 39
5.3.1 不同參數薄膜材料分析結果及氨氣感測性 41
5.3.2 微型低濃度氨氣感測器之氨氣感測性 63
第六章 結論與未來展望 68
附錄A 自組裝聚口比咯/石墨烯複合材料微型氨氣感測器 69
參考文獻 81


[1] 中華民國行政院衛生福利部統計處, “103年死因統計結果分析,” 2015.
[2] C. P. Wen, T. Y. Cheng, M. K. Tsai, Y. C. Chang, H. T. Chan, S. P. Tsai, P. H. Chiang and C. C. Hsu, "All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan," The Lancet, vol. 371, p. 2173–2182, 2008.
[3] 中華民國行政院衛生福利部中央健康保險署, "2014年國人全民健康保險就醫疾病資訊," 2015.
[4] 陳新德, 腎的迷惘, 中華民國腎臟基金會, 2008.
[5] M. Righettoni, A. Amann and S. E. Pratsinis, "Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors," Materials Today, vol. 18, pp. 163-171, 2015.
[6] L. Pauling, A. B. Robinson, R. Teranishi and P. Cary, "Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography," Proceedings of the National Academy of Sciences, vol. 68, pp. 2374-2376, 1971.
[7] C. Wang and P. Sahay, "Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits," Sensors, vol. 9, pp. 8230-8262, 2009.
[8] C. Turner, P. Španěl and D. Smith, "A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS," Physiological Measurement, vol. 27, p. 321, 2006.
[9] S. Davies, P. Spanel and D. Smith, "Quantitative analysis of ammonia on the breath of patients in end-stage renal failure," Kidney International, vol. 52, pp. 223-228, 1997.
[10] M. Norman, C. Spirig, V. Wolff, I. Trebs, C. Flechard, A. Wisthaler, R. Schnitzhofer, A. Hansel and A. Neftel, "Intercomparison of ammonia measurement techniques at an intensively managed grassland site (Oensingen, Switzerland)," Atmospheric Chemistry and Physics, pp. 2635-2645, 2009.
[11] L. R. Narasimhan, W. Goodman and C. K. N. Patel, "Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis," Proceedings of the National Academy of Sciences, vol. 98, pp. 4617-4621, 2001.
[12] T. Hibbard and A. J. Killard, "Breath ammonia analysis: Clinical application and measurement," Critical Reviews in Analytical Chemistry, vol. 41, pp. 21-35, 2011.
[13] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene," Nature Materials, vol. 6, pp. 652-655, 2007.
[14] G. Z. Xie, M. J. Zjao, Y. D. Jiang and H. L. Tai, "Polypyrrole film fabrication with NH3 gas sensing properties," Journal of University of Electronic Science and Technology, vol. 37, pp. 231-235, 2008.
[15] S. Abhay and S. Ramphal, "Copper sulphide (CuxS) doped zirconia thin films as an ammonia gas sensor working at room temperature," Sensors and Actuators, B: Chemical, vol. 133, pp. 135-143, 2008.
[16] P. Elumalai, V. V. Plashnitsa, Y. Fujio and N. Miura, "High temperature mixed-potential-type ammonia sensor using stabilized zirconia and oxide-based sensing electrode," ECS Transactions, vol. 16, pp. 247-255, 2008.
[17] J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner and B. H. Weiller, "Practical chemical sensors from chemically derived graphene," ACS Nano, vol. 3, pp. 301-306, 2009.
[18] N. V. Hieu, N. Q. Dung, P. D. Tam, T. Trung and N. D. Chien, "Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room temperature," Sensors and Actuators B: Chemical, vol. 140, pp. 500-507, 2009.
[19] Y .Wang, Q. Mu, G. Wang and Z. Zhou, "Sensing characterization to NH3 of nanocrystalline Sb-doped SnO2 synthesized by a nonaqueous sol–gel route," Sensors and Actuators B: Chemical, vol. 145, pp. 847-853, 2010.
[20] P. Gouma, K. Kalyanasundaram, X. Yun, M. Stanacevic and L. Wang, "Nanosensor and breath analyzer for ammonia detection in exhaled human breath," IEEE Sensors Journal (Volume:10 , Issue: 1 ), vol. 10, pp. 49-53, 2010.
[21] R. Mangu, S. Rajaputra, P. Clore, D. Qian, R. Andrews and V. P. Sing, "Ammonia sensing properties of multiwalled carbon nanotubes embedded in porous alumina templates," Materials Science and Engineering: B, vol. 174, pp. 2-8, 2010.
[22] C. Y. Lin, S. L. Ho, C. P. Chang, W. C. Cheng and M. D. Ger, "Preparation of multi-layer film-based graphene/polymer gas sensors," Journal of Chung Cheng Institute of Technology, vol. 40, pp. 105-112, 2011.
[23] Z. M. Wang, X. C. Tang Xin-Cun, Y. H. Xiao, X. J. Yu, L. Zhang, D. Z. Jia and G. C. Chen, "Polypyrrole coated carbon nanotubes: preparation, characterization, and gas-sensing properties," Journal of Inorganic Materials, vol. 26, pp. 961-968, 2011.
[24] V. Modafferi, G. Panzera, A. Donato, P. L. Antonucci, C. Cannilla, N. Donato, D. Spadaro and G. Neri, "Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers," Sensors and Actuators B: Chemical, vol. 163, pp. 61-68, 2012.
[25] T. Patois, J. B. Sanchez, F. Berger, J. Y. Rauch, P. Fievet and B. Lakard, "Ammonia gas sensors based on polypyrrole films: Influence of electrodeposition parameters," Sensors and Actuators B: Chemical, Vols. 171-172, pp. 431-439, 2012.
[26] D. Rathore, R. Kurchania and R. K. Pandey, "Fabrication of Ni1−xZnxFe2O4 (x = 0, 0.5 and 1) nanoparticles gas sensor for some reducing gases," Sensors and Actuators A: Physical, vol. 199, pp. 236-240, 2013.
[27] R. Ghosh, A. Singh, S. Santra, S. K. Ray, A. Chandra and P. K. Guha, "Highly sensitive large-area multi-layered graphene-based flexible ammonia sensor," Sensors and Actuators B: Chemical, vol. 205, pp. 67-73, 2014.
[28] D. C. Tiwari, P. Atri and R. Sharma, "Sensitive detection of ammonia by reduced graphene oxide/polypyrrole nanocomposites," Synthetic Metals, vol. 203, pp. 228-234, 2015.
[29] Z. L. Mo and Q. Gao, "Synthesis and conductivity of graphene/polypyrrole composites via in‐situ polymerization under ultrasonic," Journal of Northwest Normal University, vol. 48, pp. 45-50, 2012.
[30] S. Wu, Q. Lin, Y. Yuen and Y. C. Tai, "MEMS flow sensors for nano-fluidic applications," Sensors and Actuators B, vol. 89, pp. 152-158, 2001.
[31] W. T. Chang and Y. Liang, "Geometric design of microbolometers made from CMOS polycrystalline silicon," IEEE Sensors Journal, vol. 15, pp. 264-268, 2015.
[32] 曹恆偉, 林浩雄, 郭建宏, 陳建中, 微電子電路(上), 台北圖書有限公司, 2004.
[33] 莊達人, VLSI製造技術, 高立圖書, 2013.
[34] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. MacDiarmid, "Electrical conductivity in doped polyacetylene," Physical Review Letters, vol. 39, pp. 17-24, 1977.
[35] R. N. McDonald and T. W. Campbell, "The wittig reaction as a polymerization method," Journal of the American Chemical Society, vol. 82, pp. 4669-4671, 1960.
[36] A. J. Heeger and T. A. Skotheim, Handbook of Conducting Polymers, 2 ed., Marcel Dekker, 1986.
[37] S. P. Armes, "Optimum reaction conditions for the polymerization of pyrrole by iron(III) chloride in aqueous solution," Synthetic Metals, vol. 20, pp. 365-371, 1987.
[38] E. M. Genies, A. F. Diaz and G. Bidan, "Electrochemical spectroelectrochemical studies of polypyrrole films," Journal of Electroanalytical Chemistry, vol. 149, pp. 987-989, 1983.
[39] H. O. Pierson, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications, Noyes Publications, 1993.
[40] H. W. Kroto, J. R. Heath, S. C. O''Brien, R. F. Curl and R. E. Smalley, "C60: Buckminsterfullerene," Nature, vol. 318, pp. 162-163, 1985.
[41] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[42] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
[43] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
[44] 孫紅娟, 彭同江, 石墨氧化:還原法製備石墨烯材料, 科學出版社, 2015.
[45] W.S. Hummers and R.E. Offeman, "Preparation of Graphitic Oxide," Journal of the American Chemical Society, vol. 80, p. 1339, 1958.
[46] C. A. Amarnath, C. E. Hong, N. H. Kim, B. C. Ku, T. Kuila and J. H. Lee, "Efficient synthesis of graphene sheets using pyrrole as a reducing agent," Carbon, vol. 49, pp. 3497-3502, 2011.
[47] S. M. Sze, Semiconductor Sensors, Wiley-Interscience, 1994.
[48] G. Gustafsson, I. Lundström, B. Liedberg, C.R. Wu and O. Inganäs, "The interaction between ammonia and poly(pyrrole)," Synthetic Metals, vol. 31, pp. 163-179, 1989.
[49] A. W. Adamson, Physical chemistry of surfaces, 6th ed., Wiley, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊