(3.236.100.86) 您好!臺灣時間:2021/05/07 09:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李昱霆
研究生(外文):Yu-Ting Lee
論文名稱:應用聲音及聲射訊號於雷射搭接焊接之焊件品質偵測研究
論文名稱(外文):Study of Sound and Acoustic Emission Signals for Quality Monitoring in Laser Lap Micro Welding
指導教授:盧銘詮
口試委員:陳天青鍾官榮吳天堯
口試日期:2015-06-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:98
中文關鍵詞:雷射微焊接品質監測聲音訊號聲射訊號隱藏式馬可夫模型
外文關鍵詞:Laser Micro WeldingQuality MonitoringSound SignalAcoustic EmissionHidden Markov Model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
光纖雷射焊接於製造上之應用逐漸升高,但加工時因系統不穩定與材料之變異將影響焊接品質,故建立雷射焊接即時品質偵測系統為很重要的議題。
本論文致力於應用聲音及聲射訊號搭配隱藏式馬可夫模型建立雷射焊接品質監測系統,焊接方式為搭接微焊接。聲音感測裝置使用微機電形式(MEMS)聲音感測器,聲射感測器則採用Kistler聲射感測器。實驗過程聲音感測器安裝於焊接點附近,驗證此聲音感測器應用於偵測焊接狀態之可行性。另一方面,兩組聲射感測器則分別架設於夾具上與焊件上,驗證夾具上之聲射感測器之訊號於偵測焊接品質之可行性,並且比較不同架設位置之聲射感測器間訊號差異以及辨識系統效能之影響。在系統發展方面,馬可夫模型之參數設定挑選不同觀察序列組合與模型參數並探討參數改變對於辨識系統效能之影響。
實驗結果顯示,微機電形式麥克風之聲音訊號能有效用於建立焊接品質偵測系統,也可觀察到理想焊接與熔深不足對應之聲音頻域特徵訊號在高頻區域有較高離散指標值。以第二與第三微焊點對應之聲音訊號特徵序列所建立之模型中,當頻帶寬度之設定為1kHz時系統有最佳之辨識效果,且當固定頻帶寬度時增加觀察序列數量有助於提升模型之辨識能力。
夾具與焊件聲射訊號分析中,在對應理想焊接與熔深不足之聲射訊號可觀察到能量上之差異,但因夾具與焊件上聲射訊號能量之變異,由聲射訊號建立之品質偵測系統並無法有效地辨識製造過程之焊接品質。


The demand of applying the fiber laser to the micro welding in manufacturing continuously increases lately. However, the variation of laser power and material characteristics sometimes lower the welding quality. To keep the welding quality in the high level, the development of quality monitoring in laser micro welding draw much attention in industry.
This thesis focuses on the study of the development of quality monitoring system for laser micro welding based on the audible sound and acoustic emission signals integrated with HMM classification model. The lap micro welding is conducted to collect signals in this study. To investigate the capability of audible sound and acoustic emission (AE) signals in the quality monitoring in micro laser welding, a MEMS microphone was installed closed to the welding point, and two Kistler AE sensors were installed on the workpiece and fixture, respectively, in experiments. In developing analyzing the monitoring system, Hidden Markov Model (HMM) was adopted as classifier with various observation sequence and variables.
The results show that the audible sound demonstrates the capability of identifying the low penetration in micro laser welding and the valuable frequency domain features locate at the high frequency range were observed. Based on the system developed with the sound signals referring to the second and third welding point, features with 1kHz bandwidth provides a better classification rate. Moreover, the increase of observation sequence is also verified to improve the classification rate.
In the analysis of the AE signals obtained from the fixture and workpiece, the difference of the signals referring to the ideal and low-penetration welding can be observed. However, due to the variation of energy level for both signals in various cases, the quality monitoring system developed based on both AE signals can not identify the welding quality correctly.


誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xii
第一章、緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 應用聲音訊號偵測焊接品質 2
1.2.2 應用聲射訊號偵測焊接品質 3
1.2.3 應用多重感測器偵測焊接品質 4
1.3 研究目的及項目 5
1.4 本文架構 5
第二章、研究方法與基本理論 6
2.1 雷射焊接模式及接合方式介紹 6
2.2 訊號轉換 7
2.2.1 傅立葉轉換(Fourier Transform) 7
2.2.1.1 短時傅立葉轉換(Short Time Fourier Transform) 8
2.2.1.2 離散傅立葉轉換(Discrete Fourier Transform) 8
2.3 群組分離法則 10
2.4 隱藏式馬可夫模型(Hidden Markov Model,HMM) 12
2.4.1 隱藏式馬可夫模型之機率計算 14
2.4.2 正算-逆算程序(Forward-Backward Procedure) 15
2.4.2.1 正算程序 15
2.4.2.2 逆算程序 16
2.4.3 波式演算法(Baum-Welch algorithm) 17
2.4.4 維特比演算法(Viterbi algorithm) 18
2.5 雷射焊接焊件品質偵測系統設計 20
第三章、搭接焊接品質偵測實驗設計 23
3.1 雷射機台與焊件材料 23
3.2 感測器與資料擷取系統 23
3.3 夾具設計與感測器安裝 24
3.4 品質評斷試驗 26
3.4.1 剝離試驗 26
3.4.2 金相試驗 27
3.5 實驗規劃 28
第四章、雷射焊接之聲音訊號分析 29
4.1 雷射焊接品質與聲音訊號之關聯性分析 29
4.1.1 聲音時域訊號分析 34
4.1.2 聲音頻域與時頻訊號分析 35
4.2 隱藏式馬可夫模型辨識系統開發與驗證 39
4.2.1 第二與第三微焊點訊號特徵之辨識能力分析與驗證 39
4.2.2 單一微焊點訊號特徵之辨識能力分析與驗證 43
4.2.3 不同特徵向量組合之系統能力比較 49
第五章、雷射焊接之聲射訊號分析 51
5.1 雷射焊接品質與聲射訊號之關聯性 51
5.1.1 聲射時域訊號分析 52
5.1.2 聲射頻域與時頻訊號分析 54
5.2 頻帶寬度對於聲射訊號特徵選取之影響 63
5.2.1 單一微焊點訊號之特徵選取 64
5.2.2 第二與第三微焊點訊號特徵選取之影響 69
5.2.3 不同特徵向量組合之比較 71
5.3 隱藏式馬可夫模型辨識系統開發與驗證 72
5.3.1 第一微焊點與第二微焊點訊號特徵之辨識能力分析與驗證 73
5.3.2 第二與第三微焊點訊號特徵之辨識能力分析與驗證 79
5.3.3 單一微焊點訊號特徵之辨識能力分析與驗證 80
5.3.4 不同特徵向量組合之系統能力比較 81
5.3.5 影響辨識效果原因之探討 83
第六章、結論 91
第七章、未來展望 93
參考文獻 94



[1] H. Luo, H. Zeng, L. Hu, X. Hu, Z. Zhou, 2005, “Application of Artificial Neural Network in Laser Welding Defect Diagnosis.”  Journal of Materials Processing Technology, Vol. 170, pp. 403-411.

[2] A. S. Sun, 2001, Multiple Sensor Monitoring of Laser Welding,  Dissertation, The University of Michigan.

[3] W. Shimada, et al, 1982, “A Study on In-Process Assessment of Joint Efficiency in the Laser Welding Process.”   Fundamental and Practical Approaches to the Reliability of Welded Structures, Vol. 1,
pp. 175-180.

[4] J. C. Mombo-Caristan, M. Koch, W. Prange, 1992 , “Seam Geometry Monitoring for Tailored Welded Blanks.”   Proceedings-SPIE The International Society For Optical Engineering, SPIE International Society For Optical.

[5] H. Gu, W. W. Duley, 1994, “Acoustic Emission and Optimized CO2 Laser Welding of Steel Sheets.”   ICALEO’94 79, pp. 77-85.

[6] H. Gu, W. W. Duley, 1996, “A Statistical Approach to Acoustic Monitoring of Laser Welding.”   Journal of Physics D : Applied Physics, Vol. 29, pp. 556-560.

[7] H. Gu, W. W. Duley, 1996, “Analysis of Acoustic Signals Detected from Different Locations During Laser Beam Welding of Steel Sheet.”   ICALEO’96, Section B, pp. 40-48.

[8] H. Gu, W. W. Duley, 1996, “Resonant Acoustic Emission During Laser Welding of Metals.”   Journal of Physics D : Applied Physics, Vol. 29, pp. 550-555.

[9] H. Gu, W. W. Duley, 1996, “Acoustic Emission from Modulated Laser Beam Welding of Materials.”   Journal of Laser Applications, Vol. 8, pp. 205-210.

[10] L. Grad, et  al, 2004, “Feasibility Study of Acoustic Signals for On-Line Monitoring in Short Circuit Gas Metal Arc Welding.”   International Journal of Machine Tools and Manufacture, Vol. 44, pp. 555-561.

[11]W. Huang, R. Kovacevic, 2009, “Noise Reduction During Acoustic Monitoring of Laser Welding of High-Strength Steels.”   ASME 2009 International Manufacturing Science and Engineering Conference, American Society of Mechanical Engineers.

[12] A. Matteson, R. Morris, R. Tate, 1993, “Real-Time GMAW Quality Classification Using an Artificial Neural Network with Airborne Acoustic Signals as Inputs.”   Proceedings of the 12th Interional Conference on Offshore Mechanics and Arctic Engineering III-A, 
pp. 273-278.

[13] R. H. Lin, G. W. Fischer, 1995,  “An On-Line Arc Welding Quality Monitor and Process Control System.”   Industrial Automation and Control : Emerging Technologies, International IEEE/IAS Conference on IEEE, pp. 22-29

[14] D. Farson, K. Hillsley, J. Sames, and R. Young, 1996, “Frequency–Time Characteristics of Air‐Borne Signals from Laser Welds.”   Journal of Laser Applications, Vol. 8, pp. 33-42.

[15] D. Farson, K. Fang, J. Kern, 1991, “Intelligent Laser Welding Control.”   ICALEO’91, Vol. 74, pp. 104-112.

[16] D. Farson, K. Killsley, J. Sames, R. Young, 1994,  “Frequency Characteristics of Air-Borne Signals form Laser Welds.”   ICALEO’94, Vol. 79, pp. 86-94.

[17] E. Nava‐Rüdiger, M. Houlot, 1997, “Integration of Real Time Quality Control Systems in a Welding Process.”   Journal of Laser Applications, Vol. 9, pp. 95-102.
[18] J. Shao, Y. Yan, 2005, “Review of Techniques for On-line Monitoring and Inspection of Laser Welding.”   Journal of Physics : Conference Series, Vol. 15, pp. 101-107.

[19] M. C. Jon, 1985, “Noncontact Acoustic Emission Monitoring of Laser Beam Welding.”   Welding journal ,Vol. 64, pp. 43-48.

[20] A. Sun, E. Kannatey-Asibu, Jr., and M. Gartner, 2002, “Monitoring of Laser Weld Penetration Using Sensor Fusion.”   Journal of Laser Applications, Vol. 14, pp. 114-121.

[21] L. Weeter, C. Albright, 1987, “The Effect of Full Penetration on Laser-Induced Stredd-Wave Emissions During Laser Spot-Welding.”   Materials Evaluation, Vol.45, pp. 353-357.

[22] E. Kannatey-Asibu, Jr., 2009, Principles of Laser Materials Processing, John Wiley & Sons.

[23] H. Orlick, H. Morgenstern, and N. Meyendorf, 1991,  “Process Monitoring in Welding with Solid State Lasers by Sound Emission Analysis.”   Welding Research Abroad, Vol. 39, pp. 15-18.

[24] S. Lee, S. Ahn, and C. Park, 2014,  “Analysis of Acoustic Emission Signals During Laser Spot Welding of SS304 Stainless Steel.”  Journal of Materials Engineering and Performance, Vol. 23, pp. 700-707.

[25]D. Farson, K. Kim, 1999, “Generation of Optical and Acoustic Emissions in Laser Weld Plumes.”   Journal of Applied Physics, 
Vol. 85, pp. 1329-1336.

[26] F. Michele, A. Antonio, M. Lugara Pietro, and S. Michele, 2000 “On-line Quality Monitoring of Welding Processes by Means of Plasma Optical Spectroscopy.”   Proceedings of the SPIE on the International Society for Optical Engineering, Vol.3888, pp. 750-758.



[27] X. Jin, L. Li, and Y. Zhang, 2002, “A Study on Fresnel Absorption and Reflections in the Keyhole in Deep Penetration Laser Welding.”   Journal of Physics D : Applied Physics, Vol. 35, pp. 2304-2310.

[28] S. Nakamura, Y. Ito, 2003, “Frequency Analysis of Optical and Acoustic Emissions During Butt Welding by CW YAG Laser.”   LAMP 2002 : International Congress on Laser Advanced Materials Processing. International Society for Optics and Photonics,  pp. 148-153

[29] K. Chien, 2012, Applications of Acoustic Emission and Sound Signal for Welding Defect Monitoring in Nd:YAG Laser Thin Plate Butt Welding, Dissertation, National Chung Hsing University.

[30] E. T. Smith, 1999, Monitoring Laser Weld Quality Using Acoustic Signals, Dissertation, The University of Michigan.

[31] Matlab, 2008, Wavelet Toolbox User''s Guide, The Math Works.

[32] A. V. Oppenheim, R. W. Schafer, 1989, Discrete-Time Signal Processing, Prentice Hall.

[33] R. J. Schilling, and S. L. Harris, 2005, Fundamentals of Digital Signal Processing Using MATLAB, Thomson.

[34] S. Haykin and B. V. Veen, 2003, Signals and System, 
John Wiley & Sons.

[35] C. Yen, M. Lu, C. Lin , and T. Chen, 2008, “Dratf-Experimental Study of Sound Signal for Tool Condition Monitoring in Micro Milling Processes.”  Proceedings of the 2008 International Manufacturing Science and Engineering Conference.

[36] L. R. Rabiner, B. Juang, 1986, “An Introduction to Hidden Markov Models.”  IEEE ASSP Magazine, Vol.3, pp. 4-16.

[37] P. Baruah, R. B. Chinnam, 2005, “HMMs for Diagnostics and Prognostics in Machining Processes.”  International Journal of Production Research, Vol. 43, pp.1275-1293.

[38] L. Wang, M. G. Mehrabi, E. Kannatey-Asibu, Jr., 2002, “Hidden Markov Model-based Tool Wear Monitoring in Turning.”  Journal of Manufacturing Science and Engineering, Transactions of the ASME,
Vol. 124, pp. 651-658.

[39] G. F. V. Voort, 2004, ASM Handbook Volume 9 : Metallography and Microstructures, ASM International.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔