|
Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (Eds.) 2nd international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281 Anderson, T.W. (1957) Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. J. Am. Stat. Assoc. 52:200– 203. Baek, J., McLachlan, G.J. (2011) Mixtures of common t-factor analyzers for clustering high-dimensional microarray data. Bioinformatics 27:1269–1276. Baudry, J.P., Raftery, A.E., Celeux, G., Lo, K., Gottardo, R. (2010) Combining Mixture Components for Clustering. J. Comput. Graph. Stat. 9:332–353. Biernacki, C., Celeux, G., Govaert, G. (2000) Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Patt. Anal. Mach. Intell. 22:719–725. Biernacki, C., Govaert, G. (1997) Using the classification likelihood to choose the number of clusters. Comput. Sci. Stat, 29:451–457. Bozdogan, H. (1987) Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52:345–370. Celeux, G., Soromenho, G. (1996) An entropy criterion for assessing the number of clusters in a mixture model. J. Classific., 13:195V212. Dempster, A.P., Laird, N.M., Rubin, D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Royal Stat. Soc. B 9:1–38. Efron, B., Tibshirani, R. (1993) An Introduction to the Bootstrap, Chapman & Hall, London. Fang, K.T., Kotz, S., Ng, K.W. (1990) Symmetric Multivariate and Related Distributions. Chapman & Hall, London. Hannan, E.J., Quinn, B.G. (1979) The determination of the order of an autoregression. J R Stat Soc Ser B 41:190V195 Hastings, W.K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109. Hocking, R.R., Smith, W.B. (1968) Estimation of parameters in the multivariate normal distribution with missing observations. J. Am. Stat. Assoc. 63:159– 173. Ibrahim, J.G., Zhu, H., Tang, N. (2008) Model selection criteria for missing data problems via the EM algorithm. J. Am. Stat. Assoc. 103:1648–1658. Jamshidian, M. (1997) An EM algorithm for ML factor analysis with missing data. In: Berkane M (ed) Latent variable modeling and applications to causality. Springer, New York, pp 247–258. Johnson, R.A., Wichern, D.W. (2007) Applied multivariate statistical analysis, 6th edn. Pearson Prentice-Hall, New York. Jöreskog, K.G. (1967) Some contributions to maximum likelihood factor analysis. Psychometrika 32:433–482. Keribin, C. (2000) Consistent estimation of the order of mixture models. Sankhyā Ser. 62:49–66. Lattin, J., Carrol, J.D., Green, P.E. (2003) AnalyzingMultivariate Data. Brooks/Cole, Pacific Grove, CA. Lawley, D.N., Maxwell, A.E. (1971) Factor analysis as a Statistical Method. 2nd ed., Butterworth, London. Ledermann, W. (1937) On the Rank of the Reduced Correlational Matrix in Multiple- Factor Analysis. Psychometrika 2:85–93. Lin, T.I., Lee, J.C., Ho, H.J. (2006) On fast supervised learning for normal mixture models with missing information. Pattern Recogn 39:1177–1187. Little, R.J.A., Rubin, D.B. (2002) Statistical Analysis with Missing Data, 2nd edn. Wiley, New York. Liu, M., Lin, T.I. (2015) Skew-normal factor analysis models with incomplete data. J Appl Stat 42:789–805. Marcus, L. F. (1990) Traditional morphometrics. Pages 77–122 in Proceedings of the Michigan morphometrics workshop, volume 2 (F. J. Rohlf and F. L. Bookstein, eds.). Univ. Michigan Museum of Zoology, Ann Arbor, Michigan. McLachlan, G.J., Bean, R.W., Jones, L.B.T. (2007) Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution. Comput. Stat. Data Anal. 51:5327–5338. Meng, X.L., Rubin, D.B. (1993) Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80:267–278. Meng, X.L., van Dyk, D. (1997) The EM algorithm–an old folk-song sung to a fast new tune. J. Roy. Stat. Soc. B 59:511–567. Kotz, S. Nadarajah, S. (2004) Multivariate t Distributions and their Applications, Cambridge University Press, Cambridge. Nadarajah, S., Kotz, S. (2005) Mathematical properties of the multivariate t distribution.Acta Appl. Math. 89, 53–84. Rubin, D.B. (1976) Inference and missing data. Biometrika 63:581–592. Rubin, D.B. (1987) Multiple Imputation for Nonresponse in Surveys. Wiley, New York. Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist. 6:461–464. Sclove, L.S. (1987) Application of model-selection criteria to some problems in multivariate analysis. Psychometrika 52:333–343. Spearman, C. (1904) General intelligence, objectively determined and measured. Am J Psychol 15:201–292. Wang, W.L., Lin, T.I. (2013) An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers. Comput. Stat. 28:751–769. Woodbury, M.A., (1950) Inverting Modified Matrices. Statistical Research Group, Memo. Rep. No. 42. Princeton University, Princeton, New Jersey. Zhao, J.H., Yu, P.L.H., Jiang, Q (2008) ML estimation for factor analysis: EM or non-EM? Stat Comput 18:109–123. Zhao, J., Shi, L. (2014) Automated learning of factor analysis with complete and incomplete data. Comput. Stat. Data Anal. 72:205–218.
|