跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 22:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝立中
研究生(外文):Li-Chung Hsieh
論文名稱:探討技術分析用於波動率預測之成效-以美國股票指數為例
論文名稱(外文):Examining The Performance Of Volatility Forecasting In Using Technical Analysis- Evidence From U.S. Stock Indexes
指導教授:許英麟許英麟引用關係
口試委員:顏盟峰莊宏瑋
口試日期:2016-06-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:27
中文關鍵詞:實現波動率技術分析GARCH波動率預測逐步預測力優劣檢定法
外文關鍵詞:Realized VolatilityTechnical AnalysisGARCHVolatility ForecastingSSPA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:2
本研究以道瓊工業指數與史坦普500指數為資料,探討技術分析用於波動率預測之成效。首先我們以實現波動率為資料、由技術分析產出交易訊號,再將交易訊號加入以日報酬率為資料的GARCH模型之條件變異數內進行參數估計,並使用逐月滾動的方法進行預測。評估預測的成效我們以逐步預測力優劣檢定挑出可擊敗GARCH基準模型的本研究模型,其中以MAE與MSE作為評價基準建立損失函數。實驗結果發現本研究利用技術分析調整後的GARCH模型有少部分可顯著擊敗GARCH基準模型。

We use Dow Jones Industrial Average and S&P 500 Index as the data to discuss the effectiveness of technical analysis predicting volatility. We first use realized volatility to produce technical trading signals. We then use these trading signals adding to the conditional variance of GARCH model which is obtained from daily return data, and we estimate the parameters of GARCH model by using rolling-window forecast method. Finally we use the SSPA test to evaluate the effectiveness of forecasting, by using the MAE and MSE as two evaluation criterions to build up the loss functions. Our results show a few adjusted GARCH model can outperform the benchmark model.

摘要 i
Abstract ii
目錄 iii
表目次 iv
第一章 緒論 1
第一節 研究背景 1
第二節 研究目的與架構 2
第二章 文獻探討 3
第一節 技術分析 3
第二節 GARCH模型 3
第三節 最佳化方法 4
第四節 資料探勘問題 5
一、 定態拔靴法 6
二、 逐步預測力優劣檢定法 6
第三章 資料與研究方法 8
第一節 資料介紹 8
一、 報酬率 9
二、 實現波動率 9
第二節 技術交易規則 11
一、 濾嘴法則(FR) 11
二、 移動平均(MA) 12
三、 支撐與壓力(SR) 12
四、 通道突破(CB) 13
第三節 模型設定 15
一、 基準模型 16
二、 競爭模型 16
第四節 模型配適 17
一、 參數最佳化 17
二、 預測方法 17
第五節 評價預測結果 18
第四章 實證結果與分析 20
第一節 預先分析 20
第二節 預測結果 21
第五章 結論與建議 24
第一節 結論 24
第二節 未來研究及建議 24
參考文獻 25

Andersen, T.G., and Bollerslev, T. (1998). “Answering the skeptics: Yes, standard volatility models do provide accurate forecasts.” International economic review, 39(4), 885-905.
Andersen, T.G., Bollerslev, T., Diebold, F.X. and Labys, P. (2003), “Modeling and Forecasting Realized Volatility” Econometrica, 71(2), 529-626.
Awartani, B.M. and Corradi, V. (2005), “Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries.” International Journal of Forecasting, 21(1), 167-183.
Bollerslev, T. (1986), “Generalized autoregressive conditional heteroskedasticity.” Journal of econometrics, 31(3), 307-327.
Brock, W., Lakonishok, J., and LeBaron, B. (1992). “Simple technical trading rules and the stochastic properties of stock returns.” Journal of finance, 47(5), 1731- 1764.
Clark, T.E., and McCracken, M.W. (2009), “Improving forecast accuracy by combining recursive and rolling forecasts.” International Economic Review, 50(2), 363-395.
Efron, B. (1979), “Bootstrap methods: another look at the jackknife.” The annals of Statistics, 7(1), 1-26.
Engle, R.F. (1982) “Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation,” Econometrica, 50(4), 987-1008.
Fama, E.F. (1970). “Efficient capital markets: A review of theory and empirical work.”The journal of Finance, 25(2), 383-417.
Franses, P.H. and Van Dijk, D.(1996), “Forecasting stock market volatility using (nonlinear) GARCH models.” Journal of Forecasting, 15(3), 229-235.
Hansen, P.R. (2005), “A test for superior predictive ability” Journal of Business and Economic Statistics, 23(4), 365-380.
Hansen, P.R. and Lunde, A. (2005), “A forecast comparison of volatility models: does anything beat a GARCH (1, 1)?” Journal of applied econometrics, 20(7), 873-889.
Hsu, P.H., Kuan, C.M. (2005), “Reexamining the profitability of technical analysis with data snooping checks.” Journal of Financial Econometrics 3(4), 606-628.
Hsu, P.H., Hsu Y.C. and Kuan C.M. (2010), “Testing the predictive ability of technical analysis using a new stepwise test without data-snooping bias,” Journal of Empirical Finance, 17(3), 471-484.
Hsu, Y.C., Kuan C.M. and Yen, M.F. (2014), “A generalized stepwise procedure with improved power for multiple inequalities testing,” Journal of Financial Econometrics, 12(4), 730-755
Liu, H.C. and Hung, J.C. (2010), “Forecasting S&P-100 stock index volatility: The role of volatility asymmetry and distributional assumption in GARCH models.” Expert Systems with Applications, 37(7), 4928-4934.
Lu, Y., and Chen, W. (2011), “Unreliable inference for business and economic event studies based on variance dummy variable in a GARCH regression model.” Journal of Applied Business and Economics, 12(5), 45-53.
Nelder, J.A., and Mead, R. (1965), “A Simplex Method for Function Minimization.” The Computer Journal, 7 (4), 308-313.
Politis, D.N., and Romano, J.P. (1994), “The stationary bootstrap.” Journal of the American Statistical association, 89(428), 1303-1313.
Romano, J.P. and M. Wolf. (2005), “Stepwise Multiple Testing as Formalized Data Snooping.” Econometrica, 73(4), 1237–1282.
Romano, J.P. and M. Wolf. (2007), “Control of Generalized Error Rates in Multiple Testing.” Annals of Statistics, 35(4), 1378–1408.
Shanno, D.F. (1970), "Conditioning of quasi-Newton methods for function minimization." Math. Comput, 24 (111): 647–656.
Sullivan, R., Timmermann, A., & White, H. (1999), “Data-snooping, technical trading rule performance, and the bootstrap.” Journal of Finance, 54(5), 1647- 1691.
Xie, H. and Li, J. (2010). “Intraday volatility analysis on S&P 500 stock index future.” International Journal of Economics and Finance, 2(2), 26-34.
White, H. (2000), “A reality check for data snooping.” Econometrica, 68(5), 1097- 1126.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊