(3.210.184.142) 您好!臺灣時間:2021/05/13 17:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:戴緯昱
研究生(外文):Wei-Yu Tai
論文名稱:臺灣錦葵亞科 (錦葵科) 植物親緣關係初步探討
論文名稱(外文):Primary studies on phylogeny of Malvoideae (Malvaceae s.l.) in Taiwan
指導教授:曾彥學曾彥學引用關係古新梅
口試委員:曾喜育王秋美呂福原
口試日期:2016-05-30
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:208
中文關鍵詞:錦葵亞科花粉背地性花粉胚珠比親緣關係
外文關鍵詞:MalvoideaepollengravitropismP/O ratiophylogeny
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
結合前人研究結果,觀察臺灣錦葵亞科 (Malvoideae) 花粉形態,探討親緣關係。錦葵亞科花粉皆為近球形,表面具刺狀突起,為亞科下穩定特徵,可與錦葵科其餘亞科作區別。亞科下花粉大小、花粉孔數量、表面刺數量等特徵變異大,但在屬下具一致性,可做為良好分類特徵。香葵屬 (Abelmoschus) 與木槿屬 (Hibiscus) 花粉形態難以區別,於花粉證據,支持兩者應為同一屬。依花粉孔排列形式,將錦葵亞科花粉區分為5型,木槿型、野棉花型、錦葵型、金午時花型、莔麻型,依前人研究提出之花粉演化趨勢金午時花型與莔麻型應為錦葵亞科較古老之花粉類型,野棉花型及錦葵型為較後期出現之花粉類型。
花粉胚珠比 (P/O ratio) 為花粉數量與胚珠數量之比值,此數值常被用於探討植物之繁育系統。本研究計算錦葵亞科之花粉數量、胚珠數量及花粉胚珠比,探討錦葵亞科之生活型及各種繁育特徵。錦葵亞科P/O ratio大多介於100-300屬於兼性自交植物,亞科下不同族之花粉數量與胚珠數量明顯不同,棉族具有大量花粉但胚珠數量不多,木槿族有大量的花粉數及胚珠數,錦葵族則是花粉數及胚珠數皆稀少。比對生活型發現,小喬木可有較多的能量投資於繁育系統,具有較高之花粉數量或胚珠數量,草本或低矮灌木對繁育系統投資則較少。不同種子傳播方式胚珠數量明顯不同,動物傳播之分類群胚珠數量最少,應為最有效率之傳播方式,而胚珠數量之下降亦伴隨著花粉數量下降,不同種子傳播方式之P/O ratio則差異不顯著。傾向自交之類群不需承擔花粉於傳播中的損失,花粉數量明顯少於傾向異交之類群。
使用核基因ITS及葉綠體trnL-F, matK探討錦葵亞科之親緣關係。錦葵亞科為一良好單系群,亞科下各族亦為良好單群,trnL-F及ITS結果顯示棉族 (Gossypieae) 與木槿族 (Hibisceae) 親緣關係較近,錦葵族 (Malveae) 關係較遠。亞科下各屬大多為良好單系群,唯有木槿族木槿屬(Hibiscus) 與野棉花屬 (Urena)、香葵屬 (Abelmoschus) 及幹花槿 (Goethea strictiflora) 形成並系群。結合前人研究結果及外觀形態特徵,將香葵屬處理為木槿屬下一組 (Sect. Abelmoschus),模式植物為香葵 (Hibiscus abelmoschus L.)。將支序樹結合形態特徵發現,錦葵亞科至少有兩次演化事件自蒴果演化出分離果,花粉形態演化有兩個方向,一為野棉花屬之大型花粉並具有大量花粉孔,一為錦葵族之中等花粉但花粉孔數量極多。副花萼為錦葵亞科之共演徵,但在莔麻屬 (Abutilon) 及金午時花屬(Sida) 中此特徵後續丟失。
於野外觀察發現錦葵亞科木槿屬 (Hibiscus) 毛芙蓉組 (Sect. Venusti) 花冠皆面向側面且花柱彎曲朝上生長,推測具有花柱背地性現象。本研究於野外觀察臺灣山芙蓉花柱生長情形,證實臺灣山芙蓉花柱具背地現象,花柱會持續生長直至花朵關閉前,且生長方向為背地生長。觀察到花梗亦受向性影響,但尚無法得知影響花梗生長方向之向性為何。觀察訪花者發現,東方蜂 (Apis cerana) 與義大利蜂 (A. mellifera) 為臺灣山芙蓉最主要之訪花者;然而,基於臺灣山芙蓉的大型花冠、柱頭與花葯位置等花部特徵,推測熊蜂 (Bombus spp.)、青條花蜂 (Amegilla spp.) 個大型蜂類應為臺灣山芙蓉最主要之授粉者。


Abstract
In this study, pollen morphology was observed to examine the phylogeny of Malvoideae, and the findings were integrated with those of previous studies. Malvoideae pollen displayed spheroidal pantaporate and spine-like morphology, which were effective characteristics for distinguishing them from other subfamilies of Malvaceae. The pollen size, aperture number, and number of spines were stable at the generic level. The pollen morphology of Abelmoschus and Hibiscus were almost indistinguishable, which supported combining Abelmoschus and Hibiscus into a single genus. According to the aperture arrangement, Malvoideae pollen were divided into 5 types: Hibiscus, Urena, Malva, Sida, and Abutilon. The Sida and Abutilon types, which were smaller and had fewer apertures, are the ancient type of Malvoideae pollen, whereas, the Urena and Malva types were identified as having evolved more recently.
The P/O ratio represents the ratio of the number of pollen grains and ovules. The ratio is frequently used in breeding systems. In this study, the Malvoideae P/O ratio was calculated to discuss the Malvoideae phylogeny and breeding system. The P/O ratios of Malvoideae were generally in the 100–300 range, which supports a facultative autogamy classification. The numbers of pollen grains and ovule in different Malvoideae tribes varied extensively. The tribe Gossypieae exhibited numerous pollen grains but few ovules. The tribe Hibisceae had numerous pollen grains and ovules, whereas Malveae had few pollen grains and ovules. Comparing the P/O ratio among life-forms reveals that trees have more energy for developing higher quantities of gametes of both sexes; this is in contrast to small shrubs and grasses, which can afford less investment in breeding. Seed dispersal types also affected the number of pollen grains and ovules. Zoochory that uses fewer pollen grains and ovules is regarded as an effective means of seed dispersal. Those plants that self-pollinate and use less pollen than does xenogamy do not have to undergo the depletion entailed in pollen dispersal.
Nuclear gene ITS and chromosome genes trnL-F and matK were used to construct a phylogenetic tree for Malvoideae. Malvoideae and the tribes within Malvoideae exhibited an apposite monophyly within Malvaceae. According to the trnL-F and ITS results, the Gossypieae and Hibisceae tribes are sister groups. Most genera of Malvoideae are monophyletic, except Hibiscus, which forms a paraphyly with Urena, Abelmoschus, and Goethea strictiflora. Based on previous studies and its morphology, Abelmoschus was treated as a section within the genus Hibiscus and assigned the type species H. abelmoschus L. In the Malvoideae phylogenetic tree, the schizocarpic exhibit at least two parts derived from their capsules. The pollen morphology of Malvoideae followed two evolutionary paths; one entailed the formation of Urena, which has large pollen grains and many apertures, and the other led to the development of medium-sized pollen with very high numbers of apertures. The epicalyx is a synapomorphic trait of Malvoideae, whereas secondary loss was observed in Abutilon and Sida.
In the wild, flowers of Hibiscus sect. Venusti were observed to usually face laterally, whereas the stigma always faces skyward. The styles of H. taiwanensis were confirmed to display negative gravitropism during flower blossoming. The styles continuously grew upward until the corolla closed. The peduncle of H. taiwanensis was also affected by tropism, but the mechanism remains unclear. Apis cerana and A. mellifera were observed to be the main visitors of H. taiwanensis in the study area. However, because of the flower size and relative location of the stigma and anther, larger bees, such as Bombus spp. and Amegilla spp., may be the main pollinators of H. taiwanensis.


目次
壹、緒言 1
貳、前人研究 3
參、材料與方法 6
肆、結果 19
伍、討論 59
陸、結論 73
柒、臺灣錦葵亞科檢索表及分類處理 76
捌、圖版 106
玖、木槿屬臺灣山芙蓉花柱背地性研究 181
拾、引用文獻 198

表目次
表1. 授粉系統與P/O ratio之關係 4
表2. 臺灣錦葵科花粉研究材料一覽表 7
表3. 臺灣錦葵亞科花粉胚珠比研究材料一覽表 9
表4. 臺灣錦葵科DNA序列研究材料一覽表 15
表5. 錦葵科DNA序列分析使用引子一覽表 16
表6. PCR反應試劑配方 18
表7. PCR反應條件 18
表8. 臺灣錦葵亞科花粉特徵一覽表 31
表9. 臺灣錦葵亞科花粉形態PCA分析各成分eigenvalue一覽表 32
表10. 臺灣錦葵亞科花部特徵性狀表 60
表11. 錦葵亞科不同生活型花粉數、胚珠數及P/O ratio無母數分析 73
表12. 錦葵亞科不同種子傳播方式花粉數、胚珠數及P/O ratio無母數分析 74
表13. 錦葵亞科不同花柱彎曲與否花粉數、胚珠數及P/O ratio無母數分析 76
表14. 錦葵亞科各族花粉數、胚珠數及P/O ratio無母數分析 76
圖目次
圖1. 本研究使用各基因之位置及引子作用位置圖 17
圖2. 不同個體之黃槿花冠大小差異 22
圖3. 臺灣錦葵科花粉形態 (不含錦葵亞科) 24
圖4. 臺灣錦葵亞科錦葵屬、蜀葵屬花粉形態 24
圖5. 臺灣錦葵亞科莔麻屬花粉形態 25
圖6. 臺灣錦葵亞科金午時花屬花粉形態 26
圖7. 臺灣錦葵亞科南非葵屬、賽葵屬、棉屬、繖楊花粉形態 27
圖8. 臺灣錦葵亞科木槿屬花粉形態 28
圖9. 臺灣錦葵亞科香葵屬花粉 29
圖10. 臺灣錦葵亞科旋葵、野棉花屬花粉形態 29
圖11. 錦葵亞科花粉形態依花粉孔排列方式分型 30
圖12. 臺灣錦葵亞科花粉定量形態PCA散佈圖(依亞科下各族分群) 33
圖13. 臺灣錦葵亞科花粉定量形態PCA散佈圖(依花粉孔排列方式分群) 34
圖14. 錦葵亞科不同生活型各類群花粉數量對應胚珠數量之散佈圖 40
圖15. 錦葵亞科不同種子傳播方式花粉數量對應胚珠數量之散佈圖 41
圖16. 錦葵亞科花柱彎曲與否不同類群花粉數量對應胚珠數量之散佈圖 42
圖17. 錦葵亞科各族花粉數量對應胚珠數量之散佈圖 43
圖18. 臺灣錦葵亞科植物與相關類群葉綠體trnL-F基因序列使用最大簡約法 (MP) 建構之親緣關係樹 47
圖19. 臺灣錦葵亞科植物與相關類群葉綠體trnL-F基因序列,使用最大似然法 (ML) 建構之親緣關係樹 48
圖20. 臺灣錦葵亞科植物與相關類群葉綠體trnL-F基因序列,使用貝葉氏分析 (BI) 建構之親緣關係樹 49
圖21. 臺灣錦葵亞科植物與相關類群葉綠體matK基因序列使用最大簡約法 (MP) 建構之親緣關係樹 50
圖22. 臺灣錦葵亞科植物與相關類群葉綠體matK基因序列,使用最大似然法 (ML) 建構之親緣關係樹 51
圖23. 臺灣錦葵亞科植物與相關類群葉綠體matK基因序列,使用貝葉氏分析 (BI) 建構之親緣關係樹 52
圖24. 臺灣錦葵亞科植物與相關類群葉綠體ITS基因序列使用最大簡約法 (MP) 建構之親緣關係樹 53
圖25. 臺灣錦葵亞科植物與相關類群葉綠體ITS基因序列,使用最大似然法 (ML) 建構之親緣關係樹 54
圖26. 臺灣錦葵亞科植物與相關類群葉綠體ITS基因序列,使用貝葉氏分析 (BI) 建構之親緣關係樹 55
圖27. 臺灣錦葵亞科植物與相關類群trnL-F, matK, ITS基因序列使用最大簡約法 (MP) 建構之親緣關係樹結合外觀形態 56
圖28. 臺灣錦葵亞科植物與相關類群葉綠體trnL-F, matK, ITS基因序列使用最大簡約法 (MP) 建構之親緣關係樹結合花粉形態 57
圖29. 臺灣錦葵亞科植物與相關類群葉綠體trnL-F, matK, ITS基因序列使用最大簡約法 (MP) 建構之親緣關係樹結合P/O ratio 58
圖30. The bicolor unit 及其特化型 71
圖31. 花柱背地性試驗1操作組彎折示意圖 184
圖32. 花柱背地性試驗2彎折示意圖 185
圖33. 花柱背地性試驗2花柱生長量測示意圖 185
圖34. 山芙蓉花朵縮時攝影照片 186
圖35. 花瓣去除觀察,柱頭生長情形比較圖 188
圖36. 花柱背地性試驗1結果 189
圖37. 花柱背地性試驗2結果 190
圖38. 花柱背地性試驗2將花朵轉回原位並後續觀察花柱生長情形 191
圖39. 花梗向性試驗 192
圖40. 北坑溪地區台灣山芙蓉之訪花者種類 193
圖41. 蜜蜂科昆蟲訪花者數量長條圖 194
圖42. 蜜蜂科昆蟲訪花行為觀察 194
圖43. 2014年觀察之山芙蓉訪花者照片 196

圖版目次
圖版1. 草棉(Gossypium herbaceum L.)照片 107
圖版2. 草棉(Gossypium herbaceum L.)地理分佈圖 108
圖版3. 繖楊(Thespesia populnea L.)照片 109
圖版4. 繖楊(Thespesia populnea L.)地理分佈圖 110
圖版5. 香葵(Hibiscus abelmoschus L.)照片 111
圖版6. 香葵 (Hibiscus abelmoschus L.) 地理分佈圖 112
圖版7. 大麻槿 (Hibiscus cannabinus L.)照片 113
圖版8. 大麻槿 (Hibiscus cannabinus L.) 地理分佈圖 114
圖版9. 印度山芙蓉 (Hibiscus indicus (Burm. f.) Hochr.)照片 115
圖版10. 印度山芙蓉(Hibiscus indicus (Burm. f.) Hochr.)地理分佈圖 116
圖版11. 蘭嶼秋葵(Hibiscus lanyunatus (S. S. Ying) Y. H. Tseng & W. Y. Tai)照片 117
圖版12. 蘭嶼秋葵 (Hibiscus lanyunatus (S. S. Ying) Y. H. Tseng & W. Y. Tai) 地理分佈圖 118
圖版13. 牧野氏山芙蓉 (Hibiscus makinoi Jotani & Ohba) 照片 119
圖版14. 牧野氏山芙蓉 (Hibiscus makinoi Jotani & Ohba) 地理分佈圖 120
圖版15. 提琴葉槿(Hibiscus panduriformis Burm. f.) 照片 121
圖版16. 提琴葉槿 (Hibiscus panduriformis Burm. f.) 地理分佈圖 122
圖版17. 刺芙蓉 (Hibiscus surattensis L.) 照片 123
圖版18. 刺芙蓉 (Hibiscus surattensis L.) 地理分佈圖 124
圖版19. 木槿 (Hibiscus syriacus L.) 照片 125
圖版20. 木槿 (Hibiscus syriacus L.) 地理分佈圖 126
圖版21. 臺灣山芙蓉 (Hibiscus taiwanensis Hu) 照片 127
圖版22. 臺灣山芙蓉 (Hibiscus taiwanensis Hu) 地理分佈圖 128
圖版23. 黃槿 (Hibiscus tiliaceus L.) 照片 129
圖版24. 黃槿 (Hibiscus tiliaceus L.) 地理分佈圖 130
圖版25. 旋葵 (Malachra capitata L.) 照片 131
圖版26. 旋葵 (Malachra capitata L.) 地理分佈圖 132
圖版27. 野棉花 (Urena lobata L.) 照片 133
圖版28. 野棉花 (Urena lobata L.) 地理分佈圖 134
圖版29. 梵天花 (Urena procumbens L.) 照片 135
圖版30. 梵天花 (Urena procumbens L.) 地理分佈圖 136
圖版31. 泡果莔 (Abutilon crispum (L.) Medik.) 照片 137
圖版32. 泡果莔 (Abutilon crispum (L.) Medik.) 地理分佈圖 138
圖版33. 幾內冬葵子 (Abutilon guineense (Schumach.) Baker & Exell) 照片 139
圖版34. 幾內冬葵子 (Abutilon guineense (Schumach.) Baker & Exell) 地理分佈圖 140
圖版35. 疏花莔麻 (Abutilon hulseanum (Torr. & Gray) Torr. ex Gray) 照片 141
圖版36. 疏花莔麻 (Abutilon hulseanum (Torr. & Gray) Torr. ex Gray) 地理分佈圖 142
圖版37. 冬葵子 (Abutilon indicum (L.) Sweet subsp. indicum) 照片 143
圖版38. 冬葵子 (Abutilon indicum (L.) Sweet subsp. indicum) 地理分佈圖 144
圖版39. 白毛冬葵子 (Abutilon indicum (L.) Sweet subsp. albescens (Miq.) Borss) 照片 145
圖版40. 白毛冬葵子 (Abutilon indicum (L.) Sweet subsp. albescens (Miq.) Borss) 地理分佈圖 146
圖版41. 風鈴花 (Abutilon striatum Dicks. ex Lindl.) 照片 147
圖版42. 風鈴花 (Abutilon striatum Dicks. ex Lindl.) 地理分佈圖 148
圖版43. 莔麻 (Abutilon theophrasti Medik.) 照片 149
圖版44. 莔麻 (Abutilon theophrasti Medik.) 地理分佈圖 150
圖版45. 冠萼蔓錦葵 (Anoda cristata) 照片 151
圖版46. 冠萼蔓錦葵 (Anoda cristata) 地理分佈圖 152
圖版47. 圓葉錦葵 (Malva pusilla) 照片 153
圖版48. 圓葉錦葵 (Malva pusilla) 地理分佈圖 154
圖版49. 小花錦葵 (Malva parviflora) 照片 155
圖版50. 小花錦葵 (Malva parviflora) 地理分佈圖 156
圖版51. 賽葵 (Malvastrum coromandelianum (L.) Garcke) 照片 157
圖版52. 賽葵 (Malvastrum coromandelianum (L.) Garcke) 地理分佈圖 158
圖版53. 銳葉金午時花 (Sida acuta Burm. f.) 照片 159
圖版54. 銳葉金午時花 (Sida acuta Burm. f.) 地理分佈圖 160
圖版55. 榿葉金午時花 (Sida alnifolia L.) 照片 161
圖版56. 榿葉金午時花 (Sida alnifolia L.) 地理分佈圖 162
圖版57. 中華金午時花 (Sida chinensis Retz.) 照片 163
圖版58. 中華金午時花 (Sida chinensis Retz.) 地理分佈圖 164
圖版59. 澎湖金午時花 (Sida cordata (Burm. f.) Borss.) 照片 165
圖版60. 澎湖金午時花 (Sida cordata (Burm. f.) Borss.) 地理分佈圖 166
圖版61. 圓葉金午時花 (Sida cordifolia L.) 照片 167
圖版62. 圓葉金午時花 (Sida cordifolia L.) 地理分佈圖 168
圖版63. 恆春金午時花 (Sida insularis Hatusima) 照片 169
圖版64. 恆春金午時花 (Sida insularis Hatusima) 地理分佈圖 170
圖版65. 爪哇金午時花 (Sida javensis Cav.) 照片 171
圖版66. 爪哇金午時花 (Sida javensis Cav.) 地理分佈圖 172
圖版67. 薄葉金午時花 (Sida mysorensis Wight & Arn.) 照片 173
圖版68. 薄葉金午時花 (Sida mysorensis Wight & Arn.) 地理分佈圖 174
圖版69. 單芒金午時花 (Sida rhombifolia L. var. maderensis (Lowe) Lowe) 照片 175
圖版70. 單芒金午時花 (Sida rhombifolia L. var. maderensis (Lowe) Lowe) 地理分佈圖 176
圖版71. 金午時花 (Sida rhombifolia L. var. rhombifolia) 照片 177
圖版72. 金午時花 (Sida rhombifolia L. var. rhombifolia) 地理分佈圖 178
圖版73. 刺金午時花 (Sida spinosa L.) 照片 179
圖版74. 刺金午時花 (Sida spinosa L.) 地理分佈圖 180


拾、引用文獻
江佳穎 (2015) 以分子標誌探討臺灣木槿屬 (錦葵科) 植物之親緣關係。國立國立中興大學森林學系碩土學位論文。共88頁。
林家榮 (2012) 臺灣莔麻亞族 (錦葵科) 植物分類研究。國立國立中興大學森林學系碩士學位論文。共167頁。
林惠雯 (2010) 臺灣金午時花屬 (錦葵科) 植物之系統分類學研究。國立國立中興大學森林學系碩士學位論文。共160頁。
曾喜育 (2008) 花粉-胚珠比與花藥胚珠比:被子植物繁殖系統的參考指標。中華林學季刊。41(2): 265-282。
劉惠宜 (2013) 臺灣木槿屬 (錦葵科) 植物之分類研究。國立國立中興大學森林學系碩士學位論文。共168頁。
劉棠瑞與蘇鴻傑 (1983) 森林植物生態學。臺灣商務印書館。共462頁。
劉業經、呂福原、歐辰雄 (1994) 臺灣樹木誌。國立國立中興大學農學院出版委員會。390-395頁。
鄭雅芳與蔡進來 (1999) 臺灣錦葵科植物染色體之研究。林業研究季刊。21(3): 61-72。
Abid R., J. Alam and M. Qaiser (2010) Pollination mechanism and role of insects in Abutilon indicum (L.) Sweet. Pak. J. Bot. 42(3): 1395-1399.
Akaike H. (1974) A new look at the statistical model identification. IEEE T. Automat. Contr. 19: 716-723.
Aldasoro, J. J., C. Roquet, M. L. Alarcón (2011) Evolution of Pollen/Ovule Ratios and Breeding System in Erodium (Geraniaceae). Syst. Bot. 36(3): 661-676. Am. J. Bot. 88(2): 220-233.
Alverson, W. S., K. G. Karol, D. A. Baum, M. W. Chase, S. M. Sewnsen, R. McCourt, and K. J. Sytsma. (1998) Circumscription of the Malvales and relationships to other Rosidae: evidence from rbcL sequence data. Am. J. Bot. 85 (6) : 876-887.
Bantham G. and J. D. Hooker (1862) Genera Plantarum. Malvaceae 1: 195-213.
Bates, D. M. (1968) Generic relationships in the Malvaceae, tribe Malveae. Gentes Herbarum 10:117-135.
Baum, D. A., W. S. Alverson, and R. Nyffeler (1998) A Durian by any other name: taxonomy and nomenclature of the core Malvales. Harvard pa. Bot. 3 (2) : 315-330.
Baum, D. A, S. D. Smith, A. Yen, W. S. Alverson, R. Nyffeler, B. A. Whitlock, and R. L. Oldham (2004) Phylogenetic relationships of Malvatheca (Bombacoideae and Malviodeae; Malvaceae sensu lato) as inferred from plastid DNA sequences. Am. J. Bot. 91 (11) : 1863-1871.
Bayer, C. (1999a) The bicolor unit – homology and transformation of an inflorescence structure unique to core Malvales. Pl. syst. Evol. 214: 187-198.
Bayer, C., M. F. Fay, A. Y. de Bruijn, V. Savolainen, C. M. Morton, K. Kubitzki, W. S. Alverson, and M. W. Chase (1999b) Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpB and rbcL DNA sequences. Bot. J. L. Soci. 129: 267-303.
Carine, M. A. and R. W. Scotland (1998) Pollen morphology of Strobilanthes Blume (Acanthaceae) from southern India and Sri Lanka. Rev. Palaeobot. Palyno. 103: 143-165.
Chang C. E. (1993) Flora of Taiwan 2nd ed. volumeⅢ Editorial Committee. Department of Botany, National Taiwan University. p.737-753.
Chen R., E. Rosen and P. H. Masson (1999) Gravitropism in higher plants. Plant physiol. 120: 343-350.
Christensien, P. B. (1986) Pollen morphological studies in Malvaceae. Grana 25: 95-117.
Collins T. J. (2007) ImageJ for microscopy. BioTechniques 43(1): 25–30.
Cota-Sánchez, J. H., K. Remarchuk, and K. Ubayasena (2006) Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens amd mucilaginous plant tissue. Pl. Mol. Biol. rep. 24: 161-167.
Cruden, R. W. (1976) Intraspecific variation in pollen-ovule ratios and nectar secretion-preliminary evidence of ecotypic adaptation. Ann. Missouri Bot. Gard. 63: 277-289.
Cruden, R. W. (1977) Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution 31: 32-46.
Cruden, R. W. (2000) Pollen grains: why so many? Pl. Syst. Evol. 222:143-165.
Cruden R. W. and K. G. Jensen (1979) Vision threads, pollination efficiency and low pollen-ovule ratios. Am. J. Bot. 66(8): 875-879.
De Queiroz K. (2007) Species concepts and species delimitation (2007) Syst. Biol. 56(6): 879-886.
Drummond A. J., G. K. Nicholls, A. G. Rodriqo, and W. Solomon (2002) Estimating mutation paprameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161 (3) : 1307-1320.
Duke J. C. La, and J. Doebely (1995) A Chloroplast DNA based phylogeny of the Malvaceae. Syst. Bot. 20 (3) : 259-271
Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32 (5) : 1792-1797.
Erdtman, G. (1952) Pollen Morphology and Plant Taxonomy. Wiksell, Stockholm and Almqvist. 557 pp.
Eriksson O. and B. Bremer (1992) Pollination systems, dispersal modes, life forms, and diversification rates in angiosperm families. Evolution 46 (1) : 258-266.
Esmon C. A., U. V. Pedmale and E. Liscum (2005) Plnat tropisms: providing the power of movement to a sessile organism. Int. J. Dev. Biol. 49: 665-674.
Farris J. S. (1989) The retention index and the rescaled consistency index. Cladistics 5 (4) : 417-417.
Fay, M. F., C. Bayer, W. S. Alverson, A. Y. de Bruijn, and M. W. Chase (1998) Plastid rbcL sequence data indicate a close affinity between Diegodendron and Bixa. Taxon 47: 43-50.
Feliner G. N. and J. A. Rosselló (2007) Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol. Phylogenet. Evol. 44: 911-919.
Felsenstein J. (1973) Maximumlikelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst. Zool. 22: 240-249.
Firn R., C. Wagstaff and J. Digby (1999) The ups and downs of gravitropism. Els. Sci. 4 (7): 252.
Fitch W. M. (1971) Towards defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20: 406-416.
Fryxell P. A. (1975) Genetic relationships of decaschistia (Malvaceae) and the description of a new tribe, Decaschstieae. Amer. J. Bot. 62 (2) : 172-175.
Fryxell P. A. (1997) The American genera of Malvaceae-Ⅱ.Brittonia 49: 204-269.
Gottsberger G. (1972) Blütenbiologische beobachtungen and brasilianischen Malvaceen. Ⅱ. Österr. Bot. Z. 144: 349-378.
Gould F. W. (1957) Pollen size as related to polyploidy and speciation in the andropogon Saccharoides-A. Barbinodis complex. Brittonia 9(2) 71-75.
Grandin U. (2006) PC-ORD version 5: A user-friendly toolbox for ecologists. J. Veg. Sci. 17(6): 843-844.
Guindon S., J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and O. Gascuel (2010) New algorithms and methods to estimate Maximum-Likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59 (3) 307-321.
Haberlandt G. (1900) Ueber die perzeption des geotropischen reizes. Ber. Dtsch. Bot. Ges. 18: 261-272.
Hall T. A. (1999) BioEdit; a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acid. S. 41: 95-98.
Heel W. A. Van (1978) Morphology of the pistil in Malvaceae-Ureneae. Blumea 24:123-127.
Henning T. and M. Weigend (2013) Beautiful, complicated – and intelligent ? Novel aspects of the thigmonastic stamen movement in Loasaceae. Plant signal. Behav. 8(6): e24605.
Hoen R. (1999) Glossary of Pollen and Spore Terminology. Laboratory of Palaeobotany and Palynology, Utrechthttp://www.blo.uu.nl/`palaeo/glossary/glos-int.htm
Hsieh S. I, C. T. Lee, C. S. Leou, J. H. Wu, and C. L. Yeh (2013) Abelmoschus manihot var. pungens (Roxburgh) Hochreutiner (Malvaceae), a newly naturalized plant in Taiwan. Taiwania 58(2): 119-123.
Huang, T. C. (1972) Pollen Flora of Taiwan. National Taiwan university botany department press. 276 pp.
Hutchinson, J. (1967) The Genera of Flowering Plants (Angiospermae) Dicotyledones. Vol. Ⅱ. Clarendon press. 659 pp.
IBM Corp. Released (2011) IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp.
Johnson, L. A. and D. E. Soltis (1994) matK DNA-sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst. Bot. 19:143-156.
Jürgens, A. T. Witt, G. Gottsberger (2002) Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae: Correlation with breeding system, pollination, life form, style number, and sexual system. Sex plant reprod. 14: 279-289.
Khan, S. A, D. Hussain, E. Askari, J. MeD Stewart, K. A. Malik, and Y. Zafar (2000) Molecular phylogeny of Gossypium species by DNA fingerprinting. Theor. appl. aenet. 101: 931-938.
Klips R. A. and A. A. Snow (1997) Delayed autonomous self-pollination in Hibiscus laevis (Malvaceae). Am. J. Bot. 84(1): 48-53.
Kluge A. G. and J. S. Farris (1969) Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32.
Koopman, M. M. and D. A. Baum (2008) Phylogeny and biogeography of tribe Hibisceae (Malvaceae) on Madagascar. Syst. bot. 33(2): 364-374.
Kubitzki, K. and C. Bayer (2003) The families and genera of vascular plants Ⅴ Flowering plants Dicotyledons Malvales, Capparales and non-betalain Caryophyllales. Springer p. 225-311.
La Duke J. C. and J. Doebely (1995) A chloroplast DNA based phylogeny of the Malvaceae. Syst. Bot. 20(3): 259-271
Lee C. T., S. I Hsieh, C. S. Leou, H. Y. Lin, and C. L. Yeh (2014) A newly naturalized species in Taiwan: Hibiscus asper Hook. f. (Malvaceae). TW J. of Biodivers. 16(3): 273-281.
Li Q. J., Z. F. Xu, W. J. Kress, Y. M. Xia, L. Zhang, X. B. Deng, J. Y. Gao and Z. L. Bai (2001) Flexible style that encourages outcrossing. Nature 410: 432.
Lin C. J., C. M. Wang, K. C. Yang, and Y. H. Tseng (2012) Abutilon hulseanum (Torr. & A. Gray) Torr. ex A. Gray (Malvaceaea), a newly naturalized plant in Taiwan. Quarterly Journal of Forest Research 34(3): 173-178.
Lin H. W. and Y. H. Tseng (2011) Sida rhombifolia L. var. maderensis (Lowe) Lowe (Malvaceae), A new recorded plant in Taiwan. Quarterly Journal of Forest Research 33(4): 73-80.
Linnaeus, C. (1753) Species Plantarum.1 Stedition Facsimilie. London: Ray society. 560 pp.
Liu H. Y., C. T. Chao and Y. H. Tseng (2014) Hibiscus makinoi Y. Jotani & Ohba (Malvaceae), A new record plant in Taiwan. Quarterly Journal of Forest Research 36(3): 171-178.
Margaret, M. and M. A. Chattaway (1933) Tile-cells in the rays of the Malvales. Phyt. 32 (4) : 261-273.
Medikus, F. K. (1787) Ueber Einige Künstliche Geschlechter aus der Malven-Familie. Neue hof-und akademische Buchhandlung p. 45-46.
Naggar, S. M. E. (2004) Pollen morphology of Egyptian Malvaceae: An assessment of taxonomic value. Turk. J. Bot. 28: 227-240.
Nakanishi H. (1988) Dispersal ecology of the maritime plants in the Ryukyu Islands, Japan. Ecol. Res. 3: 163-173.
Nemec B. (1900) Ueber die art der wahrnehmung des schwekraftreizes bei den pflanzen. Ber. Dtsch. Bot. Ges. 18: 241-245.
Nyffeler, R., C. Bayer, W. S. Alverson, A. Yen, B. A. Whitlock, M. W. Chase, and D. A. Baum (2005) Phylogenetic analysis of the Malvadendrina clade (Malvaceae s.l.) based on plastid DNA sequences. Org. Divers. Evol. 5: 109-123.
Pfeil, B. E., C. L. Brubaker, L. A. Craven and M. D. Crisp (2002) Phylogeny of Hibiscus and the tribe Hibisceae (Malvaceae) using chloroplast DNA sequences of ndhF and the rpl16 intron. Syst. Bot. 27(2): 333-350.
Punt, W. (1975) Pollen morphology of the Dichapetalaceae with special reference to evolutionary trends and mutual rela-tion ships of pollen types. Rev. Palaeobot. Palyno. 19: 1-97.
Rambaut A. (2009) Figtree v1.2.3. Institute of Evolutionary Biology, Univ. of Edinburgh. Available from:
Ramsey M., L. Seed, and G. Vaughton (2003) Delayed selfing and low levels of inbreeding depressing in Hibiscus trionum (Malvaceae). Aust. J. of Bot. 51:275-281.
Raunkiaer C. (1934) Life-forms of plants and statistical plant geography. Clarendon Press, Oxford. 632pp.
Ronquist F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Hohna, B. Larget. L. Liu. M. A. Suchard and J. P. Huelsenbeck (2012) Mrbayes3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61 (3) : 539-542.
Ruan C. J., P. Qin, and Z. X. He (2004) Delayed autonomous selfing in Kosteletzkya virginica (Malvaceae). S. Afr. J. Bot. 70(4): 640-645.
Ruan C. J., S. Mopper, J. A.T. da Silva, P. Qin, Q. X. Zhang, and Y. Shan (2009) Context-dependent style curvature in Kosteletzkya virginica (Malvaceae) offers reproductive assurance under unpredictable pollinator environments. Plant Syst. Evol. 277:207-215.
Seed L., G. Vaughton, and M. Ramsey (2006) Delayed autonomous selfing and inbreeding depression in the Australian annual Hibiscus trionum var. vesicarius (Malvacaeae). Aust. J. Bot. 54: 27-34.
Shaheen N., M. A. Khan, M. Q. Hayat and G. Yasmin (2009) Pollen morphology of 14 species of Abutilon and Hibiscus of the family Malvaceae (sensu stricto). J. Med. Pl. Res. 3(11): 921-929.
SigmaPlot (2006) SigmaPlot for Windows. Ver. 10.
Simpson, M. G. (2010) Plant Systematic, 2nd edition. Academic press. 752 pp.
Skvarla J. J. and B. L. Turner (1966) Systematic implications from electron microscopic studies of Compositae pollen – A review. Ann. Mo. Bot. Gard. 53: 220-256.
Small R. L. (2004) Phylogeny of Hibiscus sect. Muenchhusia (Malvaceae) based on chloroplast rpl16 and ndhF, and Nuclear ITS and GBSSI Sequences. Syst. Bot. 29 (2) : 385-392.
Stevens, P. F. (2001 onwards) Angiosperm Phylogeny Website. Version 12, July 2012 [and more or less continuously updated since] from the World wide web: http://www.mobot.org/MOBOT/research/APweb
Taberlet P., L. Gielly, G. Pauton and J. Bouvet (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant mol. biol. 17: 1105-1109.
Takayama, K., T. Ohi-Toma, H. Kudoh and H. Kato (2005) Origin and diversification of Hibiscus glaber, species endemic to the oceanic Bonin islands, revealed by chloroplast DNA polymorphism. Mol. Ecol. 14: 1059-1071.
Takayama, K., T. Kajita, J. Murata and Y. Tateishi (2006) Phylogeography and geneticstructure of Hibisucs tiliaceus speciation of a pantropical plant with sea-drifted seeds. Mol. Ecol. 15: 2871-2881.
Takayama, K., Y. Tateishi, J. Murata and T. Kajita (2008) Gene flow and population subdivision in a pantropical plant with sea-drifted seeds Hibiscus tiliaceus and its allied species: evidence from microsatellite analyses. Mol. Ecol. 17: 2730-2742.
Tamura K., G. Stecher, D. Peterson, A. Filipski and S. Kumar (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Ecol. 30 (12) : 2725-2729.
Tang Y., G. G. Michael. And J. D. Laurence (2007) Malvaceae. Flora of China. Science press and Missouri botanical garden 12: 264-294.
Taniguchi M., M. Nakamura, M. Tasaka and M. T. Morita (2014) Identification of gravitropic response indicator genes in Arabidopsis inflorescence stems. Plant signal. Behav. 9: e29570.
Tate J. A., J. F. Aguilar, S. J. Wagstaff, J. C. La Duke, T. A. B. Slotta, and B. B. Simpson (2005) Phylogenetic relationships within the tribe Malveae (Malvaceae, subfamily Malvoideae) as inferred from ITS sequence data. Am. J. Bot. 92 (4) : 584-602.
The Angiosperm Phylogeny Group (2009) An updated of the angiosperm phylogeny group classification for the orders and families of flowering plants: APGⅢ. Bot. J. Linn. Soc. 161: 105-121.
Van Heel W. A. (1978) Morphology of the pistil in Malvaceae-Ureneae. Blumea 24:123-127.
Wang Y. Q., D. X. Zhang, Z. Y. Chen. (2004) Pollen Histochemistry and Pollen : Ovule Ratios in Zingiberaceae. Ann. Bot. London 94: 583-591.
White T. J., T. Bruns, S. Lee and J. Taylor (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR orptocols: a guide to methods and applications. San Diego: Academic Press pp.315-322.
Wyatt R. (1984) Evolution of self-pollination in granite outcrop species if Arenaria (Caryophyllaceae). Ⅲ Reproductive effort and pollen-ovule ratios. Syst. Bot. 9: 432-440.
Xia X. (2013) DAMBE5: Acomprehensive software package for data analysis in molecular biology and evolution. Mol. Biol. Evol. 30: 1720-1728.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔