(3.236.222.124) 您好!臺灣時間:2021/05/10 16:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:薛旭程
研究生(外文):Hsu-Cheng Hsueh
論文名稱:毛果楊引張材形成時mRNA選擇性剪接變異之鑑定
論文名稱(外文):Identification of Alternatively Spliced mRNA Variant during the Tension Wood Formation in Populus trichocarpa
指導教授:孫英玄
指導教授(外文):Ying-Hsuan Sun
口試委員:王升陽謝立青曲芳華葉汀峰
口試委員(外文):Sheng-Yang WangLi-Ching HsiehFang-Hua ChuTing-Feng Yeh
口試日期:2016-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:88
中文關鍵詞:引張材膠質層CesAGO 富集分析細胞骨架選擇性剪接
外文關鍵詞:tension woodgelatinous layerCesAGO enrichment analysiscytoskeletonalternative splicing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:29
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
木本被子植物在受重力逆境下而造成莖幹彎曲時,莖幹的上方側會形成引張材來抵抗逆境。引張材與正常材相比有著高度纖維素結晶化所構成的膠質層,使得引張材纖維素含量相對增加,是種適於研究纖維素生合成調控機制的研究材料。而選擇性剪接已知與次生細胞壁的調控有關,此次研究著重分析選擇性剪接與引張材形成的相關性,以探討選擇性剪接在木材形成中所扮演的角色。
本研究首先分析毛果楊 (Populus tirchocarpa) 轉錄體引張材中基因的差異表達,發現調控纖維素生合成的 CesA 基因的表達並未在引張材中增加,表示纖維素的增加是由其他機制所調控。FLA 的表現量增加與 GH5 家族纖維酶的表現量減少可能是導致纖維素高度結晶化而形成膠質層,木質素含量相對減少的現象則是與木質素生合成基因 PAL、HCT、4CL 以及 CAld5H 的表現量減少有關。在引張材表現量增加的基因 GO 富集分析顯示出與微管的延伸、移動有關,而微管與纖維素生合成的位置相關,因此引張材中微管的分布將影響纖維素在細胞膜上合成的情況。在引張材表現量減少的基因 GO 富集分析則顯示與轉錄因子有關,其中屬於 NAC 轉錄因子的 PtrVND 表現量的減少可能是導致調控導管細胞分化減少,使引張材中導管數量降低的原因。
分析引張材轉錄異構體具有差異表達的選擇性剪接基因,結果顯示與微管定向延長有關的 SP1L1 以及與肌動蛋白絲解聚有關的 ADF4 有著選擇性剪接的現象。細胞骨架中肌動蛋白絲扮演著運輸纖維素合成酶至細胞膜微管的位置進行合成,而選擇性剪接的發生便可能是引張材形成的重要機制。此外,與木質素生合成有關的 C3H 基因也有著選擇性剪接的現象,表示引張材中木質素含量相對減少的現象選擇性剪接也涉及其中。另外,針對引張材轉錄體分析具有內含子保留現象的基因,結果再次顯示出與細胞骨架有關的基因有著內含子保留的現象,這些基因包括與微管有關的 SP1L1、MAP 以及與肌動蛋白有關的 ARP。
利用 qRT-PCR 分析這些細胞骨架相關的基因於引張材形成時間序列的表達量變化,結果 SP1L1_8.3 隨著引張材的形成而表現量逐漸下降,其選擇性剪接 SP1L1_8.7 則是逐漸上升。ADF4.1 主要在引張材誘導初期表現量減少,ADF4.2 則是在引張材成熟時表現量增加。這些結果提供了選擇性剪接基因的表達模式,並據此推測與細胞骨架有關的選擇性剪接調控機制與引張材形成有關。


When woody angiosperm exposed to gravitational stress, tension wood would be formed at the up-side of the wood to counter act the exerted mechanical or gravitational stresses. Compare to the normal wood, the secondary cell wall of the tension wood would form a thick gelatinous cell wall layer (G-layer) which composed of more than 90% of cellulose crystalline. Such characteristics make the tension wood a suitable material for studying regulatory mechanism of cellulos biosynthesis. Alternative splicing (AS) has been demonstrated to regulate the biosynthesis of secondary cell wall. This research focued on identify alternative spliced genes in tension wood, and study the roles of AS in tension wood formation.
Transcriptome analysis studied were first carried out to identify differentially expressed genes between tension wood and normal wood in Populus trichocarpa, the results showed that cellulose synthase (CesA) genes that catalyzed cellulose biosynthesis, were not up-regulated in tension wood, suggested that the increase of cellulose content were regulated by other mechanism. The up-regulation of FLA gene and down-regulation of cellulose hydrolase 5 (GH5) family in tension wood may have resulted in the highly crystallized cellulose in the G-layer. The down-regulation of PAL, HCT, 4CL and CAld5H contributed to the low lignin content in tension wood. Gene ontology (GO) enrichment analysis of the up-regulation genes in tension wood reveal that the tension wood formation is related to extension and motility of microtubule. Microtubule distribution are known to affect the position of cellulose biosynthesis. The results suggested that restructuring of cytoskeleton played an important role in tension wood. Transcription factors, on the other hand, are enriched in the down-regulated genes in tension wood. Among these down-regulated transcription factors are the PtrVNDs, homologous to a class of NAC transcription factors that regulate vessel cells differentiation in Arabidopsis. The decrease of vessels in the tension wood maybe due to the down-regulation of PtrVNDs.
The analysis of differential expression of transcriptional isoform were carried out to identify alternative spliced gene. The results showed SP1L1 that related to directional extension of microtubule and ADF4 that related to actin filament depolymerization are among the differentially alternatively spliced genes, suggesting that cellulose biosynthesis in tension wood maybe regulated through AS of cytoskeleton related genes. The AS of C3H also were identified, suggesting that AS may also involved in regulating lignin biosynthesis in tension wood. The intron retention events were also studied during tension wood formation, and the results showed SP1L1, MAP and ARP, genes related to cytoskeleton, had retained intron in tension wood.
The expression patterns of these alternative spliced genes and isoforms were analyzed in a tension wood induction time-course. The results showed the expression of isoform SP1L1_8.3 decrease along with tension wood formation, whereas its alternative spliced isoform SP1L1_8.7 conversely increase. The expression of isoform ADF4.1 was down-regulated in the early stages of tension wood induction. In contrast, ADF4.2 is up-regulate in later stages. These expression patterns of the AS genes suggested that AS of cytoskeleton related genes maybe a key regulatory mechanism of tension wood formation.


壹、前言 1
貳、前人研究 4
一、次級生長 4
(一) NAC 轉錄因子 4
(二) 細胞骨架 5
二、引張材 7
三、選擇性剪接 10
(一) pre-mRNA 的剪接機制 11
(二) 選擇性剪接的類型 12
(三) 選擇性剪接對於次級生長的影響 14
參、材料與方法 16
一、樣本定序資料 16
二、基因差異表達的分析 17
三、選擇性剪接的分析 17
四、內含子保留差異表達的分析 18
五、Gene Ontology (GO) enrichment analysis 19
六、qRT-PCR (quantitative real time-polymerase chain reaction) 19
肆、結果 21
一、正常材與引張材中基因的差異表達分析 21
(一) 與次生細胞壁有關的基因 22
(二) CAZymes (Carbohydrate-Active enZymes) 32
二、選擇性剪接與引張材的形成 42
(一) 利用轉錄異構體檢測具有選擇性剪接的基因 42
(二) 選擇性剪接對蛋白質磷酸化的影響 45
(三) 檢測內含子保留具有差異表達的基因 47
三、選擇性剪接基因在引張材時間序列上的表達模式 49
伍、討論 53
陸、結論 58
柒、參考文獻 60
捌、附錄 72


Andersson-Gunnerås, S., E. J. Mellerowicz, J. Love, B. Segerman, Y. Ohmiya, P. M. Coutinho, P. Nilsson, B. Henrissat, T. Moritz1 and B. Sundberg (2006) Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. The Plant Journal. 45(2): 144-165.
Bao, H., E. Li, S. D. Mansfield, Q. C. Cronk, Y. A. Ei-Kassaby and C. J. Douglas (2013) The developing xylem transcriptome and genome-wide analysis of alternative splicing in Populus trichocarpa (black cottonwood) populations. BMC Genomics. 14(1): 359.
Barbazuk, W. B., Y. Fu and K. M. McGinnis (2008) Genome-wide analyses of alternative splicing in plants: Opportunities and challenges. Genome Research. 18(9): 1381–1392.
Barta, A., K. Sommergruber, D. Thompson, K. Hartmuth, M. A. Matzke and A. J. Matzke (1986) The expression of a nopaline synthase-human growth hormone chimeric gene in transformed tobacco and sunflower callus tissue. Plant Molecular Biology. 6(5): 347–357.
Barta, A., Y. Marquez and J. W. S. Brown (2012) Challenges in plant alternative splicing. In Alternative Pre-mRNA Splicing: Theory and Protocols. 79-91.
Beck, M., G. Komis, J. Müller, D. Menzel and J. Samaj (2010) Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell. 22(3): 755-771.
Blencowe, B. J. (2006) Alternative splicing: new insights from global analyses. Cell. 126(1): 37-47.
Boerjan, W., J. Ralph and M. Baucher (2003) Lignin biosynthesis. Annual review of plant biology. 54(1): 519-546.
Brown, J. W. S., G. Feix and D. Frendewey (1986) Accurate in vitro splicing of two pre-mRNA plant introns in a HeLa cell nuclear extract. The EMBO journal. 5(11): 2749–2758.
Brown, R. M., I. M. Saxena and K. Kudlicka (1996) Cellulose biosynthesis in higher plants. Trends in plant science. 1(5): 149-156.
Campbell, M. A., B. J. Haas, J. P. Hamilton, S. M. Mount and C. R. Buell (2006) Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7(1): 327.
Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard and B. Henrissat (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic acids research. 37: 233-238.
Chang, S., J. Puryear and J. Cairney (1993) A simple and efficient method for isolating RNA frome pine trees. Plant Molecular Biology Reporter. 11(2): 113-116.
Chunxiang, F., J. R. Mielenz, X. Xirong, G. Yaxin, C. H. Hamilton, J. M. Rodriguez, C. Fang, F. Marcus, R. Arthur, B. Joseph, A. D. Richard and Y. Z. Wang (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. PNAS. 108(9): 3803-3808.
Clair, B., J. Ruelle, J. Beauchêne, M. F. Prévost and M. Fournier (2006) Tension wood and opposite wood in 21 tropical rain forest species. 1. Occurrence and efficiency of the G-layer. IAWA Journal. 27(3): 329–338.
Clair, B., T. Alméras, G. Pilate, D. Jullien, J. Sugiyama and C. Riekel (2011) Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction. Plant Physiology. 155(1): 562–570.
Cosgrove, D. P. (2005) Growth of the plant cell wall. Nature Reviews Molecular Cell Biology. 6(11): 850-861.
Cote Jr, W. A., A. C. Day and T. E. Timell (1969) A contribution to the ultrastructure of tension wood fibers. Wood Science and Tchnology. 3(4): 257-271.
Didi, V., P. Jackson and J. Hejátko (2015) Hormonal regulation of secondary cell wall formation. Journal of Experimental Botany. 66(16): 5015-5027.
Du, Z., X. Zhou, Y. Ling, Z. Zhang and Z. Su (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research. 38: 64-70.
Evert, R.F. (2006) Xylem: cell types and developmental aspects. Esau''s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development, Third Edition. 255-290.
Fisher, D. D., and R. J. Cyr (1998) Extending the microtubule/microfibril paradigm. Plant Physiology. 116(3): 1043-1051.
Funada, R., T. Miura, Y. Shimizu, T. Kinase, S. Nakaba, T. Kubo and Y. Sano (2008) Gibberellin-induced formation of tension wood in angiospermae trees. Planta. 227(6): 1409-1414.
Gardiner, J. C., N. G. Taylor and S. R. Turner (2003) Control of cellulose synthase complex localization in developing xylem. Plant Cell, 15(8): 1740–1748.
Goodall, G. J., and W. Filipowicz (1989) The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell. 58(3): 473–483.
Gutierrez, R., J. J. Lindeboom, A. R. Paredez, A. M. Emons and D. W. Ehrhardt (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nature Cell Biology. 11(7): 797–806.
Haigler, C. H., M. Ivanova-Datcheva, P. S. Hogan, V. V. Salnikov, S. Hwang, K. Martin and D. P. Delmer (2001) Carbon partitioning to cellulose synthesis. Plant molecular biology. 47(1): 29–51.
Hansen, S. F., E. Bettler, A. Rinnan, S. B. Engelsen and C. Breton (2010) Exploring genomes for glycosyltransferases. Molecular BioSystems. 6(10): 1773-1781.
Hartmuth, K. and A. Barta (1986) In vitro processing of a plant premRNA in a HeLa cell nuclear extract. Nucleic acids research. 14(9): 7513– 7528.
He, Q., J. Peng, F. Yan, L. Lin, Y. Lu, H. Zheng, H. Chen and J. Chen (2012) Intron retention and 3’UTR analysis of Arabidopsis Dicer-like 2 transcripts. Molecular biology reports. 39(3): 3271-3280.
Hellgren, J. M., K. Olofsson and B. Sunberg (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiology. 135(1): 212-220.
Henrissat, B. and G. J. Davies (2000) Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol. 124(4): 1515-1519.
Hepler, P. K. and E. H. Newcomb (1964) Microtubules and fibrils in the cytoplasm of Coleus cells undergoing secondary wall deposition. The Journal of cell biology. 20(3): 529-533.
Herth, W. (1985) Plasma-membrane rosettes involved in localized wall thickening during xylem vessel formation of Lepidium sativum L. Planta. 164(1): 12-21.
Hoffmann, C., D. Moes, M. Dieterle, K. Neumann, F. Moreau, A. T. Furtado, D. Dumas, A. Steinmetz and C. Thomas (2014) Live cell imaging reveals actin-cytoskeleton-induced self-association of the actin-bundling protein WLIM1. Journal of Cell Science. 127(3): 583-598.
Hutchison, C. E., J. Li, C. Argueso, M. Gonzalez, E. Lee, M. W. Lewis, B. B. Maxwell, T. D. Perdue, G. E. Schaller, J. M. Alonso, J. R. Ecker and J. J. Kieber (2006) The Arabidopsis histidine phosphotransfer protein are redundant positive regulators of cytokinin signaling. The Plant Cell. 18(11): 3073-3087.
Iida, K., M. Seki, T. Sakurai, M. Satou, K. Akiyama, T. Toyoda, A. Konagaya and K. Shinozaki (2004) Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full length cDNA sequences. Nucleic acids research. 32(17): 5096–5103.
Iwata, H., and O. Gotoh (2011) Comparative analysis of information contents relevant to recognition of introns in many species. BMC Genomics. 12(1): 45.
Johson, L. N. and R. J. Lewis (2001) Structural basis for control by phosphorylation. Chemical reviews. 101(8): 2209-2242.
Jourez, B., A. Riboux and A. Leclercq (2001) Antomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv ‘Ghoy’). IAWA Journal. 22(2): 133-157.
Jurica, M. S., and M. J. Moore (2003) Pre-mRNA splicing: Awash in a sea of proteins. Molecular cell. 12(1): 5–14.
Karpinska, B., M. Karlsson, M. Srivastava, A. Stenberg, J. Schrader, F. Sterky, R. Bhalerao and G. Wingsle (2004) MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant molecular biology. 56(2): 255-270.
Kawaoka, A., P. Yoshida, S. Endo, K. Yamada and H. Ebinuma (2000) Functional analysis of tobacco LIM protein Ntlim1 involved in lignin biosynthesis. The Plant Journal. 22(4): 289-301.
Keren, H., G. Lev-Maor and G. Ast (2010) Alternative splicing and evolution: diversification, exon definition and function. Nature Reviews Genetics. 11(5): 345-355.
Koncz, C., F. Dejong, N. Villacorta, D. Szakonyi and Z. Koncz (2012) The spliceosome-activating complex: Molecular mechanisms underlying the function of a pleiotropic regulator. Frontiers in plant science. 3: 9.
Kubo, M., M. Udagwa, N. Nishikubo, G. Horiguchi, M. Yamaguchi, J. Ito, T. Mimura, H. Fukuda and T. Demura (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes & development. 19(16): 1855-1860.
Lafarguette, F., J. C. Leplé, A. Déjardin, F. Laurans, G. Costa, M. C. Lesage-Descauses and G. Pilate (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytologist. 164(1): 107-121.
Lee, C., R. Zhong, E. A. Richardson, D. S. Himmelsbach, B. T. McPhail and Z. H. Ye (2007) The PARVUS gene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis. Plant and cell physiology. 48(12): 1659-1672.
Li Q., Y. C. Lin, Y. H. Sun, J. Song, H. Chen, X. H. Zhang, R. R. Sederoff, and V. L. Chiang (2012) Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. PNAS. 109(36): 14699-14704.
Little, C. H. A. and R. A. Savidge (1987) The role of plant growth regulators in forest tree cambial growth. Plant Growth Regulation. 6(1): 137-169.
Love, J., S. Bjorklund, J. Vahala, M. Hertzberg, J. Kangasjarvi and B. Sundberg (2009) Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proceedings of the National Academy of Sciences. 106(14): 5984-5989.
Lu, S., L. Li, X. Yi, C. P. Joshi and V. L. Chiang (2008) Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress. Journal of Experiment Botany. 59(3): 681-695.
Marquez, Y., J. W. Brown, C. Simpson, A. Barta and M. Kalyna (2012) Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Research. 22(6): 1184–1195.
McCarthy, R. L., R. Zhong, S. Fowler, D. Lyskowski, H. Piyasena, K. Carleton, C. Spicer and Z. H. Ye (2010) The Poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant and Cell Physiology. 51(6): 1084-1090.
Mellerowicz, E. J., M. Baucher, B. Sunberg and W. Boerjan (2001) Unravelling cell wall formation in the woody dicot stem. Plant Molecular Biology. 47: 239-274.
Mitsuda, N., A. Iwase, H. Yamamoto, M. Yoshida, M. Seki, K. Shinozaki and M. Ohme-Takagi (2007) NAC transcription factors, NST1 and NST3, are key regulators if the formation of secondary walls in woody tissues of Arabidopsis. The Plant Cell. 19(1): 270-280.
Mizrachi, E., V. J. Maloney, J. Silberbauer, C. A. Hefer, D. K. Berger, S. D. Mansfield and A. A. Myburg (2015) Inverstigating the molecular underpinnings underlying morphology and changes in carbon partitioning during tension wood formation in Eucalyptus. New Phytologist. 206(4): 1351-1363.
Müller, M., M. Burghammer and J. Sugiyama (2006) Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung. 60(5): 474-479.
Mutwil, M., S. Debolt and S. Persson (2008) Cellulose synthesis: a complex complex. Plant Biology. 11(3): 252-257.
Nakajima, K. T. Kawamura and T. Hashimoto (2006) Role of the SPIRAL1 gene gamily in anisotropic growth of Arabidopsis thaliana. Plant and cell physiology. 47(4): 513-522.
Nakajima, K., I. Furutani, H. Tachimoto, H. Matsubara and T. Hashimoto (2004) SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control for rapidly expanding Arabidopsis cells. The Plant Cell. 16(5): 1178-1190.
Nelson, N. D. and W. E. Hillis (1978) Ethylene and tension wood formation in Eucalyptus gomphocephala. Wood Science and Technology. 12(4): 309-315.
Nugroho, W. D., Y. Yamagishi, S. Nakaba, S. Fukuhara, S. Begum, S. N. Marsoem, J. H. Ko, H. O. Jin and R. Funada (2012) Gibberellin is required for the formation of tension wood and stem gravitropism in Acacia mangium seedlings. Annals of botany. 110(4): 887-895.
Okuyama, T., H. Yamamoto, M. Yoshida, Y. Hattori and R. R. Archer (1994) Growth stresses in tension wood: role of microfibrils and lignifications. Annales des sciences forestières. 51(3): 291-300.
Olsen, A. N., H. A. Ernst, L. L. Leggio and K. Skriver (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends in plant science. 10(2): 79-87.
Persson, S., H. Wei, J. Milne, G. Page and C. Sommerville (2005) Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proceedings of the National Academy of Sciences of the United States of America. 102(24): 8633-8638.
Pesquet, E. and H. Tuominen (2011) Ethylene stimulates tracheary element differentiation in Zinnia ellegans cell cultures. New Phytologist. 190(1): 138-149.
Pilate, G., A. Déjardin, F. Laurans and J. C. Leplé (2004) Tension wood as a model for functional genomics of wood formation. New Phytologist. 164(1): 63-72.
Qiu, D., I. W. Wilson, S. Gan, R. Washusen, G. F. Moran and S. G. Southerton (2008) Gene expression in Eucalyptus branch wood with marked variation in cellulose microfibril orientation and lacking G-layers. New Phytologist. 179(1): 94–103.
Reddy, A. S. N. (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annual Review of Plant Biology. 58: 267-294.
Reddy, A. S., M. F. Rogers, D. N. Richardson, M. Hamilton and A. Ben-Hur (2012) Deciphering the plant splicing code: Experimental and computational approaches for predicting alternative splicing and splicing regulatory elements. Frontiers in plant science. 3: 18.
Reddy, A. S., Y. Marquez, M. Kalyna and A. Barta (2013) Complexity of the alternative splicing landscape in plants. The Plant Cell. 25(10): 3657-3683.
Ruelle, J., B. Clair, J. Beauchene, M. F. Prevost and M. Fournier (2006) Tension wood and opposite wood in 21 tropical rain forest species. 2. Comparison of some anatomical and ultrastructural criteria. IAWA Journal. 27: 341-376.
Ruelle, J., J. Beauchêne, H. Yamamoto and B. Thibaut (2010) Variations in physical and mechanical properties between tension and opposite wood from three tropical rainforest species. Wood Science and Technology. 45(2): 339-537.
Sakharkar, M. K., V. T. Chow and P. Kangueane (2004) Distributions of exons and introns in the human genome. In silico biology. 4(4): 387-393.
Sánchez-Rodríguez, C., S. Bauer, K. Hématy, F. Saxe, A.B. Ibáñez, V. Vodermaier, C. Konlechner, A. Sampathkumar, M. Rüggeberg, E. Aichinger, L. Neumetzler, I. Burgert, C. Somerville, M. T. Hauser and S. Persson (2012) Chitinase-like1/pom-pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis. The Plant Cell. 24(2): 589-607.
Schwerk, C. and K. Schulze-Osthoff (2005) Regulation of apoptosis by alternative pre-mRNA splicing. Molecular Cell. 19(1): 1-13.
Simpson, C. G., G. Thow, G. P. Clark, S. N. Jennings, J. A. Watters and J. W. Brown (2002) Mutational analysis of a plant branchpoint and polypyrimidine tract required for constitutive splicing of a miniexon. Rna. 8(1): 47-56.
Somerville, C. (2006) Cellulose synthesis in higher plants. Annual Review of Cell and Developmental Biology. 22: 53-78.
Staiger, D. and J. W. S. Brown (2013) Alternative splicing at the intersection of biological timing, development, and stress responses. The Plant Cell. 25(10): 3640-3656.
Syed, N. H., M. Kalyna, Y. Marquez, A. Barta and J. W. S. Brown (2012) Alternative splicing in plants – coming of age. Trends in plant science. 17(10): 616-623.
Tang, X., Y. Zhuang, G. Qi, D. Wang, H. Liu, K. Wang, G. Chai and G. Zhou (2015) Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation. Scientific Reports. 16(5): 12240.
Thornton, B. and C. Basu (2011) Real-time PCR (qPCR) primer design using free online software. Biochemistry and Molecular Biology Education. 36(2): 145-154.
Timell, T. E. (1969) The chemical composition of tension wood. Svensk pappers Tidning. 72: 173-181.
Ververis, C., K. Georghiou, N. Christodoulakis, P. Santas and R. Santas (2004) Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products. 19(3): 245-254.
Wang, B. B. and V. Brendel (2004) The ASRF database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biology. 5(12): R102.
Wang, J. P., L. Chuang, P. L. Loziuk, H. Chen, Y. C. Lin, R. Shi, G. Z. Qu, D. C. Muddiman, R. R. Sederoff and V. L. Chiang (2015) Phosphorylation is an on/off switch for 5-hydroxyconiferaldehyde O-methyltransferase activity in poplar monolignol biosynthesis. PNAS. 112(27): 8481-8486.
Wang, J. P., P. P. Naik, C. H. Chen, R. Shi, C. Y. Lin, J. Liu, C. M. Shuford, Q. Li, Y. H. Sun, S. Tunlaya-Anukit, C. M. Williams, D. C. Muddiman, J. J. Ducoste, R. R. Sederoff and V. L. Chiang (2014) Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa. The Plant Cell. 26(3): 894-914.
Washusen, R., J. Ilic and G. Waugh (2003) The relationship between longitudinal growth strain, tree form and tension wood at the stem periphery of ten- to eleven-year-old Eucalyptus globulus Labill. Holzforschung. 57(3): 308–316.
Washusen, R., R. Evans and S. Southerton (2005) A study of Eucalyptus grandis and Eucalyptus globulus branch wood microstructure. Iawa Journal. 26(2): 203–210.
Wightman, R. and S. R. Turner (2008) The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. The Plant Journal. 54(5): 794-805.
Will, C. L., and R. Lührmann (2011). Spliceosome structure and function. Cold Spring Harbor perspectives in biology. 3(7): a003707.
Yang, X., J. Coulombe-Huntington, S. Kang, G. M. Sheynkman, T. Hao, A. Richardson, S. Sun, F. Yang, Y. A. Shen, R. R. Murray, K. Spirohn, B. E. Begg, M. Duran-Frigola, A. MacWilliams, S. J. Pevzner, Q. Zhong, S. A. Trigg, S. Tam, L. Ghamsari, N. Sahni and S. Yi (2016) Widespread expansion of protein interaction capabilities by alternative splicing. Cell. 164(4): 805-817.
Yoshizawa, N., A. Inami, S. Miyake, F. Ishiguri and S. Yokota (2000) Anatomy and lignin distribution of reaction wood in two Magnolia species. Wood Science and Technology. 34(3): 183-196.
Zhao, Y., J. Sun, P. Xu, R. Zhang and L. Li (2014) Intron-mediated alternative splicing of wood-associated NAC transcription factor1B regulates cell wall thickening during fiber development in Populus speices. Plant Physiology. 164(2): 765-766.
Zhong, R., C. Lee and Z. H. Ye (2010a) Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis. Trends in Plant Science. 15(11): 625-632.
Zhong, R., C. Lee and Z. H. Ye (2010b) Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiology. 152(2): 1044-1055.
Zhong, R., C. Lee, J. Zhou, R. L. McCarthy and Z. H. Ye (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. The Plant Cell. 20(10): 2763-2782.
Zhong, R., T. Demura and Z. H. Ye (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. The Plant Cell. 18(11): 3158-3170.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔