跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 09:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江曜宇
研究生(外文):Yao-Yu Chiang
論文名稱:梨山地區農業活動對溪流水化學的影響
論文名稱(外文):Effects of Agricultural Activities on Water Chemistry of Streamwater in Lishan Region
指導教授:劉瓊霦劉瓊霦引用關係
口試委員:許博行詹勳全李錦育陸象豫
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:水化學梨山農業活動
外文關鍵詞:Water ChemistryLishanAgricultural Activities
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
梨山地區高山農業包含溫帶水果、高山茶與高冷蔬菜,是台灣高海拔山區的特殊景觀,由於種植坡度陡峭以及過度施肥情況下,已造成位於下坡處的德基水庫水質優養化。因此本研究選取德基水庫集水區的有勝溪、合歡溪、畢祿溪與成武溪作為研究對象,從水化學特性,探討高山農業對水庫集水區溪流水化學之影響,試驗資料採樣時間為2014年3月至2015年12月。由土地利用型圖可得知有勝溪是菜園地面積比例最高者,其次為合歡溪,果樹面積比例最高者為成武溪,其次為合歡溪,畢祿溪集水區則無開墾行為。
在基流時,有勝溪NO3 與K濃度是所有試驗集水區中最高者,NO3 濃度比起其他集水區高3 ~ 4倍。且有勝溪NO3 與Cl離子變化幅度較大,峰值時期與農業活動重疊,顯示農業活動除了影響NO3 以外,亦對Cl產生影響。合歡溪與成武溪雖然皆有農業活動,但從水化學特性來看並無影響,此應與二處森林緩衝帶有關,森林將過多的營養鹽吸附留存,減少營養鹽流入溪流中,達到淨化水質之功效。有勝溪水化學特性在2015年蘇迪勒颱風事件,明顯受到農業活動影響,其中NH4 與NO2 濃度皆超過環保署所規定之飲用水水質限值。在各集水區養分輸出方面,NO3 在畢祿溪是所有試驗集水區中輸出量最高者,推論可能原因為畢祿溪集水區天然林之林木已經達到成熟期,對於養分吸收減少,但森林枯枝落層微生物相豐富,分解作用相當旺盛,導致會有較多的養分流失。
主成分分析結果顯示,第一主成分可解釋變異量為36.75 %,與HCO3、Cl、SO4、Na、Mg、Ca受土壤岩石風化作用相關性較大,其次為第二主成分,可解釋變異量為19.84 %,與NO3、K植群的養分循環和農業活動有關。畢祿溪上游有大面積崩塌,溪流水中鹽基陽離子濃度明顯較高,其原因除植物死亡減少吸收此等陽離子外,地被裸露面積增加,風化作用較旺盛,增加了無機陽離子水溶的機會,使得第一主成分得點 (factor scores) 較大。有勝溪中下游因農業活動施撒過多的肥料,如種植高麗菜通常會使用石灰增加土壤pH值,且菜園地土壤裸露,使風化作用增強,養分溶出較多,導致有勝溪第一與第二主成分得點較其他集水區高。


Mountain agriculture is a special landscape in Taiwan, its crops including temperate fruit trees, high mountain tea and cold vegetables. The steep slope, crops (shallow root vegetables), farming (using a lot of fertilizer and pesticides), carrying capacity and management of land resulted problems of water quality in the reservoir watershed. This study focused on the relationship between land use types and water quality in the Tehchi reservoir watershed. Long-term study data was collected from March 2014 to December 2015 at Yusheng, Pilu, Hehuan and Chengwu watersheds.
Land use map showed that the Yusheng watershed has the highest percentage of vegetation cover and that of the Hehuan watershed is the second. The Chengwu watershed has the highest percentage of orchard cover and that of the Hehuan is the second. There are no agricultural activities in Pilu watershed.
Concentration of NO3 and K were the highest in comparison with that of other watersheds during the low flow period and even had 3 to 4 times higher than the concentration of other creeks. Concentrations of NO3 and Cl of the Yusheng creek had the greatest fluctuation ranges and the time of peak concentration for these two ions was in consistent with the time period of frequent agricultural activities. The phenomenon indicated that agricultural activities are not only influencing the concentration of NO3 but also that of Cl. Although agricultural activities are found in both Hehuan and Chengwu watersheds, there is no significant influence on water chemistry for these two creeks due to the forestry buffer zones effect which is considered having ability to absorb nutrients. Water chemistry of the Yusheng creek was affected by agricultural activity during typhoon period and the concentration of NH4 and NO2 were exceeded the limit specified by the Environmental Protection Aministration.
Output of NO3 for the Pilu creek is the highest among all monitored watersheds. The possible reasons for the highest output are : 1. Vegetation in the watershed is matured old forests which need fewer nutrients and therefore more nutrients can be exported 2. Vegetables and fruits absorbed more nutrients than that of forest and 3. Volume of baseflow of Pilu creek is highest.
The results of principal component analysis showed that principal component 1 (PC1) which represent weathering can explain 36.75 % varience, PC2 which represent land use can explain 19.84 % varience. Pilu upstream had large landslide areas, causing cation concentration higher, so it had higher PC1 scores. Yusheng midstream and downstream had lots of agricultural activities and fertilizer, causing PC1 and PC2 scores higher.


摘要 i
Abstrat ii
目錄 iv
表目次 vi
圖目次 vii
壹、 前言 1
一、 研究起源 1
二、 研究目的 3
貳、 前人研究 4
一、 溪流水無機養分離子特性 4
二、 土地利用與水質關係 6
三、 颱風事件對溪流水水化學之影響 8
四、 森林淨化水質之功效 10
參、 材料與方法 12
一、 試驗地概況 12
(一) 有勝溪 13
(二) 合歡溪 15
(三) 畢祿溪 16
(四) 成武溪 18
二、 水樣收集與現場測量 20
三、 水化學分析 21
四、 土地利用數化 22
五、 颱風事件 27
六、 資料處理和分析 29
(一) 變方分析及多重比較 29
(二) 主成分分析 29
肆、 結果 31
一、 水化學時間變異分析 31
二、 雨水與溪流水離子濃度 41
三、 雨水與溪流水通量 42
四、 有勝溪於颱風期間溪流水化學變化 45
五、 主成分分析結果 49
伍、 討論 51
一、 農業活動對水化學濃度之影響 51
(一) 基流水化學特性 51
(二) 颱風溪流水化學特性 52
(三) 雨水水化學特性 54
二、 農業活動對水化學通量之影響 55
三、 綜合評估農業活動對水化學影響 56
陸、 結論 59
柒、 參考文獻 61




中央氣象局 (2015) 中央氣象局颱風資料庫網頁系統。2015 年 8 月 10 日,取自 http: http://rdc28.cwb.gov.tw/TDB/。
王立志、鄧子菁、夏禹九、金恆鑣、劉瓊霦 (1998) 1996 年葛樂禮颱風期間福山試驗林溪流水化學變化之研究,台大實驗林研究報告 12(3):189-201。
王立志、鄧子菁、夏禹九、金恆鑣、劉瓊霦 (1999) 1996 年賀伯颱風期間福山試驗林溪流水化學變化之研究。中華林學季刊 32 (1):217-232。
王立志、羅士福、陳信雄、魏聰輝、賴彥任、張振生 (2010) 溪頭試驗林 2005 年泰利颱風期間溪流水化學變化。中華林學季刊 43(3):395-412。
王漢泉 (1990) 德基水庫水質優養等級之研究。師大生物學報 25:42-55。
成允聖、劉瓊霦 (2014) 造林對於減少養分流失之效益。103 年森林資源永續發展研討會論文集。
何春蓀 (1986) 台灣地質概論--台灣地質圖說明書(修訂第二版)。經濟部中央地質調查所,163 頁。
呂秀英 (2011) 正確使用統計圖表呈現處理間比較。台灣農業研究 60(1):61-71。
金恆鑣 (1991) 基礎土壤學,林業試驗所 96-98。
金恆鑣、夏禹九、黃正良、陳春雄、楊炳炎 (1984) 蓮華池試驗集水區暴雨時期水文特性及其與溪水懸浮質、養分濃度的關係。林試所試驗報告 425:15。
金恆鑣、康敏捷、王明光 (1995) 蓮華池兩森林土壤之硫酸吸附現象。林業試驗所研究報告季刊 10(1):65-74。
吳俊宗、高麗珠、黃文亞 (2000) 翡翠水庫浮游藻與水質關係之研究 (Ⅴ)。台北翡翠水庫管理局研究報告,139頁。
吳政南、柳文成 (2013) 應用多變量統計分析評估臺北水源特定區集水區水質。農業工程學報 59(2):29-50。
吳榮斌、羅紹麟 (1999) 森林緩衝帶對水質改善效益之評估: 以德基水庫為例。林業試驗所研究報告季刊 21(4):47-56。
林俊全、鄭宏祺、鄭遠昌、任家弘 (2010) 台灣中部梨山土地利用變遷之研究。工程環境會刊 25:93-102。
林經偉、卓家榮、林晉卿、吳建銘、黃瑞彰 (2007) 集水區果園之土壤及肥培技術改進。臺南區農業專訊 60:16-23。
胡弘道 (2003) 兼顧開發與保育—建立森林緩衝帶。永續森林研討會論文集。
俞震甫、吳才煒、盧佳遇 (1994) 臺灣板岩地層中變質基性岩之地化特徵。中國地質學會會刊 37(1):53-67。
陸象豫、劉瓊霦 (2010) 影響溪流水水化學的因子。林業研究專訊 17(4):64-66。
陳子英 (2007) 大同地區、有勝溪流域植群調查研究。內政部營建署雪霸國家公園管理處保育研究報告,87 頁。
陳志豪、陳明義、陳文民、陳恩倫 (2009) 合歡溪集水區植群分類與製圖。林業研究季刊 31(1):1-16。
陳起鳳、康世芳、林鎮洋、黃郁強 (2013) 集水區土地利用變遷對水質影響之關聯性分析-以翡翠水庫為例。中國土木水利工程學刊 25(3):223-229。
陳順宇 (2005) 多變量分析。華泰文化,1-63。
侯如真、蘇元風、洪維均、陳秋楊、鄭克聲 (2010) SPOT 衛星影像應用於德基水庫集水區歷年土地利用變遷之分析。農業工程學報 56(4):42-54。
黃正良、金恆鑣、廖學誠、陳明杰,李福明 (2007) 2001 年桃芝颱風蓮華池人工林及天然林集水區溪流水化學之比較。台大實驗林研究報告21(3):53-63。
張哲銘 (2004) 921地震後大甲溪集水區全方位治理之研究,國立國立中興大學水土保持學研究所碩士論文,154頁。
彭宗仁、范家華、林幸助、董奇矗 (2007) 武陵地區河水中硝酸鹽之來源。中華水土保持學報 38(4):385-398。
葉春國、廖學誠、詹進發、黃正良、薛美莉 (2008) 水里溪上游集水區土地利用與溪流水中硝酸鹽濃度關係之探討。中華水土保持學報 39(2):141-153。
廖學誠、黃正良 (2001) 森林集水區溪流水離子濃度季節性變化之研究。國立台北師範學院學報 14:441-458。
蔡佳育、陳明義、陳恩倫、陳文民、俞秋豐 (2006) 畢祿溪集水區之植群分類與製圖。林業研究季刊 28(3):1-16。
劉瓊霦、許博行 (1998):關刀溪森林集水區降水及溪水水化學。國立中興大學實驗林研究彙刊 20(2):71-78。
劉瓊霦、陳春雄、金恆鑣 (2004) 以主成分分析探討福山試驗林哈盆溪集水區水化學的空間變異性。臺灣林業科學 19(4):363-374。
劉瓊霦、何冠琳、許博行 (2005) 造林對 921 地震崩塌地土壤性質與土壤水之影響。林業研究季刊 27(3):1-10。
蕭文偉、羅玉婷、陳岫女、劉瓊霦 (2013) 內洞國家森林遊樂區水環境化學。林業研究季刊 35(2):127-138。
Ahearn, D. S., Sheibley, R. W., Dahlgren, R. A., Anderson, M., Johnson J. and Tate, K. W. (2005) Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California. Journal of Hydrology. 313: 234-247.
Anbumozhi, V., Radhakrishnan, J. and Yamaji, E. (2005) Impact of riparian buffer zones on water quality and associated management considerations. Ecological Engineering. 24: 517-523.
Anderson, N., Strader, R. and Davidson, C. (2003) Airborne reduced nitrogen: ammonia emissions from agriculture and other sources. Environment International. 29(2): 277-286.
Avila, A., Neal, C. and Terradas, J. (1996) Climate change implications for streamflow and streamwater chemistry in a Mediterranean catchment. Journal of Hydrology. 177: 99-116.
Baron, J. (1991) Biogeochemistry of a subalpine ecosystem, Spring-Verlag, New York. 247p.
Bartsch, S., Peiffer, S., Shope, C. L., Arnhold, S., Jeong, J. J., Park, J. H. and Fleckenstein, J. H. (2013) Monsoonal-type climate or land-use management: Understanding their role in the mobilization of nitrate and DOC in a mountainous catchment. Journal of Hydrology. 507: 149-162.
Bu, H., Meng, W., Zhang, Y. and Wan, J. (2014) Relationships between land use patterns and water quality in the Taizi River basin, China. Ecological Indicators. 41: 187-197.
Cirmo, C. P. and McDonnell J. J. (1997) Linking the hydrological and biogeochemical controls of nitrogen transport in near-stream zones of temperate-forested catchments: a review. Journal of Hydrology. 199: 88-120.
de Souza, A. L., Fonseca, D. G., Libório, R. A., and Tanaka, M. O. (2013) Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil. Forest Ecology and Management. 298: 12-18.
EEA (2009) EMEP/CORINAIR Air Pollutant Emission Inventory Guidebook e 2009. Technical report/2009. In: Agriculture. European Environment Agency.
Elwood, J. W. and Turner, R. R. (1989) Streams: Water chemistry and ecology. In Analysis of biogeochemical cycling processes in Walker Branch Watershed. Springer New York. p. 301-350.
Evans, C. and Davies, T. D. (1998) Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resources Research. 34(1): 129-137.
Gardi, C. (2001) Land use, agronomic management and water quality in a small Northern Italian watershed. Agriculture, Ecosystems and Environment. 87: 1-12.
Grimaldi, C., Grimaldi, M., Millet, A., Bariac, T. and Boulègue, J. (2004) Behaviour of chemical solutes during a storm in a rainforested head-water catchment. Hydrological processes. 18: 93-106.
Guglielmi, Y., Bertrand, C., Compagnon, F., Follacci, J. P. and Mudry, J. (2000) Acquisition of water chemistry in a mobile fissured basement massif: its role in the hydrogeological knowledge of the La Clapiere landslide (Mercantour massif, southern Alps, France), Journal of Hydrology. 229: 138-148.
Hornbeck, J. W., Bailey, S. W., Buso, D. C. and Shanley, J. B. (1997) Streamwater chemistry and nutrient budgets for forested watershed in New England: variability and management implications. Forest Ecology and Management, 93(1): 73-89.
Houle, D. and Carignan, R. (1995) Role of SO4 adsorption and desorption in the long-term S budget of a coniferous catchment on the Canadian Shield, Biogeochemistry. 28:161-182.
Kadlec, R. H. and Knight, R. L. (1996) Treatment wetlands. Lewis Publishers, New York. pp. 893.
Kopácek, J., Stuchlik, E. and Wright, R. F. (2005) Long-term trends and spatial variability in nitrate leaching from alpine catchment – lake ecosystems in the Tatra Mountains. Environmental Pollution. 136: 89-101.
Kuusemets, V. and Mander, Ü. (1999) Ecotechnological measures to control nutrient losses from catchments. Water Science and Technology. 40(10): 195-202.
Lahermo, P., Mannio, J. and Tarvainen, T. (1995) The hydrogeochemical comparison of streams and lakes in Finland. Applied Geochemistry. 10: 45-64.
Likens, G. E. and Bormann, F. H. (1995) Biogeochemistry of a Forested Ecosystem. 2nd ed. Springer-Verlag. New York. 159pp.
Malina, J. F. Jr. (1996) Water Quality, In: Mays, L.W.(ed), Water Resources Handbook, McGraw-Hill Companies, USA. pp:8.3-8.49.
Moldanová, J., Grennfelt, P., Jonsson, A. D., Spranger, T., Aas, W., Munthe, J. and Rabl, A. (2011) Nitrogen as a threat to European air quality. In: Sutton, et al. (Eds.), The European Nitrogen Assessment, Sources, Effects and Policy Perspectives. Cambridge University Press. pp. 405e433.
Ngoye, E. and Machiwa, J. F. (2004) The influence of land use patterns in the Ruvu river watershed on water quality in the river system. Physics and Chemistry of the Earth, Parts A/B/C. 29(15): 1161-1166.
Ohte, N., Tokuchi, N., Shibata, H., Tsujimura, M., Tanaka T. and Mitchell, M. J. (2001) Hydrobiogeochemistry of forest ecosystems in Japan: major themes and research issues. Hydrological Processes. 15: 1771-1789.
Ohrui, K. and Mitchell, M. J. (1999) Hydrological flow paths controlling stream chemistry in Japanese forested watersheds. Hydrological Processes. 13: 877-888.
Osborne, L. L. and Wiley, M. J. (1988) Empirical relationships between land use/cover and stream water quality in an agricultural watershed. Journal of Environmental Management. 26(1): 9-27.
Ostroumov, S. A. (1998) Biological filtering and ecological machinery for self-purification and bioremediation in aquatic ecosystems: towards a holistic view. In Rivista di Biologia/Biology Forum. 91(2) 221-232.
Peterjohn, W. T. and Correll, D. L. (1984) Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology. 65(5): 1466-1475.
Pieterse, N. M., Bleuten, W. and Jorgensen, S. E. (2003) Contribution of point sources and diffuse sources to nitrogen and phosphorus loads in lowland river tributaries. Journal of Hydrology. 271: 213-225.
Salmon, C. D., Walter, M. T., Hedin, L. O., and Brown, M. G. (2001) Hydrological Controls on Chemical Export from an Undisturbed Oldgrowth Chilen Forest. Journal of Hydrology. 253: 69-80.
Schultz, R. C. and Isenhart, T. M. (1997) Riparian Buffers for Agricultural Land. Agroforestry Notes (USDA-NAC). 2.
Skj?th, C. A. and Geels, C. (2013) The effect of climate and climate change on ammonia emissions in Europe. Atmospheric Chemistry and Physics. 13: 117-128.
Tanner, R. L. (1990) Sources of acids, bases, and their precursors in the atmosphere. Pages. 1-19 in S. E. Lindberg, A. page, and S. Norton, eds. Acidic Precipitation, Vol 3, Source, Deposition, Canopy Interactions. Springer-Verlag, New York.
Tsegaye, T., Sheppard, D., Islam, K. R., Tadesse, W., Atalay, A. and Marzen, L. (2006) Development of chemical index as a measure of in-stream water quality in response to land-use and land cover changes. Water, Air, and Soil Pollution. 174(1-4): 161-179.
Kadlec, R. H. and Knight, R. L. (1996) Treatment wetlands. Lewis Publishers, New York, pp. 893.
King, H.B., Hsia, Y.J., Liou, C.B., Lin, T.C., Wang, L.J. and Hwong, J.L. (1994) Chemistry of precipitation, throughfall, stemflow and streamwater of six forest sites in Taiwan, In: Peng, C.I. & Chou, C.H.(eds), Biodiversity and Terrestrial Ecosystems, Institute of Botany, Academia Sinica Monograph Series No.14, pp: 355-362.
Visser, S. (1961) Chemical composition of rainwater in Kampala, Uganda, and its relation to meteorological and topographical conditions. Journal of Geophysical Research. 66(11): 3759-3765.
Wayland, K. G., Long, D. T., Hyndman, D. W., Pijanowski, B. C., Woodhams, S. M. and Haack, S. K. (2003) Identifying relationship between baseflow geochemistry and land use with synoptic sampling and R-mode factor analysis, Journal of Environmental Quality. 32: 180-190.
Wayne, F. M., Andrew, W. B., Thomas F. D. and McKenneth, D. (1989) Nutrient concentration-stream discharge relationships during storm events in a first-order stream. Journal of Hydrology. 179: 97-102.
Woli, K. P., Nagumo, T., Kuramochi, K., and Hatano, R. (2004). Evaluating river water quality through land use analysis and N budget approaches in livestock farming areas. Science of the Total Environment. 329(1): 61-74.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王立志、羅士福、陳信雄、魏聰輝、賴彥任、張振生 (2010) 溪頭試驗林 2005 年泰利颱風期間溪流水化學變化。中華林學季刊 43(3):395-412。
2. 王漢泉 (1990) 德基水庫水質優養等級之研究。師大生物學報 25:42-55。
3. 金恆鑣、康敏捷、王明光 (1995) 蓮華池兩森林土壤之硫酸吸附現象。林業試驗所研究報告季刊 10(1):65-74。
4. 吳政南、柳文成 (2013) 應用多變量統計分析評估臺北水源特定區集水區水質。農業工程學報 59(2):29-50。
5. 林俊全、鄭宏祺、鄭遠昌、任家弘 (2010) 台灣中部梨山土地利用變遷之研究。工程環境會刊 25:93-102。
6. 林經偉、卓家榮、林晉卿、吳建銘、黃瑞彰 (2007) 集水區果園之土壤及肥培技術改進。臺南區農業專訊 60:16-23。
7. 陳志豪、陳明義、陳文民、陳恩倫 (2009) 合歡溪集水區植群分類與製圖。林業研究季刊 31(1):1-16。
8. 陳起鳳、康世芳、林鎮洋、黃郁強 (2013) 集水區土地利用變遷對水質影響之關聯性分析-以翡翠水庫為例。中國土木水利工程學刊 25(3):223-229。
9. 侯如真、蘇元風、洪維均、陳秋楊、鄭克聲 (2010) SPOT 衛星影像應用於德基水庫集水區歷年土地利用變遷之分析。農業工程學報 56(4):42-54。
10. 葉春國、廖學誠、詹進發、黃正良、薛美莉 (2008) 水里溪上游集水區土地利用與溪流水中硝酸鹽濃度關係之探討。中華水土保持學報 39(2):141-153。
11. 蔡佳育、陳明義、陳恩倫、陳文民、俞秋豐 (2006) 畢祿溪集水區之植群分類與製圖。林業研究季刊 28(3):1-16。
12. 劉瓊霦、許博行 (1998):關刀溪森林集水區降水及溪水水化學。國立中興大學實驗林研究彙刊 20(2):71-78。
13. 劉瓊霦、何冠琳、許博行 (2005) 造林對 921 地震崩塌地土壤性質與土壤水之影響。林業研究季刊 27(3):1-10。
14. 蕭文偉、羅玉婷、陳岫女、劉瓊霦 (2013) 內洞國家森林遊樂區水環境化學。林業研究季刊 35(2):127-138。