(3.238.130.97) 您好!臺灣時間:2021/05/18 20:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林瑋姝
研究生(外文):Wei-Shu Lin
論文名稱:不同條件製備纖維素水凝膠之性質
論文名稱(外文):Properties of cellulose hydrogels prepared with different conditions
指導教授:李文昭李文昭引用關係
指導教授(外文):Wen-Jau Lee
口試委員:劉正字宋憶青陳奕君
口試委員(外文):Cheng-Tzu LiuYi-Ching SungYi-Chung Chen
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:107
中文關鍵詞:纖維素纖維素溶液纖維素水凝膠環氧氯丙烷氫氧化鈉/尿素水溶液氫氧化鈉/聚乙二醇水溶液
外文關鍵詞:CelluloseCellulose solutionsCellulose hydrogelsEpichlorohydrinNaOH/urea/waterNaOH/polyethylene glycol/water.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In this study, microcrystalline cellulose was employed as the raw material and the NaOH/urea/water and NaOH/PEG/water mixture were used as the solvent to prepare cellulose solutions. Cellulose hydrogels were made by reacting cellulose solutions with epichlorohydrin. The effects of the reaction temperature, the cellulose concentration and the crosslinking agent ratio on the properties of cellulose hydrogels were investigated. The results demonstrated that urea-type solvent performed better effect on dissolving cellulose than that of PEG-type solvent. The crystal morphology of regenerated celluloses that prepared from dehydrating cellulose solution was converted from cellulose I to cellulose II which further affected the characteristics of cellulose. The crosslinking density of cellulose hydrogels depended significantly on the type of solvent system and the amount of crosslinking agent added. Urea-cellulose hydrogels possessed higher crosslinking density than that of PEG-cellulose hydrogels. More amount of crosslinking agent led the cellulose hydrogels with a higher
crosslinking density. Cellulose hydrogels with a higher crosslinking density showed a better thermal resistance and higher mechanical strength. However, after dehydrated, cellulose hydrogels with higher crosslinking density had less thermal activity and lower reswelling capability.

Chapter 1 Introduction 1
Chapter 2 Literature review 3
1. Characteristic of cellulose 3
2. Cellulose solution 6
3. Cellulose Hydrogels 13
3.1 Synthetic polymer-based hydrogels 13
3.2 Natural polymer-based hydrogels 18
4. Organic-inorganic hybrid polymers 25
Chapter 3 Characteristics of Cellulose solution 29
I. Experimental 29
(Ⅰ) Materials 29
(Ⅱ) Preparation of cellulose solutions 29
(Ⅲ) Properties of cellulose solution 31
(Ⅳ) Preparation of regenerated cellulose 31
(Ⅴ) Measuring the properties of cellulose 31
II. Results and discussion 33
(Ⅰ) Properties of U-cellulose solution 33
(Ⅱ) Properties of P-cellulose solution 37
(Ⅲ)Morphology of the regenerated cellulose 42
(Ⅳ) HDXRD analysis of original and regenerated cellulose 44
(Ⅴ) FTIR analysis of original and regenerated celluloses 46
(Ⅵ) Micro structures of original and regenerated celluloses 49
(Ⅶ) Thermal analysis of original and regenerated celluloses 53
Chapter 4 Properties of cellulose hydrogels 57
I. Experimental 57
(Ⅰ) Materials 57
(II) Preparing of cellulose hydrogels 57
(Ⅲ) Curing characteristics of cellulose hydrogels 58
(Ⅳ) Measuring the properties of cellulose hydrogels 59
(Ⅴ) Properties of dehydrated cellulose hydrogels 61
II. Results and discussion 62
(Ⅰ) DSC analysis of cellulose solution mixed with epichlorohydrin 62
(Ⅱ) Viscosity variation in the mixture of cellulose solution/epichlorohydrin 66
(Ⅲ) Appearance of cellulose hydrogels 69
(Ⅳ) Compressive stress and strain of cellulose hydrogel 70
(Ⅴ) Swelling property of cellulose hydrogels 74
(Ⅵ) Dehydration property of cellulose hydrogels 76
(Ⅶ) Water adsorption capabilityof dehydrated cellulose hydrogels 78
(Ⅷ) Microstructure of celluloses hydrogels 81
(Ⅸ) FTIR analysis of celluloses hydrogels 83
(Ⅹ) Thermal activityanalysis of dry celluloses hydrogels 86
(ⅩⅠ) Thermal analysis of celluloses hydrogels 89
Chapter 5 Conclusion 92
Reference 94


1. Abe, K. and H. Yano (2011) Formation of hydrogels from cellulose nanofibers. Carbohydrate Polymers 85: 733-737
2. Abe, K. and H. Yano (2012) Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 19:1907-1912
3. Ahmed, E. M. (2015) Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research 6: 105-121
4. Alcântara, M. T. S., G. H. C. Varca, R. H. Amaral, T. C. B. Mattos, H. G.Riella and A. B. Lugão (2010) Synthesis and characterization of hydrogels composed by different types of poly(vinyl alcohol).In: Latin American Congress of Artificial Organs and Biomaterials, 6th, Gramado, RS
5. Alves, S. S. and J. L. Figueiredo (1989) Interpreting isothermal thermogravimetric data of complex reactions: application to cellulose pyrolysis at low temperatures. Journal of Analytical and Applied Pyrolysis 15: 347-355
6. Alves, S. S. and J. L. Figueiredo (1989) Kinetics of cellulose pyrolysis modelled by three consecutive first-order reactions. Journal of Analytical and Applied Pyrolysis 17: 37-46
7. Andreopoulos, F. M., C. R. Deible, M. T. Stauffer, S. G. Weber, W. R. Wagner, E. J. Beckman and A. J. Russell (1996) Photoscissable hydrogel synthesis viarapid photopolymerization of novel PEG-based polymers in the absence of photoinitiators. Journal of the American Chemical Society 118: 6235-6240
8. Andreopoulos, F. M., E. J. Beckman and A. J. Russell (1998) Light-induced tailoring of PEG-hydrogel properties. Biomaterials 19: 1343-1352
9. Barnes, A. L., P. G. Genever, S. Rimmer and M. C. Coles (2016) Collagen−poly(N isopropylacrylamide) hydrogels with tunable properties. Biomacromolecules 17: 723-734
10. Barud, H. S., R. M. N. Assunção, M. A. U. Martines, J. Dexpert-Ghys, R. F. C. Marques, Y. Messaddeq and S. J. L. Ribeiro (2008) Bacterial cellulose–silica organic–inorganic hybrids. Journal of Sol-Gel Science and Technology 46: 363-367
11. Bhattacharya, M., M. M. Malinen, P. Lauren, Y. R. Lou, S. W. Kuisma,L.Kanninen,M.Lille,A.Corlu,C.GuGuen-Guillouzo,O.Ikkala,A.Laukkanen,A.Urtti and M. Yliperttula (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. Journal of Controlled Release 164: 291-298
12. Bray, J. C. and E. W. Merrill (1973) Poly(vinyl alcohol) hydrogels for synthetic articular cartilage material. Journal of Biomedical Materials Research 7: 431-443
13. Burdick, J. A.,C.Chung,X.Jia,M. A.Randolph andR.Langer (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6: 386-391
14. Burdick, J. A. and K. S. Anseth (2002) Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23: 4315-4323
15. Cai, J. andL.Zhang (2006) Unique gelation behavior of cellulose in NaOH/Urea aqueous solution. Biomacromolecules 7: 183-189
16. Cannazza, G.,A. Cataldo,A. D. Benedetto,C. Demitri,M. MadaghieleandA. Sannino (2014) Experimental assessment of the use of a novel superabsorbent polymer (SAP) for the optimization of water consumption in agricultural irrigation process. Water 6: 2056-2069
17. Carrillo, F.,X. Colom, J. J.Suñol andJ.Saurina(2004) Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. European Polymer Journal 40: 2229-2234
18. Chang, C.,S.Chen andL.Zhang (2011) Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. Journal of Materials Chemistry 21: 3865-3871
19. Chang,C., B. Duanand L. Zhang(2009) Fabrication and characterization of novel macroporouscellulose–alginate hydrogels. Polymer 50: 5467-5473
20. Chang, C.,B. Duan,J. Caiand(2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllabledelivery. European Polymer Journal 46: 92-100
21. Chang, C. and L. Zhang (2011) Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers 84: 40-53
22. Chang, C.,L. Zhang,J.Zhou,L.Zhang andJ. F.Kennedy (2010) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydrate Polymers 82: 122-127
23. Chanzy, H.,M.Dubé andR. H.Marchessault (1979) Crystallization of cellulose with N‐methylmorpholine N‐oxide: A new method of texturing cellulose. Journal of Polymer Science: Polymer Letters Edition 17: 219-226
24. Chou, W. L., D. G. Yu andM. C.Yang (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polymers for Advanced Technologies 16: 600-607
25. Ciolacu, D.,V. I.Popa andH.Ritter (2006) Cellulose derivatives with adamantoyl groups. Journal of Applied Polymer Science 100: 105-112
26. Clair,B.,T.Alméras,H.Yamamoto,T.Okuyamaand J.Sugiyama(2006)Mechanical behavior of cellulose microfibrils in tension wood,in relation with maturation stress generation. Biophysical Journal91:1128-1135
27. Cuculo, J. A.,C. B.Smith,U.Sangwatanaroj,E. O. Stejskal andS. S.Sankar (1994) A Study on the mechanism of dissolution of the cellulose/ NH3/ NH4SCN system. I. Journal of Polymer Science: Part A Polymer Chemistry 32: 229-239
28. Cuculo, J. A.,C. B.Smith,U.Sangwatanaroj,E. O.Stejskal andS. S.Sankar(1994) A Study on the mechanism of dissolution of the cellulose/ NH3/ NH4SCN system. II. Journal of Polymer Science: Part A Polymer Chemistry 32: 241-247
29. Das, K.,D.Ray,N. R.Bandyopadhyay andS.Sengupta (2010) Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, Nanoindentation, TGA and SEM. J. Polym. Environ. 18:355-363
30. Dean, S. L., J. J. Stapleton and C. D. Keating (2010) Organically modified silicas on metal nanowires. Langmuir 26: 14861-14870
31. De Moura, M. R.,R. J.Avena-Bustillos,T. H.Mchugh,J. M.Krochta andL. H.Mattoso C. (2008) Properties of novel hydroxypropyl methylcellulose films containing chitosan nanoparticles. Journal of Food Science 73: N31-71
32. Demitri, C.,R. Del Sole,F.Scalera,A. Sannino,G.Vasapollo,A.Maffezzoli,L. AmbrosioandL.Nicolais(2009) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. Journal of Applied Polymer Science 110: 2453-2460
33. Demitri, C.,F.Scalera,M. Madaghiele,A. SanninoandA. Maffezzoli(2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. International Journal of Polymer Science Volume 2013, pp. 1-6
34. Divrikli, U.,A. A.Kartal,M.Soylak andL.Elci (2007) Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations. Journal of Hazardous Materials 145: 459-464
35. Dogan, H. andN. D.Hilmioglu (2009) Dissolution of cellulose with NMMO by microwave heating. Carbohydrate Polymers 75: 90-94
36. Drury, J. L. andD. J.Mooney (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24: 4337-4351
37. Duarte, A. R. C.,M. C. Gordillo,M. M.Cardoso,A. L.Simplício andC. M. M.Duarte(2006) Preparation of ethyl cellulose/methyl cellulose blends by supercritical antisolvent precipitation. International Journal of Pharmaceutics 311: 50-54
38. Egal, M.,T.Budtova andP. Navard(2007) The dissolution of microcrystalline cellulose in sodium hydroxide-urea aqueous solutions. Cellulose 15: 361-370
39. El‐Wakil, N. A. and M. L. Hassan(2008)Structural changes of regenerated cellulose dissolved in FeTNa, NaOH/thiourea, and NMMO systems. Journal of Applied Polymer Science 109:2862-2871
40. Ferruti, P.,S.Bianchi,E. Ranucci,F. ChielliniandV.Caruso (2005) Novel poly(amido-amine)-based hydrogels as scaffolds for tissueengineering. Macromolecular Bioscience 5: 613-622
41. Ferruti, P.,M. A. MarchisioandR.Duncan (2002) Poly(amido-amine)s: Biomedical Applications. Macromolecular Rapid Communications 23: 332-355
42. Fink, H. P.,P.Weigel andA.Bohn (1999) Supermolecularstructure and orientation of blown cellulosic films. Journal of Macromolecular Science, Part B: Physics 38: 603-613
43. Gregorova, A.,N. Saha,T.Kitano andP.Saha (2015) Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging. Carbohydrate Polymers 117: 559-568
44. Gupta, D.,C. H.Tator andM. S.Shoichet (2006) Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27: 2370-2379
45. Han, D. andL.Yan (2010) Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution. Carbohydrate Polymers 79: 614-619
46. Hench, L. L. and J. K. West (1990) The Sol-Gel Process. Chemical Reviews 90: 33-72
47. Hennink, W. E. and C. F. Van Nostrum (2012) Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews 64: 223-236
48. Heinze, T. (1998) New ionic polymers by cellulose functionalization. Macromol. Chem. Phys. 199: 2341-2364
49. Hribernik, S., M. S. Smole, K. S. Kleinschek, M. Bele, J. Jamnik and M. Gaberscek (2007) Flame retardant activity of SiO2-coated regenerated cellulose fibres. Polymer Degradation and Stability 92: 1957-1965
50. Hyon, S. H.,W. I.Cha andY.Ikada (1989) Preparation of transparent poly(vinyl alcohol) hydrogel. Polymer Bulletin 22:119-122
51.Ishihara, M., K. Nakanishi, K. Ono, M. Sato, M. Kikuchi, Y. Saito, H. Yura, T. Matsui, H. Hattori, M. Uenoyama and A. Kurita (2002) Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 23: 833-840
52. Isogai, A. (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5: 309-319
53. Jeon, O.,K. H.Bouhadir,J. M.Mansour andE.Alsberg (2009) Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials 30: 2724-2734
54. Kamide, K.,K.Okajima andK.Kowsaka (1992) Dissolution of natural cellulose into aqueous alkali solution: role of super-molecular structure of cellulose. PolymerJournal 24: 71-86
55. Kaneko, Y.,K.Sakai,A.Kikuchi, R. Yoshida,Y.Sakurai andT.Okano (1995) Influence of freely mobile grafted chain length on dynamic properties of comb-type grafted poly(N-isopropylacrylamide) hydrogels. Macromolecules 8: 7717-7723
56. Kashima, K. andM.Imai (2012) Impact factors to regulate mass transfer characteristics of stable alginate membrane performed superior sensitivity on various organic chemicals. Procedia Engineering 42: 964-977
57. Kenawy, E. R.,E. A.Kamoun,M. S. M.Eldin andM. A.El-Meligy (2014) Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications. Arabian Journal of Chemistry 7: 372-380
58. Kihlman, M.,O.Wallberg,L.Stigsson andU.Germgård (2011) Dissolution of dissolving pulp in alkaline solvents after steam explosion pretreatments. Holzforschung 65: 613-617
59. Kim, C. W.,D. S.Kim,S. Y.Kang,M.Marquez andY. L.Joo (2006) Structural studies of electrospun cellulose nanofibers.Polymer 47: 5097-5107
60. Kobayashi, M., Toguchida, J. and Oka, M. (2001) Development of polyvinyl alcohol-hydrogel (PVA-H) shields with a high water content for tendon injury repair. Journal of Hand Surgery 26: 436-440
61. Kobayashi, M.,J.Toguchida andM.Oka (2001) Development of the shields for tendon injury repair using polyvinyl alcohol—hydrogel (PVA-H). Journal of Biomedical Materials Research 58: 344-351
62. Kunze, J. andH. P.Fink (2005) Structural changes and activation of cellulose by caustic soda with urea. Macromolecular Symposia 223: 175-188
63. Kuo, C. K. andP. X.Ma (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties. Biomaterials 22: 511-521
64. Łaszkiewicz, B. (1998) Solubility of bacterial cellulose and its structural properties. Journal of applied polymer science 67: 1871-1876
65. Leach, J. B.,K. A.Bivens,C. N.Collins andC. E.Schmidt (2004) Development of photocrosslinkable hyaluronic acidpolyethylene glycol-peptide composite hydrogels for soft tissue engineering. Journal of Biomedical Materials Research Part A 70A: 74-82
66. Li, L.,Z. B.Lin,X.Yang,Z. Z.Wan andS. X.Cui(2009) A novel cellulose hydrogel prepared from its ionic liquid solution. Chinese Science Bulletin 54: 1622-1625
67. Liu, S.,J.Zeng,D.Tao andL.Zhang (2010) Microfiltration performance of regenerated cellulose membrane prepared at low temperature for wastewater treatment. Cellulose 17: 1159-1169
68. López-Alemany, A.,V.Compañ andM. F.Refojo (2002) Porous structure of Purevision™ versus FocusNight & Day™ and conventional hydrogel contact lenses. Journal of Biomedical Materials Research 63: 310-325
69. Luo, Y.,K. R. KirkerandG. D.Prestwich (2000) Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. Journal of Controlled Release 69: 169-184
70. Maeda, H., M. Nakajima, T. Hagiwara, T. Sawaguchi and S. Yano (2006) Bacterial cellulose/silica hybrid fabricated by mimicking biocomposites. Journal of Materials Science 41: 5646-5656
71. Mackenzie, J. D. (1982) Glasses from melts and glasses from gels, a comparison. Journal of Non-Crystalline Solids 48: 1-10
72. Mahmoudian, S.,M. U. Wahit,A. F.Ismail andA. A.Yussuf (2012) Preparation of regenerated cellulose/montmorillonite nanocomposite films via ionic liquids. Carbohydrate Polymers88: 1251-1257
73. McCormick, C. L., Callais, P. A. and Hutchinson, B. H., Jr. (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18:2394-2401
74. Morán, J. I., Alvarez, V. A., Cyras, V. P. and Vázquez, A. (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15: 149-159
75. Nguyen, K. T. andJ. L.West(2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23: 4307-4314
76. Oh, S. Y.,D. I. Yoo,Y. Shin,H. C. Kim,H. Y. Kim,Y. S.Chung,W. H.Park and J. H. Youk (2005) Crystalline structure analysis of cellulose treated withsodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research 340: 2376-2391
77. Ono, K.,Y.Saito,H.Yura,K.Ishikawa,A.Kurita,T.Akaike andM.Ishihar (2000) Photocrosslinkablechitosan as a biological adhesive. Journal of Biomedical Materials Research 49: 289-295
78. Pakulska, M. M.,K.Vulic,R. Y.Tam andM. S.Shoichet (2015) Hybrid crosslinked methylcellulose hydrogel: A predictable and tunable platform for local drug delivery.Advanced Materials 27: 5002-5008
79. Qi, H.,Q.Yang,L.Zhang,T.Liebert andT.Heinze (2011) The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose 18: 237-245
80. Rojas, J. (2013) Effect of polymorphism on the particle and compaction properties of microcrystalline cellulose. InT.van de VenandL.Godbout(Ed.), Cellulose-Medical, Pharmaceutical and Electronic Applications.Rijeka:InTech
81. Roy, C.,T.Budtova andP. Navard(2003) Rheological properties and gelation of aqueous cellulose-NaOH solutions. Biomacromolecules 4: 259-264
82. Roy, C.,T.Budtova,P.Navard andO.Bedue (2001) Structure of cellulose-soda solutions at low temperatures. Biomacromolecules 2: 687-693
83. Roy, N.,N.Saha,T.Kitano andP.Saha (2012) Biodegradation of PVP–CMC hydrogel film: A useful food packaging material.Carbohydrate Polymers 89: 346-353
84. Samayam,I. P.,B. L. Hanson,P.Langanand C.A. Schall(2011)Ionic-liquid induced changes in cellulose structure associated withenhanced biomass hydrolysis. Biomacromolecules 12:3091-3098
85. Sannino, A,M.Madaghiele,A.Maffezzoli,L.Ambrosio andL.Nicolais (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46: 11206-11212
86. Sannino, A.,M. Madaghiele, C.Demitri,F.Scalera, A. Esposito, V.EspositoandA.Maffezzoli(2010) Development and characterization of cellulose-based hydrogels for use as dietary bulking agents. Journal of Applied Polymer Science 115: 1438-1444
87. Shi, J., L. Lu, W. Guo, J. Zhang and Y Cao (2013) Heat insulation performance, mechanics and hydrophobic modification of cellulose-SiO2composite aerogels. Carbohydrate Polymers98: 282-289
88. Soylak, M. andR. S.Cay (2007) Separation/preconcentration of silver(I) and lead(II) in environmental samples on cellulose nitrate membrane filter prior to their flame atomic absorption spectrometric determinations. Journal of Hazardous Materials 146: 142-147
89. Stapleton, F.,S.Stretton,E.Papas,C.Skotnitsky andD. F.Sweeney (2006) Silicone hydrogel contact lenses and the ocular surface. The Ocular Surface 4: 24-43
90. Stile, R. A.,W. R. BurghardtandK. E.Healy (1999) Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules 32: 7370-7379
91. Suñol, J. J.,J. Saurina,F. CarrilloandX. Colom(2003) Comparison of the thermal behavior of three cellulose fibers mercerized or submitted to solar degradation. Journal of Thermal Analysis and Calorimetry 72: 753-758
92. Suwantong, O.,P.Opanasopit,U. RuktanonchaiandP.Supaphol (2007) Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48: 7546-7557
93. Tamura, H.,H.Nagahama andS.Tokura (2006) Preparation of chitin hydrogel under mild conditions. Cellulose 13: 357-364
94. Tang, H.,W.Zhou andL.Zhang (2012) Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. Journal of Hazardous Materials 209-210: 218–225
95. Tian, Y.,M.Wu,R.Liu,Y.Li,D.Wang,J.Tana,R.Wu andY.Huang (2011) Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydrate Polymers 83: 743-748
96. Tibbitt, M. W. andK. S.Anseth (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and Bioengineering 103: 655-663
97. Tomalia, D. A., H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder and P. Smith (1985) A new class of polymer: starburst- dendritic macromolecules. Polymer Journal 17: 117-132
98. Tungprapa, S.,I.Jangchud andP.Supaphol (2007) Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polymer 48: 5030-5041
99. Wang, Y.,Q.Zhao,H.Zhang,S.Yang andX.Jia (2014) A novel poly(amido amine)-dendrimer-based hydrogel as a mimic for the extracellular matrix. Advanced Materials 26: 4163-4167
100. Wichterle, O. andD.Lím (1960) Hydrophilic gels for biological use. Nature 185: 117-118
101. Wu, M.,C.Ni,B.Yao,C.Zhu,B.Huang andL.Zhang (2013) Covalently cross-linked and hydrophobically modified alginic acid hydrogels and their application as drug carriers. Polymer Engineering & Science 53: 1583-1589
102. Wu, X. S.,A. S.Hoffman andP.Yager (1992) Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. Journal of Polymer Science: Part A Polymer Chemistry 30: 2121-2129
103. Xie, K., Y. Yu and Y. Shi (2009) Synthesis and characterization of cellulose/silica hybrid materials with chemical crosslinking. Carbohydrate Polymers 78: 799-805
104. Xiong, B.,P.Zhao, K.Hu,L.Zhang andG.Cheng (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21: 1183-1192
105. Yan, L. andZ.Gao (2008) Dissolving of cellulose in PEG/NaOH aqueous solution. Cellulose 15: 789-796
106. Yano, S., K. Iwata and K. Kurita (1998) Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process. Materials Science and Engineering C 6: 75-90
107. Yang, H., R. Yan,H.Chen,D. H.Lee andC.Zheng (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86: 1781-1788
108. Yotsuyanagi, T.,T.Ohkubo,T.Ohhashi andK.Ikeda (1986) Calcium-induced gelation of alginic acid and pH-sensitive reswelling of dried gels. Chemical and Pharmaceutical Bulletin 35: 1555-1563
109. Yu, J.,X. Xu,F.Yao,Z.Luo,L.Jin,B. B.Xie,S. Shi,H.Ma,X. Y. LiandH.Chen (2014) In situ covalently cross-linked PEG hydrogel for ocular drug delivery applications. International Journal of Pharmaceutics 470: 151-157
110. Zhang, L.,D.Ruan andJ.Zhou (2001) Structure and properties of regenerated cellulose films prepared from cotton linters in NaOH/urea aqueous solution. Industrial & Engineering Chemistry Research 40: 5923-5928
111. Zhang, P.,L.Zhang andS.Cheng (2000) Effects of urea and sodium hydroxide on the molecular weight and conformation of a-(1→3)-D-glucan fromLentinus edodesin aqueous solution.Carbohydrate Research 327: 431-438
112. Zhang, S.,F. X.Li andJ. Y.Yu (2010) Structure and properties of novel cellulose fibres produced from NaOH/PEG-treated cotton linters. Iranian Polymer Journal 19: 949-957
113. Zhang, X. Z. andR. X.Zhuo(1999) Preparation of fast responsive, temperature-sensitive poly(N-isopropylacrylamide) hydrogel. Macromolecular Chemistry and Physics 200: 2602-2605
114. Zhao, H.,J. H.Kwak,Y.Wang,J. A.Franz,J. M.White andJ. E.Holladay (2007) Interactions between cellulose and N-methylmorpholine-N-oxide. Carbohydrate Polymers 67: 97-103
115. Zheng, Y.,K. M.Gattás-Asfura,C. Li,F. M.Andreopoulos,S. M.PhamandR. M.Leblanc (2003) Design of a membrane fluorescent sensor based on photo-cross-linked PEG hydrogel. The Journal of Physical Chemistry B 107: 483-488
116. Zhou, J.,C.Chang,R.Zhang andL.Zhang (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/ureaaqueous solution. Macromolecular Bioscience 7: 804-809
117. Zhou, J.,L.Zhang,J.Cai andH.Shu (2002) Cellulose microporous membranes prepared from NaOH/urea aqueous solution. Journal of Membrane Science 210: 77-90


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文