(3.236.222.124) 您好!臺灣時間:2021/05/11 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:鄭雅文
研究生(外文):Ya-Wen Cheng
論文名稱:熱處理對二氧化矽改質竹材之物理機械性質與生物耐久性之影響
論文名稱(外文):Effects of heat treatment on physicomechanical properties and biological resistance of bamboo SiO2 composites
指導教授:楊德新楊德新引用關係
口試委員:王松永卓志隆蔡明哲吳志鴻
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:81
中文關鍵詞:熱處理孟宗竹二氧化矽溶膠凝膠機械性質
外文關鍵詞:Heat treatmentMoso bambooSilicon dioxideSol-gelMechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:57
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
熱處理技術是近年歐洲新興兼具環境友善之木材改質技術,在以往的研究亦將此法應用於國產竹材改質上,利用此熱處理改質在竹材之尺寸安定性及抗生物劣化性可獲得提升,但考量作為結構建材時之機械性能則因強度下降,而使得在結構建材之應用上受到限制。因此,本研究進行熱處理竹材-奈米無機複合材之研製,開發綠色優質複合材,並探討其製程與各項工程性能。
物理性質方面,經注入後竹材重量增加率隨密度增加有遞減趨勢,但影響程度並不顯著,同時隨熱處理溫度增加,其質量損失亦未有明顯趨勢。奈米無機溶膠預聚物注入可提升材料疏水性而使平衡含水率降低。經熱處理後之竹材表面L*值皆有下降之趨勢,注入二氧化矽後,竹材受熱表面顏色改變較為劇烈,隨熱處理溫度增加,其△E*值也隨之上升,外側色差值略高於竹內側;表面性質方面,竹材經二氧化矽注入後接觸角有明顯上升,然而隨熱處理溫度及持溫時間增加,接觸角則有減少的趨勢。二氧化矽注入後竹材機械強度較未注入者高,隨注入量提升有上升趨勢,而經高溫熱處理後顯示抗彎性質皆隨熱處理條件的提升而有下降之趨勢,熱處理溫度越高,勃林納硬度越高,而竹外側則普遍高於竹內側。由熱重分析結果顯示,材料經熱處理後之熱性質提升,而注入後不論熱性質或重量殘留率皆有增加之趨勢。FTIR結果顯示二氧化矽確實存在竹材表面,且隨注入量增加及熱處理溫度提升含量有增加趨勢。生物耐久性結果顯示,經二氧化矽注入竹材可有效改善竹材抗白蟻能力,且隨注入量提升效果更顯著,亦隨熱處理條件提升質量損失有降低趨勢;WPG28注入量對材料抗腐朽性能有提升趨勢,抗腐朽能力方面則以WPG28較佳。


Heat-treatment technique is an environmentally friendly method to modify wood properties in Europa. After the treatment, some mechanical properties are reduced but the dimensional stability and the biological durability of wood is increased without adding extra chemicals or biocides agents. Therefore, heat treated wood is discussed as a new material for several applications. Bamboo is used for various applications, such as light construction and building materials, scaffolding, panel and handicrafts. However, bamboos are vulnerable to decay fungi and boring insects. Similar techniques have been also successfully applied to improve the dimensional stability and biological durability of bamboos. The mechanical properties of the heat-treated bamboos, however, may decrease after thermal treatment and therefore affect the applicability of the products for structural uses.
The objects of this research are to apply the sol-gel technique to implant nano-inorganic particles in the thermal treated bamboos to modify their mechanical properties, and to manufacture a green structural material – a heat-treated bamboo / nano-inorganic composite. The overall research project will be conducted and performed sequentially. Results indicated that the equilibrium moisture content was decreased with increasing heat treatment temperatures and treatment times, however there was increased in mass loss. Results also indicated that the color and surface roughness of bamboo affected by thermal treatment process. The outer layer and inner layer of L* value decreased from 77.56 to 29.69 and 79.45 to 31.32 in CIE Lab method, respectively. After impregnated with SiO2, there is a significant increase on contact angle, but as the temperature and time of heat treatment increases, the contact angle appears to have a declining trend. The mechanical strength of bamboo impregnated with SiO2 is higher than the control group, and shows an upward trend as the WPG increases; as for the bending strength, ether the impregnated bamboo or the control group shows a declining trend as the temperature and time of heat treatment increase, the higher the temperature is, the higher Brinell hardness will be, also the outer layer is normally higher than the inner layer. In addition, the thermogravimetric analysis (TGA) shows that after impregnated with SiO2, the weight residual rate and the thermal properties has an increasing trend. The FTIR results also shows that SiO2 is truly present on the surface of bamboo after impregnation, and the retention will increase with the WPG and heat treat temperature increased. As for the biological durability properties, bamboo impregnated with SiO2 can effectively reduce the mass loss ratio in an anti-termite test. Further, the WPG28 groups show the better decay resistance when compared to the WPG18 groups.



謝誌 i
摘要 iii
Abstract iv
目次 vi
表目次 ix
圖目次 xi
第一章 前言 1
第二章 文獻回顧 3
一、竹材簡介 3
(一)竹材組織特性 4
(二)竹材機械性質 5
(三)竹材化學組成 6
(四)竹材劣化性質 7
二、熱處理技術簡介 8
三、溶膠凝膠法技術簡介 9
(一)金屬烷氧化物 10
(二)添加水量 10
(三)pH值 11
(四)溶劑 13
四、奈米有機-無機材料性質 13
(一)尺寸安定性質 14
(二)表面性質 15
(三)機械性質 16
(四)熱性質 16
(五)耐久性 17
第三章 材料與方法 19
一、試驗材料 19
二、SiO2溶膠預聚物之製備 19
三、熱處理竹材-奈米無機複合材之製備 19
四、性質分析 20
(一)物理性質 20
(二)表面性質 21
(三)尺寸安定性 22
(四)機械性質 24
(五)熱重分析 25
(六)X-ray繞射試驗 25
(七)耐生物劣化試驗 25
(八)統計分析 27
第四章 結果與討論 28
一、物理性質 28
(一)重量增加率 28
(二)質量損失率 28
(三)平衡含水率 29
二、表面性質 31
(一)色差值 31
(二)接觸角 35
(三)電子顯微鏡觀察 36
(四)能量散射X射線光譜 38
三、尺寸安定性 44
(一)吸水率 44
四、機械性質 48
(一)抗彎性質 48
(二)表面勃林納硬度 51
五、熱性質 53
六、化學性質 58
七、X-ray繞射試驗 63
八、生物劣化性 66
(一) 耐白蟻性試驗 66
(二)耐腐朽菌試驗 68
第五章 結論 72
參考文獻 73


王松永(1992)木材物理學。國立編譯館主編。
王松永、丁昭義(1995)林產學(上)。國立編譯館主編。
李志璇(2012)三種熱處理介質對孟宗竹基本性質之影響。國立國立中興大學森林學研究所碩士論文。
李坤穆(2004)溶膠-凝膠法製備超疏水性薄膜材料。國立中央大學化學工程與材料工程研究所碩士論文。
吳順昭、謝榮生(1991)世界竹類分佈與亞洲 各國的概況(一)。台灣林業 17(8):2–13。
孫百寬(2012)麻竹與孟宗竹林分結構及碳貯存量推估之研究。國立國立中興大學森林學研究所碩士論文。
張上鎮、吳季玲、王升陽、張惠婷(1997)反射式傅立葉轉換紅外線光譜分析在林產化學研究之應用。林產工業16(4):825–838。
張誌仁、張豐吉、杜明宏(2004)伐採月份對麻竹及桂竹抗蟲性之影響。林產工業23(2):157–166。
郭瑋玲、盧崑宗(2012)不同溫度熱處理柳杉與相思樹木材之特性。林業研究季刊34(4):269–286。
陳永龍、陳載永、吳志鴻(2010)淺談真菌降解木材機制與環境友善型木材防腐劑。中華林學季刊43(1):181–189。
陳照鈞(1999)不同竹齡對製漿性質之影響。國立國立中興大學森林學研究所碩士論文。
詹佳樺(2001)溶膠-凝膠法製備聚甲基丙烯酸甲酯/二氧化矽混成體之研究。國立中央大學化學工程與材料工程研究所碩士論文。
劉正字、李文昭、夏以淳(2000)木材之化學改質及其膠合性之研究(Ⅲ)–乙醯化處理對木材尺寸安定性及力學性質之影響。林產工業叢書19:229–240。
劉承洹(2012)以溶膠-凝膠法製備奈米二氧化矽補強擬熱可塑性酵素降解馬鈴薯澱粉卅PVA生物可分解性材料之研究。逢甲大學纖維與複合材料學系碩士論文。
蔡明哲、陳克恭(2011)歐洲木材防腐工業與市場現況。林業研究專訊18(5):19–21。
錢易琦(2012)熱處理對木材及木材再生塑膠複合材物理及機械性質之影響。國立國立中興大學森林學研究所碩士論文。
謝堂洲(1976)竹材之防腐、防蟲、防霉。林業叢刊10。
謝榮生、吳順昭、王秀華(1990)單桿竹與叢生竹之組織構造研究,竹材綜合利用與加工。林產工業叢書11:1–13。
新谷祐加、宮藤久士、?志朗(2004)法TMSAC、TMSAH添加系無機質複合化木材耐蟻性。木材保存,30(5):204–211。
平田利美(1995)木材熱分解速度論.木材学会誌。41(10):879–886.
Anwar, U. M. K., S. Hiziroglu, H. Hamdan and M. A. Latif (2011) Effect of outdoor exposure on some properties of resin-treated plybamboo. Industrial Crops and Products. 33:140–145.
Barthlott, W. and C. Neinhuis (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 202(1): 1-8.
Bekhta, P. and P. Niemz (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung. 57(5):539-546.
Bhuiyan, M. T. R. and N. H. N. Sobue (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. Journal of Wood Science. 46:431–436.
Borůvka, V., A. Zeidler, and T. Holeček (2015) Comparison of Stiffness and Strength Properties of Untreated and Heat-Treated Wood of Douglas Fir and Alder. BioResources. 10(4):8281–8294.
Bücker, M., C. Jäger, D. Pfeifer and B. Unger (2014) Evidence of Si–O–C bonds in cellulosic materials modified by sol-gel-derived silica. Wood Science and Technology 48:1033–1047.
Chen, T., M. Niu, Z. Wu, and Y. Xie (2015) Effect of silica sol content on thermostability and mechanical properties of ultra-low density fiberboards. BioResources. 10(1):1519–1527.
Cho, C. H., K. H. Lee, J. S. Kim and Y. S. Kim (2008) Micromorphological characteristics of bamboo (Phyllostachys pubescens) fibers degraded by a brown rot fungus (Gloeophyllum trabeum). Journal of Wood Science. 54(3):261–265.
De Vetter, L., V. Cnudde, B. Masschaele, P. J. S. Jacobs, and J. Van Acker (2006). Detection and distribution analysis of organosilicon compounds in wood by means of SEM-EDX and micro-CT. Materials characterization. 56(1):39–48.
Donath, S., H. Militz and C. Mai (2004) Wood modification with alkoxysilanes.Wood Science and Technology. 38:555–566.
Donath, S., H. Militz, and C. Mai (2006). Treatment of wood with aminofunctional silanes for protection against wood destroying fungi.Holzforschung. 60(2):210–216.
Dubey, M. K., S. Pang and J. Walker (2011) Effect of oil heating age on colour and dimensional stability of heat treated Pinus radiate. European Journal of Wood and Wood Products. 69: 255–262.
Esteves, B., A. V. Marques, I. Domingos and H. Pereira (2008) Heat-induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology. 42: 369–384.
Fengel, D. and X. Shao (1984) A chemical and ultrastructural study of the Bamboo species Phyllostachys makinoi Hay. Wood Science and Technology. 18(2):103–112.
Finnish ThermoWood Association (2003) ThermoWood Handbook. Helsinki, Finland
Gascón-Garrido, P., M. F. Thévenon, H. Militz, and C. Mai (2015) Resistance of Scots pine (Pinus sylvestris L.) modified with short-and long-chain siloxanes to subterranean termites (Reticulitermes flavipes). Wood Science and Technology. 49(1):177–187.
Ghosh, S. C., B. C. Peters, C. J. Fitzgerald, H. Militz, and C. Mai (2012) Resistance of Scots pine (Pinus sylvestris L.) wood modified with functionalized commercial silicone emulsions against subterranean termites. Wood Science and Technology. 46(6):1033–1041.
Giudice, C. A., P. V. Alfieri and G. Canosa (2013) Decay resistance and dimensional stability of Araucaria angustifolia using siloxanes synthesized by sol–gel process. International Biodeterioration & Biodegradation. 83:166–170.
Gonzáles Peňa M. and M. Hale (2008) Colour in thermally modified wood of beech, norway spruce and scots pine, Part 2: Properties predictions from colour changes. Holzforschung. 63:394–401.
Gottron, J., K. A. Harries and Q. Xu (2014) Creep behaviour of bamboo. Construction and Building Materials 66:79–88.
Guillén, F., M. J. Martínez, A. Gutiérrez and J. C. Del Rio (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol. 8(195204):187204.
Habibi, M. K., A. T. Samaei, B. Gheshlaghi, J. Lu and Y. Lu (2015) Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: Underlying mechanisms. Acta Biomaterialia 16:178–168.
Hakkou, M., M. Petrissans, A. Zoulalian and P. Gerardin (2005a) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polymer Degradation and Stability. 89:1–5.
Hill, C. A. S., S. C. Forster, M.R.M. Farahani, M. D. C. Hale, G. A. Ormondroyd and G. R. Williams (2005) An investigation of cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood. International Biodeterioration and Biodegradation Society. 55:69–76.
Hill, C. A. S., M. D. Hale, G. A. Ormondroyd, J. H. Kwon and S. C. Forster (2006) Decay resistance of anhydride-modified Corsican pine sapwood exposed to the brown rot fungus Coniophora puteana. Holzforschung. 60(6):625–629.
Hyttinen, M., M. Masalin-Weijo, P. Kalliokoski, and P. Pasanen (2010). Comparison of VOC emissions between air-dried and heat-treated Norway spruce (Picea abies), Scots pine (Pinus sylvesteris) and European aspen (Populus tremula) wood. Atmospheric Environment. 44(38):5028–5033.
Kanzawa, E., S. Aoyagi and T. Nakano. (2011) Vascular bundle shape in cross-section and relaxation properties of Moso bamboo (Phyllostachys pubescens). Materials Science and Engineering: C. 31(5):1050–1054.
Kim, J. S., K. H. Lee, C. H. Cho, G. Koch and Y. S. Kim (2008) Micromorphological characteristics and lignin distribution in bamboo (Phyllostachys pubescens) degraded by the white rot fungus Lentinus edodes. Holzforschung 62(4):481–487.
Li, X. B., G. F. Peter, C. Y. Hse and T. L. Eberhardt (2007) Chemical changes with maturation of the bamboo species Phyllostachys pubescens. Journal of Tropical Forest Science. 19:6–12.
Lindsay, W. L. (1979) Chemical equilibria in soils. John Wiley & Sons Ltd.
Lo, T. Y., H. Z. Cui and H. C. Leung (2004) The effect of fiber density on strength capacity of bamboo. Materials. Letters. 58:2595–2598.
Lu, Y., M. Feng and H. Zhan (2014) Preparation of SiO2–wood composites by an ultrasonic-assisted sol-gel technique. Cellulose. 21(6):4393–4403.
Ma, X., G. Wang, Z. Jiang, Y. Xian, and H. Li (2014). Comparison of bending creep behavior of bamboo-based composites manufactured by two types of stacking sequences. BioResources. 9(3):5461–5472.
Mahltig, B., Arnold, M., & Löthman, P. (2010). Surface properties of sol–gel treated thermally modified wood. Journal of sol-gel science and technology. 55(2):221–227.
Mahr, M. S., T. Hübert, B. Schartel, H. Bahr, M. Sabel and H. Militz (2012) Fire retardancy effects in single and double layered sol-gel derived TiO2 and SiO2-wood composites. Journal of Sol-Gel Science and Technology. 64:452–464.
Manalo, R. D., and M. N. Acda (2009). Effects of hot oil treatment on physical and mechanical properties of three species of Philippine bamboo. Journal of Tropical Forest Science:19–24.
Mazela, B., R. Zakrzewski, W. Grzeskowiak, G. Cofta, and M. Bartkowiak (2003). Preliminary research on the biological resistance of thermaly modified wood. In: Abstracts of the First European Conference on Wood Modification, Ghent, Belgium.
McDonald A, M. Fernandez and B Kreber (1997) Chemical and UV–VIS spectroscopic study on kiln brown stain formation in Radiata pine. Proceedings of the 9th International Symposium of Wood and Pulping Chemistry. Montreal. 70:1–5
Mohebby. B. and F. Llbeighi (2007) Physical and mechanical properties of hydrothermally modified medium density fiberboard (MDF). Holz als Roh- und Werkstoff. 66(3):213–218.
Pries, M., R. Wagner, K. H. Kaesler, H. Militz, and C. Mai (2013). Effect of short-chain silicones bearing different functional groups on the resistance of pine (Pinus sylvestris L.) and beech (Fagus sylvatica L.) against decay fungi. Holzforschung. 67(4):447–454.
Richard, M. J.and K. A. Harries (2015) On inherent bending in tension tests of bamboo. Wood Science and Technology. 49:99–119.
Sanchez, C., G. J. de A. A. Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer, and V. Cabuil (2001). Designed hybrid organic-inorganic nanocomposites from functional nanobuilding blocks. Chemistry of Materials. 13(10):3061–3083.
Shao, Z. P., C. H. Fang, S. X. Huang and G. L. Tian (2010) Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure. Wood Science and Technology. 44:655–666.
Spiegelberg, H. L. (1966) The effect of hemicelluloses on the mechanical properties of individual pulp fibers. Thesis, The Institute for Paper Chemistry, Lawrence University.
Sulthoni, A. (1985) Treditional preservation of bamboo in Java, Indonesia. Recent Research on Bamboo: Proceeding of the International Bamboo Workshop 349–357.
Šušteršic, Ž., A. Mohareb, M. Chaouch, M. Pétrissans, M. Petrič, and P. Gérardin (2010). Prediction of the decay resistance of heat treated wood on the basis of its elemental composition. Polymer Degradation and Stability. 95(1):94–97.
Tan, T., N. Rahbar, S. M. Allameh, S. Kwofie, D. Dissmore, K. Ghavami and W. O. Soboyejo (2011). Mechanical properties of functionally graded hierarchical bamboo structures. Acta Biomaterialia. 7:3796–3803.
Tshabalala, M. A., P. Kingshott, M. R. VanLandingham and D. Plackett (2002) Surface chemistry and moisture sorption properties of wood coated with multifunctional alkoxysilanes by sol-gel process. Journal of Applied Polymer Science. 88:2828–2841.
Tudorović N., Z. Popović, G. Milić and R. Popadić (2012) Estimation of heat treated wood properties by color change. Bioressources. 7:799–815.
Unger, B., M. Hähnert, and R. Nitzsche (1998). On aging of acid-catalyzed silica sols—a dynamic light scattering study. Journal of Sol-Gel Science and Technology. 13(1–3):81–84.
Wang, X., J. Liu, and Y Chai, (2012). Thermal, mechanical, and moisture absorption properties of wood-TiO2 composites prepared by a sol-gel process.BioResources. 7(1):893–901.
Wei, D., O. Schmidt and W. Liese (2013) Durability test of bamboo against fungi according to EN standards. European Journal of Wood and Wood Products. 71(5):551–556.
Wu, X. and H. Q. Ren (2009) Surface deterioration of moso bamboo (Phyllostachys pubescens) induced by exposure to artificial sunlight. Journal of Wood Science. 55:47–52.
Wu, X. and H. Q. Ren (2009). Comparative study of the photo-discoloration of moso bamboo (Phyllostachys pubescens Mazel) and two wood species. Applied Surface Science. 254:7029–7034.
Zhu, R., Y. Zhang, and W. Yu (2014) Outdoor exposure tests of bamboo-fiber reinforced composite: evaluation of the physical and mechanical properties after two years. European Journal of Wood and Wood Products. 73:275–278.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文
 
系統版面圖檔 系統版面圖檔