跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 13:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴韋愷
研究生(外文):Wei-Kai Lai
論文名稱:以地形濕度指標及太陽輻射指標搭配長用地形變數於首輪迭代物種分布模擬
論文名稱(外文):Modeling Species Distribution on an Iterative Basis with Topographic Wetness Indices and Solar radiation index along with Common Terrain Variables in Initial Rounds
指導教授:黃凱易黃凱易引用關係
指導教授(外文):Kai-Yi Huang
口試委員:謝漢欽柳婉郁
口試委員(外文):Han-Ching HsiehWan-Yu Liu
口試日期:2016-06-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:119
中文關鍵詞:物種分布模式模式迭代地形濕度指標太陽輻射指標薯豆台灣杜鵑木荷單流向演算法多流向演算法
外文關鍵詞:Species distribution modelmodel iterationtopographic wetness indexSolar radian indexElaeocarpus japonicaRhododendron formosanumSchima superba var. superbasingle flow direction algorithmmultiple flow direction algorithm
相關次數:
  • 被引用被引用:2
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:1
物種分布模式 (species distribution model, SDM) 的前瞻性能在生態保育、生物決策層面等有重要貢獻而被廣泛使用。SDM研究多半考慮與物種分布有直接因果關係的環境因子,但因其獲取困難或成本高或數量稀少,故以遙測獲取之地文因子數據作為環境替代因子較為合適。地形濕度指標 (topographic wetness index, TWI) 是一種描述局部地形水文累積的指標,地形水文與地表表面水流、土壤濕度有密切關係;太陽輻射指標 (Solar radiation index, SRI) 則是一種表現太陽輻射於局部地區的標的,太陽輻射直接影響地表的溫度、水氣狀態,間接改變該地區的微氣候;兩者進而對植物生長有重大影響。本研究試圖納入土壤水分的替代指標TWI (包含單流向演算,Single flow direction,TWI-S以及多流向演算,multiple flow direction,TWI-M) 及太陽輻射的替代指標SRI 並採用經常使用地文因子以及統計分類演算法如區別分析 (Discriminant Analysis, DA)、抉擇樹 (Decision Tree, DT)、最大熵值法 (Maximum Entropy, MaxEnt)、支持向量機 (Support Vector Machine, SVM) 等四模式,模擬台灣中部地區惠蓀林場內的薯豆 (Elaeocarpus japonicas)、台灣杜鵑 (Rhododendron formosanum)、木荷 (Schima superba) 的適生育地分布。此外,以非線性內插與普通克利金內插 DEM 產出的TWI (與 krig-TWI)、SRI (與 krig-SRI) 對三物種分布模擬的影響。結果顯示,SRI 對模式模擬精度沒有顯著改善,krig-SRI 則不然。TWI-M對於提升模擬精度較有潛力,TWI-S則半數使精度持平。DT、DA的檢測中,krig-TWI-S、krig-TWI-M、krig-SRI 三者只有krig-SRI對模擬精度有顯著提升效果;krig-TWI-S 雖有提升,但沒有達顯著。四模式中,薯豆以MaxEnt、DT最佳,其次DA,SVM最差。台灣杜鵑,以MaxEnt最佳,其次SVM及DT,最低DA。木荷以MaxEnt最佳,其次DT,再其次DA,SVM最差。三樹種的MaxEnt皆有最佳表現,能較正確描述三物種分布;SVM在薯豆、木荷預測最差,但在台灣杜鵑與DT同等級。重要的是,TWI於統計值上能表現出三物種的環境狀況,其中TWI-M較TWI-S更穩健,不易受DEM內插方式的影響。本研究證實TWI、krig-SRI可以改善SDM的預測精確度,然改善幅度在各模式間不同,以放寬模式 (如DA) 或是特異度高的模式 (如SVM) 表現優異,但在MaxEnt、DT 等嚴謹的模式中,精度上升較小且幅度有限。物種分布模擬需由迭代方式實施,且首輪模擬優先使用地文變數,於首輪結果中縮小實地調查面積,針對優先區域來獲取環境因子作為後續實施SDM模擬的輸入變數。此迭代方式的模擬在森林生態上改善SDM實屬必要。

Species distribution models (SDMs) are widely used in ecological conservation and decision-making of biological resource management because of SDM’s prospective and great contribution. In most SDMs study, researchers probably usually consider causal factors. However, data for such factors are expensive or even difficult to collect. Instead, it is proper to use Terrain-related variables which can be easily obtained by remote sensing as proxies of ecological factors. Topographic wetness index (TWI) is one kind of measurements that can represent and control the local situation of topography on hydrological processes; solar radiation index (SRI) is a proxy factor that indicate local amount of solar radiation, which affects the ground surface temperature and moisture, and lead to different micro-climate. They both are important to plant growth. Thus, this study take TWI and SRI as new predictors into the model which developed with discriminant analysis (DA), decision tree (DT), maximum entropy (MaxEnt), and support vector machine (SVM), in order to predict the potential habitats of three species, which are Schima superba var. superba (Chinese guger tree, CGT), Rhododendron formosanum (RF) and Elaeocarpus japonica (JE) in the Huisun Experimental Forest Station (HEFS) in central Taiwan. Besides, it also applied two interpolated methods into DEM to regenerate TWI (called krig-TWI), SRI (called krig-SRI) and tried to evaluate the effects of TWI, krig-TWI, SRI and krig-SRI on the performance of SDMs. The results show that SRI did not promote accuracy of model, while krig-SRI did. TWI-M potentially raised the accuracy of model, while TWI-S did not advance the accuracy in most model. In DT and DA model, such significantly improved as krig-SRI be, krig-TWI-S did not come up with it, and either did krig-TWI-M. Among the performance of four models, MaxEnt is the best for three species; DT is second for RF and CGT; SVM is worst for JE and CGT, but it is as second as DT for RF. More importantly, TWI value can represent the ecological traits of three target species statistically, and agrees with our observations from field surveys. TWI-M is more robust than TWI-S due to TWI-M is quiet not affected by different interpolation. Consequently, this study confirms that TWI and krig-SRI can somehow improve the performance of SDMs, where they are different in any single type of model result. In models with high specificity (like SVM) or with high omission error (like DA) pefromed well, while models with strict rule (like MaxEnt and DT) did not arise apparently. SDM must be considered to run on an iterative basis with topographic data in initial rounds, and thereby saving both cost and labor. This process is inevitable in impoving the predictive performance of SDM in mountain area.

【摘要】-----------------------------------------i
ABSTRACT----------------------------------------ii
目 次-------------------------------------------iii
圖目次-------------------------------------------vii
表目次-------------------------------------------ix
第一章 前 言------------------------------------1
第二章 前人研究----------------------------------5
2.1 物種分布研究程序------------------------------5
2.2 生育地及與物種分布模擬關係---------------------7
2.2.1 平衡與非平衡--------------------------------7
2.2.2 生育地與生態棲位----------------------------7
2.2.3 生態棲位-----------------------------------8
2.2.4 生態棲位與物種分布模擬類型-------------------10
2.3 影響模式表現的主要因子-------------------------11
2.3.1 環境因子及其分類----------------------------13
2.3.2 SDM特性與地文替代變數-----------------------14
2.4 目標變數與樹種-------------------------------16
2.5 地形濕度指數及地形遮蔭------------------------18
2.5.1 地形濕度指數-------------------------------18
2.5.1.1 地形濕度指數演算--------------------------19
2.5.1.2 地形濕度指數特性--------------------------22
2.5.2 地形遮蔭-----------------------------------22
2.5.2.1 地形遮蔭計算-----------------------------23
2.6 物種分布模式演算法的選擇及應用案例-------------25
2.6.1 多模式的演算-------------------------------25
2.6.2 模式迭代操作-------------------------------25
2.7 模式驗證評估---------------------------------26
第三章 研究目標、區域及物種-----------------------28
3.1 研究區域------------------------------------28
3.1.1 研究區域範圍------------------------------28
3.1.2 地形-------------------------------------28
3.1.3 立地條件與土壤資料-------------------------29
3.1.4 氣候與氣象、雨量資料------------------------30
3.1.5 土地利用-----------------------------------31
3.1.6 林場內主要林相------------------------------31
3.2 目標樹種-------------------------------------32
3.2.1 薯豆---------------------------------------32
3.2.2 台灣杜鵑-----------------------------------32
3.2.3 木荷---------------------------------------33
第四章 材料與方法---------------------------------34
4.1 研究架構-------------------------------------34
4.2 資料收集-------------------------------------35
4.2.1 數值高程模型--------------------------------35
4.2.2 像片基本圖----------------------------------35
4.2.3 現場定位目標樹種之數據------------------------35
4.2.4 研究使用的軟體、儀器設備----------------------36
4.3 資料處理--------------------------------------37
4.3.1 海拔---------------------------------------37
4.3.2 坡度---------------------------------------38
4.3.3 坡面位置-------------------------------------38
4.3.4 地形濕度指數---------------------------------40
4.3.5 地形遮蔭-------------------------------------42
4.4 點位資料處理及取樣設計--------------------------43
4.4.1 點位資料處理---------------------------------43
4.4.2 取樣設計------------------------------------43
4.5 圖層疊合及樣本切取-----------------------------44
4.6 模式、新變數功效檢測設計------------------------44
4.7 物種分布模式建立-------------------------------45
4.7.1 區別分析法 (DA)-----------------------------46
4.7.2 抉擇樹 (DT)---------------------------------47
4.7.3 最大熵值法 (MAXNT)---------------------------47
4.7.4 支持向量機 (Support Vector Machine, SVM)-----48
4.8 模式驗證指標-----------------------------------50
4.8.1 Kappa 指標----------------------------------51
4.8.2 整體精度 (OA)--------------------------------51
4.8.3 真技術統計 (TSS)-----------------------------51
第五章 結果與討論----------------------------------52
5.1 樹種點位的地文因子統計--------------------------52
5.1.1 研究區域------------------------------------52
5.1.1 薯豆----------------------------------------53
5.1.2 台灣杜鵑------------------------------------55
5.1.3 木荷----------------------------------------56
5.2. 預測變數組合----------------------------------58
5.2.1 薯豆----------------------------------------59
5.2.2 台灣杜鵑------------------------------------60
5.2.3 木荷---------------------------------------62
5.3 網格解析度對地形濕度指數 (TWI) 的影響------------63
5.3.1 六個地文因子在兩種內插法下的變化--------------64
5.3.1.1 薯豆-------------------------------------65
5.3.1.2 台灣杜鵑----------------------------------66
5.3.1.3 木荷-------------------------------------67
5.3.1.4 三個樹種----------------------------------68
5.3.2 目標樹種模擬的精度----------------------------69
5.3.2.1 薯豆--------------------------------------69
5.3.2.2 台灣杜鵑-----------------------------------71
5.3.2.3 木荷---------------------------------------72
5.3.3 克利金處理的影響------------------------------74
5.3.4. 三物種克利金處理後TWI、SRI對模擬的效果---------75
5.4 物種生態特性------------------------------------78
5.5 各模式效力排序與最佳變數組合----------------------81
5.5.1 各物種最佳模式與最佳組合模擬圖------------------82
第六章 結論與建議-----------------------------------86
6.1 結論------------------------------------------86
6.2 建議------------------------------------------87
第七章 參考文獻------------------------------------89
附錄-----------------------------------------------99
附錄1 樣本座標及其各項地文因子數值-------------------99
附錄1-1 薯豆樣木及各項地文因子----------------------99
附錄1-2 台灣杜鵑樣木及各項地文因子------------------105
附錄1-3 木荷樣木及各項地文因子----------------------110
附錄2 兩種內插處理後的六變數組合kappa精度成對比較表---115
附錄3 三物種於四模式六種組合中各自表現最佳生育地-------117
附錄3-1 薯豆--------------------------------------117
附錄3-2 台灣杜鵑----------------------------------118
附錄3-3 木荷--------------------------------------118

中文圖書 (7)
王子定 (1974) 育林學。臺灣商務印書館。
何春蓀 (1986) 台灣地質概論—台灣地質圖說明書,第二版,經濟部中央地質調查所。
林震岩 (2007) 多變量分析:SPSS的操作與應用。智勝出版社,第185–194、309–322、359–366、489-546頁。
高書屏 (2012) GPS衛星定位測量概論。詹氏出版,第17-42、75-83、124-140、171-177頁。
劉棠瑞、蘇鴻傑 (1983) 森林植物生態學。臺灣商務印書館。
劉業經、呂福原、歐辰雄 (1994) 台灣樹木誌,國立國立中興大學農學院。
鄧家駒 (2004) 多變量分析。華泰文化,第369-394頁。
中文期刊論文 (17)
王志強、歐辰雄 (2002) 惠蓀林場維管束植物名錄 (一) 蕨類植物,林業研究季刊 24(4): 1-14。
汪家夷(2002)生態旅遊之土地分區研究-以惠蓀林場為例。朝陽科技大學休閒事業管理系碩士論文。
莊永忠、廖學誠、詹進發 (2006) 不同流向演算法與集流閾值對數值地形模型河川網格萃取之影響。地理研究45: 73-92。
莊永忠、廖學誠、詹進發 (2006) 數值地形模型網格解析度對自動化河川萃取之影響。中華林學季刊 39 (4): 497-515。
莊永忠、廖學誠、詹進發、黃正良 (2007) 不同網格解析度與流向演算法對蓮華池集水區地形指標之影響。地理學報 50: 73-100。
許文奕 (2012) 複式斷面治溪。再造惠蓀林場集水區。營建知訊353: 4-15。
陳厚昌 (2012) 物種分布模式預測功效影響因子之評估。國立中興大學森林學研究所碩士論文
張怡珮 (2009) 台灣中部北東眼山天然闊葉林土壤呼吸量之評估。國立中興大學森林學研究所碩士論文。
馮豐隆、黃志成、陳英彥 (1993) 地理資訊系統應用於惠蓀實驗林場土地利用變遷之研究。遙感探測19: 71-95。
曾喜育、歐辰雄、呂福源、曾麗蓉 (2004) 關刀溪森林生態系牛奶榕物候及性別分化之表現,林業研究季刊 26 (2): 61-78。
楊奕岑、徐美玲、賴進貴 (2005) DEM 解析度暨流向演算法對於集流面積計算之影響。地理學報 39: 71-90。
謝立忻、羅南璋、黃凱易 (2005) 應用3S地球空間技術於植群空間分布型態之探討。林業研究季刊 27 (4): 37–46。
蔡尚惠、林志銓、黃立彥、呂金誠、歐辰雄 (2007) 惠蓀林場紅檜人工林與闊葉樹次生林之種豐富度模式分析。台灣林業科學 22(2): 193-204。
蘇鴻傑 (1992) 台灣之植群:山地植群帶與地理氣候區。中央研究院植物研究所專利 11: 39-53。中央研究院植物研究所。
羅南璋 (2010) 3S技術結合多變量統計模擬測繪林木之潛在生育地。國立中興大學森林學研究所博士論文。
羅南璋、張偉顗、黃凱易 (2011) 應用3S技術及多變量統計於薯豆及卡式櫧潛在生育地之推估。林業研究季刊 33(3): 55-70。
蘇聖暘 (2012) 探討多模式物種生態模擬─以薯豆、台灣杜鵑為例。國立中興大學森林學研究所博士論文。
西文圖書 (7)
Chang, K. T. (2012) Introduction to Geographic Information Systems, 6th ed. New York: McGraw-Hill.
Fortin, M.-J., and M. R. T. Dale. (2005) Spatial Analysis: A Guide for Ecologists. Cambridge University Press, Cambridge.
Grinnell, J. (1924) Geography of evolution. Ecology (5): 225–229.
Kellman, M. C. (1980) Plant Geography, Methuen Co. Ltd. London pp. 60-61.
Lillesand, T. M., R. W. Kiefer and J. W. Chipman (2008) Remote Sensing and Image Interpretation, 5th Edition, John Wiley & Sons. Inc., New York.
Moore, I. D., B. G., Mackey, Sims, R. A. and Baldwin, K. A. (1996) Spatial Analysis of Boral Forest Ecosystems: Results from the Rinker Lake Case Study, in Goodchild, M. F., Steyaert, L. T., Parks, B. O., Johnston, C., Maidment, D., Crane, M. and Glendinning, S. (eds) op.cit., Ch. 34: 187-190.
Pickett, S.T.A., Kolasa, G., Jones, C.G., (1994) Ecological Understanding: the Nature of Theory and the Theory of Nature. Academic Press, New York
西文期刊 (79)
Araújo, M. B., M. Cabeza, W. Thuiller, L. Hannah and P. H. Williams (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology 10: 1618-1626.
Araújo M. and A. Guisan (2006) Five (or so) challenges for species distribution modeling. Biogeography 33: 1677-1688.
Austin, M. P., R. B. Cunningham and P. M. Fleming (1984) New approaches to direct gradient analysis using environment scalars and statistical curve fitting procedures. Vegetation 55: 11-27.
Beven, K. J. and Kirkby, M. J. (1979) A physically based variable contributing area model of basin hydrology, Hydrol Science. Bull 24(1): 43-69.
Beers, T.W., Dress, P.E. & Wensel, L.C. (1966) Aspect transformation in site productivity research, Journal of Forest 64: 691.
Besnard AG, La Jeunesse I, Pays O, Secondi J (2013) Topographic wetness index predicts the occurrence of bird species in floodplains. Diversity and Distributions 19: 955-963.
Breiman, L., Friedman, J. H., Olsen, R. A. and Stone, C. G. (1984) Classification and Regression Trees. Chapman and Hall, New York, USA. 357.
Brown, D. G. (1994) Predicting vegetation type at treeline using topography and biophysical disturbance variables, Journal of Vegetation Science 5: 641-656.
Brotons, L., W. Thuiller, M. B. Araújo and A. H. Hirzel (2003a) Presence absence versus presence only modeling methods for predicting bird habitat suitability. Ecography 27: 437–448.
Byron K. Williams. (1983) Some Observations of the Use of Discriminant Analysis in Ecology. Journal of Ecology 64: 1283-1291.
Chefaoui, R. M. and Lobo, J. M. (2008) Assessing the effects og pseudo-absences on predictive distribution model performance. Ecological Modelling 210: 478-486.
Ciarniello, L.M., Boyce, M.S., Heard, D.C. & Seip, D.R. (2005) Denning behaviour and den site selection of grizzly bears along the Parsnip River, British Columbia, Canada. -Ursus 16: 47-58.
Clark, J. S. (1991) Disturbance and tree life history on the shifting mosaic landscape, Journal of Ecology 72: 1102-1118.
Cohen, J. (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20 (1): 37-46.
Congalton, R. G. (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 37: 35-46.
Dormann, C. F. et al. (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30: 609-628.
Dubayah, R., Rich, P.M. (1995) Topographic solar radiation models for GIS. International Journal of Geographical Information Systems 9: 405-419.
Elith, J., C. H., Graham, and Anderson, R.P. (2006) Novel methods improve prediction of species’ distribution from occurrence data. Ecography 29, 129-151.
Engler, R., A. Guisan and L. Rechsteiner (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo–absence data. Journal of Applied Ecology 41: 263-274.
Engler R. and Guisan A. (2009) MIGCLIM: Predicting plant distribution and dispersal in a changing climate. –Divers. Distrib. 15(4): 590-601.
Fairfield J, Leymarie P. (1991) Drainage networks from grid digital elevation models. Water Resources Research 27(5): 709-717.
Fisher, R. A. (1990) The use of multiple measurements in taxonomic problems. Journal of Annals of Eugenics 7: 179-188.
Fielding, A.H. and Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38-49.
Flint, Alan L., and Stuart W. Childs. (1987) Calculation of solar radiation in mountainous terrain. Agricultural and forest meteorology 40(3): 233-249.
Franchini, M., Wendling, J., Obled, C. and Todini, E. (1996) Physical interpretation and sensitivity analysis of the TOPMODEL. Hydrol 115: 293-338.
Franklin, J. (1998) Predicting the distribution of shrub species in southern California from climate and terrain-derived variables. Journal of Vegetation Science 9(5): 733-748.
Franklin J. (2009) Mapping Species Distributions: Spatial Inference and Prediction. Cambridge, UK: Cambridge Univ. Press. In press
Freeman T G. (1991) Calculating catchment area wit h divergent flow based on a regular grid. Computers & Geosciences 17(3): 413-422.
Guisan, A., Theurillat, J.-P. (2000) Equilibrium modeling of alpine plant distribution and climate change: how far can we go? Phytocoenologia, special issue (in press).
Guisan, A. and N. Zimmermann, (2000) “Predictive habitat distribution models in ecology,” Ecological Modeling 135: 147-186.
Güntner, de Araújo, J.C., Döll, P., A., Krol, M., Abreu, C.B.R., Hauschild, M., Mendiondo, E.M. (2004) Water scarcity under scenarios for global climate change and regional development in semiarid Northeastern Brazil. Water Int. 29(2): 209-220.
Grinnell, J. (1917) Field tests of theories concerning distributional control. The American Naturalist 51: 115-128.
Hanspach, J. et al. (2011) Geographical patterns in prediction errors of species distribution models. Global Ecology and Biogeography 20(5): 779-788.
Heikkinen, R.K., Luoto, M., Araujo, M.B., Virkkala, R., Thuiller, W. & Sykes, M.T. (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography 30: 751-777.
Hernandez, A. P., C. H. Graham, L. L. Master, and D. L. Albert. (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods, Ecography 29: 773-785.
Hutchinson, G. E. (1957) Cold Spring Harbor Symposia on Quantitative Biology. Concluding remarks 22: 145-159.
Izham, M. Y., Muhamad Uznir U., Alias, A. R., Ayob, K., Wan Ruslan I. (2011) Influence of georeference for saturated excess overland flow modeling using 3D volumetric soft geo-objects. Comput Geosci 37(4): 598-609.
Jackson ST, Overpeck JT (2000) Responses of plant populations andcommunities to environmrntal chages of the late Quaternary. Paleobiology 26: 194-220
Keating, K. A., P. J. P. Gogan, J. M. Vore, and I. R. Irby. (2007) A simple solar radiation index for wildlife habitat. Wildlife Management 71:1344-1348.
Kohavi, Ron (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence 2 (12): 1137-1143.
Kopecky, M. & Cizkova, S. (2010) Using topographic wetness index in vegetation ecology: Does the algorithm matter? Applied Vegetation Science 13: 450-459.
Kumar, S. and Stohlgren, T. J. (2009) MaxEnt modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Ecology and Natural Environment 1(4): 94-98.
Landenburger, L., Lawrence, R.L., Podruzny, S., and Schwartz, C.C. (2008). Mapping Regional Distribution of a Single Tree Species: Whitebark Pine in the Greater Yellowstone Ecosystem, Sensors 8: 4983-4994.
Laura Auria and Rouslan A. Moro (2008) Support Vector Machines (SVM) as a Technique for Solvency Analysis.
Lobo, J. M. (2008) More complex distribution models or more representative data? Biodiversity Informatics 5: 14-19.
Loucks, O. L. (1962) A forest classification for the Maritime Provinces. Proceedings of the Nova Scotia institute of Science 25(2): 85-167.
L.-J. Zhen, C.-Z. Qin, and A.-X. Zhu. (2012) “Which type of slope gradient should be used to determin flow-partition proportion in multiple-flow-direction algorithms---tangent or sine? Hydrol, Earth Syst. Science, Disciss 9: 6409-6418.
Manly, B. F. J., McDonald, L. L. and Thomas, D.L. (1993) Resource Selection by Animals: Statistical Design and Analysis for Field Studies. Chapman and Hall, London, England: 177.
Marsh, Chris B., John Pomeroy, and Raymond J. Spiteri. (2011) Implication of mountain shading and topographic scaling on energy for snowmelt. Hydrological Processes 26(12): 1767–1778.
Mateo, R. G., A. M. Felicisimo and J. Muñoz (2010) Effects of the number of presences on reliability and stability of MARS species distribution models: the importance of regional niche variation and ecological heterogeneity. Vegetation Science 21: 908-22.
Miller, J. R., M. G. Turner, E. A. H. Smithwick, C. L. Dent and E. H. Stanley (2004) The Science of Predicting Ecological Patterns and Processes. BioScience 54(4): 310-320.
McPherson, J. M., W. Jetz and D. J. Rogers. (2004) The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? Journal of Applied Ecology 41: 811-823.
Moore, I. D., E. M. O’loughlin and G. J. Burch (1988) A Contour – Based Topographic Model for Hydrological and Ecological Applications. Earth Surface Processes and Landforms 13: 305-320.
Moore, I. D., R. B. Grayson and A. R. Landson (1991) Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrological Processes 5: 3-30.
Moeslund J. E., Arge L, B?che,r P. K., Dalgaardm, T., Ejrnæs, R., Odgaard, Mv., Svenning, J. C. (2013) Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers Conserve 22: 2151-2166.
Montero, G., et al. (2009) Solar radiation and shadow modelling with adaptive triangular meshes. Solar Energy 83(7): 998-1012.
N. Barve., V. Barve, A. Jimenez-Valverde, A. Lira-Noriega, S. P. Maher, A. T. Peterson, J. Soberon, and F. Villalobos. (2011) The crucial role of the accessible area in ecological modeling and species distribution modeling. Ecological Modeling 222: 1810-1819.
O’Callaghan, J. F. and Mark, D. M. (1984) The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing 28: 323-344.
Parolo, G. and G. Rossi, A. Ferrarini (2008) Toward improved species niche modelling: Arnica montana in the Alps as a case study. Journal of Applied Ecology 45: 1410-1418.
Pereira, J. M. C.and R.M. Itami. (1991) GIS-based habitat modeling using logistic multiple regression: A study of the Mt. Graham Red Squirrel. Photogrammetric Engineering and Remote Sensing 57 (11): 1475-1486.
Peterson, A. T. (2006) Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics 3: 59-72.
Phillips, S. J., R. P. Anderson and R. E. Schapire (2006) Maximum entropy modelling of species geographic distributions. Ecological Modelling 190: 231-259.
Piedallu C, Gegout JC (2007) Multiscale computation of solar radiation for predictive vegetation modelling. Annals of Forest Science 64(8): 899-909.
Quinn, P., Beven, K., Chevallier, P. & Planchon, O. (1991) The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological Processes 5: 59-79.
Qin Chengzhi, Li Baolin, ZHU Axing, et al. (2006) Multiple flow direction algorithm with flow partition scheme based on downslope gradient. (inpress) (in Chinese) Advances in Water Science.
Qin, C., Zhu, A. X., Pei, P., Li, B., Zhou, C., Yang, L. (2007a) An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm. International Journal of Geographical Information Science 21: 443-458.
Qin, C., Zhu, A., Yang, L., Li, B., Pei, T. (2007b) Topographic Wetness Index Computed using Multiple Flow Direction Algorithm and Local Maximum Downslope Gradient.
R. P. Anderson and A. Raza, (2010) The effect of the extent of the study region on GIS models of species geographic distributions and niche evolution; preliminary tests with montane rodents (genus Nephelomys) in Venezuela, Journal of Biogeography 37: 1378-1393.
Randin, C.F., Dirnbock, T., Dullinger, S., Zimmermann, N.E., Zappa, M. & Guisan, A. (2006) Are niche-based species distribution models transferable in space? Journal of Biogeography 33: 1689-1703.
Santos M. J., Greenberg J.A., Ustin S.L. (2010) Using hyper spectral remote sensing to detect and quantify south-eastern pine senescence effects in red cockaded woodpecker (Picoides borealis) habitat. Remote Sensing and Environment 114: 1242-1250.
Skidmore, A. K. (1990) Terrain Position as Mapped From a Girded Digital Elevation Model. Int. J. Geographical Information System 4(1): 33-49.
Soberón, J. and A. T. Peterson (2005) Interpretation of models of fundamental ecological niches and species’ distribution areas. Biodivers. Inform. 2: 1-10.
Sperduto, M. B. and R. G. Congalton. (1996) Predicting rare orchid (small whorled Pogonia), habitat using GIS, Photogrammetric. Engineering & Remote Sensing 62 (11): 1269-1279.
Stockwell, D. R. B. and A. T. Peterson. (2002) Effects of sample size on accuracy of species distribution models. Ecological Modelling 148: 1-13.
Tarboton, D.G. (1997): A new method for determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research 33(2): 309-319.
Thuiller, W., S. Lavorel and M. B. Araújo (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography 14: 347-357.
Wang, L. and H. Liu, (2006) An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modeling, International Journal of Geographical Information Science 20: 193–213.
Wolock, D. M., and Price, C. V. (1994) Effects of digital elevation model map scale and data resolution on a topography-based watershed model. Water Resources Research 30(11): 3041-3052.
Wolock, D. M., and G. J. McCabe (1995) Comparison of single and multiple flow direction algorithms for computing topographic parameters, Water Resource 31(5): 1315-1324.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top