卜恒勇、趙誠、盧晨(2009)功能梯度材料的製備與應用進展。材料導報 23(12A):109–112。
王思群(1994)竹木複合定向粒片板尺寸穩定性研究。林產工業 13(2):295–303。任文涵、張丹、王戈、李文燕、程海濤(2014)竹質纖維–HDPE複合材料的力學和熱性能研究。北京林業大學學報 36(4):133–140。
汪淮、林太仁(1984)竹材加工廢料高收率製漿之研究。林產工業 3(1):32–48。谷雲川、王益真(1990)台灣竹材製漿之回顧與展望。林產工業 9(1):115–122。黃文正、宋洪丁、陳恬恬(2006)農林廢棄物製造複合材之研究。林產工業 25(3):295–303。黃妙修(2002)「竹產業轉型與振興計畫」執行成果。農政與農情。第126期。
黃浪、王海剛、王清文(2014)木粉/聚丙烯複合材料的非等溫結晶動力學分析。中國工程科學 16(4):21–24。
陳合進、陳載永、徐俊雄、黃偉銘(2003)模壓式製造木材–HDPE塑膠複合材戶外利用之接受性調查(I):新安裝之設施的接受性。國立國立中興大學農林學報52(4):11–20。陳載永、王瀛生(1981)竹材廢料製造建築用粒片板之研究。中華林學季刊 14:39–60。陳載永、陳合進、F. A. Kamke(2002)平壓式製造木材粒片–塑膠複合材之探討。木工家具 216:108–112。
陳載永、薛秀輝(1983)水泥膠合竹材粒片板與竹筋補強混泥土之研究。林產工業 4(2):2–16。洪克昌(2010)乙醯化處理竹粒片對竹材塑膠複合材強度及耐候性質之影響。國立國立中興大學森林學系碩士論文。70頁。吳東霖、陳載永、吳志鴻(2011)竹材加工廢料應用在生物可分解型塑膠複合材製備之研究。中華林學季刊 44(4):613–625。徐俊雄、陳載永、陳合進(1999)石膏–農林廢料複合材之性質。林產工業 18(3):287–296。葉誌峰(2007)農林廢料–塑膠複合材製造及其性質之研究。國立國立中興大學森林學系碩士論文。52頁。殷敬華、莫志深(2001)現代高分子物理學。科學出版社。第102–125頁。
梁釗、徐成、許超(2010)聚氯乙烯木塑複合材料的生產工藝與性能。包裝學報 2(4):58–60。
涂曉蓉(2010)木質纖維強化聚乳酸複合材料之製備與特性研究。國立台北科技大學有機高分子研究所碩士論文。81頁。褚晴暉、歐怡良(2006)功能梯度材料之破裂力學回顧。中華民國力學學會學術研討會。第115期。
Achereiner, F., K. Engelsing, M. Bastian and P. Heidemeyer (2013) Accelerated creep testing of polymers using the stepped isothermal method. Polym. Test. 32:447–454.
Adhikary, K. B., S. Pang and M. P. Staiger (2008) Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos. Part B-Eng. 39:807–815.
Ashori, A. (2008) Wood-plastic composites as promising green-composites for automotive industries. Bioresource Technol. 99:4661–4667.
Arbelaiz, A., B. Fernández, J. A. Ramos and I. Mondragón (2006) Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: Effect of treatments. Termochim. Acta 440:111–121.
Avrami, M. (1939) Kinetics of phase change. I. General theory. J. Chem. Phys. 7:1103–1112.
Avrami, M. (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8:212–224.
Avrami, M. (1941) Granulation, phase change and microstructure. Kinetics of phase change. III. J. Chem. Phys. 9:177–184.
Ayrilmis, N., J. H. Kwon, T. H. Han and A. Durmus (2015) Effect of wood-derived charcoal content on properties of wood plastic composites. Mat. Res. 18(3):654–659.
Bledzki, A. K and J. Gassan (1999) Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24:221–274.
Bouza, R., C. Marco, G. Ellis, Z. Martín, M. A. Gómez and L. J. Barral (2008) Analysis of the isothermal crystallization of polypropylene/wood flour composites. J. Therm. Anal. Calorim. 94:119–127.
Brinson, L. C. (1995) Effects of physical aging on long term creep of polymers and polymer matrix composites. Int. J. Solids. Struct. 32(6-7):827–846.
Chaharmahali, M., M. Tajvidi and S. K. Najafi (2008) Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard. Polym. Composite. 29(6):606–610.
Chen, X., Q. Guo and Y. Mi (1998) Bamboo fiber-reinforced polypropylene composites: A study of the mechanical properties. J. Appl. Polym. Sci. 69:1891–1899.
Clemons, C. (2002) Wood-plastic composites in the United States: The interfacing of two industries. Forest Prod. J. 52(6):10–18.
Clemons, C. M. and R. E. Idach (2004) Effects of processing method and moisture history on laboratory fungal resistance of wood-HDPE composites. Forest Prod. J. 54:50–57.
Deka, B. K. and K. M. Tarun (2012) Effect of silica nanopowder on the properties of wood flour/polymer composite. Polym. Eng. Sci. 52(7):1516–1523.
Devi, R. R. and T. K. Maji (2011) Preparation and characterization of wood/styrene-acrylonitrile copolymer/MMT nanocomposite. J. Appl. Polym. Sci. 122(3):2099–2109.
Espert, A., F. Vilaplana and S. Karlsson (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos. Part A-Appl. S. 35:1267–1276.
Giannopoulos, I. P. and C. J. Burgoyne (2011) Predication of the long-term bahaviour of high modulus fibers using the stepped isostress method (SSM). J. Mater. Sci. 46:7660–7671.
Giannopoulos, I. P. and C. J. Burgoyne (2012) Accelerated and real-time creep and creep-rupture results for aramid fibers. J. Appl. Polym. Sci. 125:3856–3870.
Hadid, M., B. Guerira, M. Bahri and A. Zouani (2014) Assessment of the stepped isostress method in the prediction of long term creep of thermoplastics. Polym. Test. 34:113–119.
Homkhiew, C., T. Ratanawilai and W. Thongruang (2014) Time-temperature and stress dependent behaviors of composites made from recycled polypropylene and rubberwood flour. Constr. Build. Mater. 66:98–104.
Hung, K.-C. and J.-H. Wu (2010) Mechanical and interfacial properties of plastic composite panels made from esterified bamboo particles. J. Wood Sci. 56:216–221.
Hung, K.-C., Y.-L. Chen and J.-H. Wu (2012) Natural weathering properties of acetylated bamboo plastic composites. Polym. Degrad. Stabil. 97:1680–1685.
Ichazo, M. N., C. Albano, J. González, R. Perera and M.V. Candal (2001) Polypropylene/wood flour composites: Treatments and properties. Compos. Struct. 54(2-3):207–214.
Jeziorny, A. (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D.S.C. Polymer 19:1142–1144.
Kumari, R., H. Ito, M. Takatani, M. Uchiyama and T. Okamoto (2007) Fundamental studies on wood/cellulose-plastic composites: Effects of composition and cellulose dimension on the properties of cellulose/PP composite. J. Wood Sci. 53(6):470–480.
Kozlowski, R. and M. Wladyka-Przybylak (2004) Uses of natural fiber reinforced plastics. In: F. T. Wallenberger and N. Weston eds. Natural Fibers, Plastic and Composites. MA: Kluwer Academic Publishers, Norwell. pp. 249–271.
Lee, S.-Y., H.-S. Yang, H.-J. Kim, C.-S. Jeong, B.-S. Lim and J.-N. Lee (2004) Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Compos. Struct. 65(3-4):459–469.
Lee, S.-H. and S. Wang (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos. Part A-Appl. S. 37(1):80–91.
Li, X., B. Lei, Z. Lin, L. Huang, S. Tan and X. Cai (2013) The utilization of bamboo charcoal enhances wood plastic composites with excellent mechanical and thermal properties. Mater. Design 53:419–424.
Lin, H. C., Y. Fujimoto, Y. Murase and Y. Mataki (2002) Behavior of acoustic emission generation during tensile tests perpendicular to the plane of particleboard II: Effects of particle sizes and moisture content of boards. J. Wood Sci. 48:374–379.
Liu, J. and Z. Mo (1991) Crystallization kinetics of polymers. Chinese. Polym. Bull. 4:199–207.
Liu, T., Z. Mo, S. Wang and H. Zhang (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym. Eng. Sci. 37(3):568–575.
Lu, J. Z., Q. Wu and H. S. McNabb (2000) Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments. Wood Fiber Sci. 32:88–104.
Luo, S. and A. N. Netravail (1999) Interfacial and mechanical properties of environment-friendly “green” composites made from pineapple fibers and poly(hydroxybutyrate-co-valerate) resin. J. Mater. Sci. 34:3709–3719.
Luo, A. A., B. R. Powell and M. P. Balogh (2002) Creep and microstructure of magnesium-aluminum-calcium based alloys. Metall. Mater. Trans. A 33(3):567–574.
López Manchado, M. A., J. Biagiotti, L. Torre and J. M. Kenny (2000) Effects of reinforcing fibers on the crystallization of polypropylene. Polym. Eng. Sci. 40:2194–2204.
Mandelkern, L. (2002) Crystallization of polymers. vol 1. Equilibrium concepts, 2nd ed. Cambridge University Press. McGraw-Hill, N.Y. 448 pp.
Migneault, S., A. Koubaa, F. Erchiqui, A. Chaala, K. Englund and M. P. Wolcott (2009) Effects of processing method and fiber size on the structure and properties of wood-plastic composites. Compos. Part A-Appl. S. 40:80–85.
Mwaikambo, L. Y. and M. P. Ansell (1999) The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Angew. Makromol. Chem. 272(1):108–116.
Najafi, A. and S. K. Najafi (2008) Effect of load levels and plastic type on creep behavior of wood sawdust/HDPE composites. J. Reinf. Plast. Comp. 28(21): 2645–2653.
Niu, P., X. Wang, B. Liu, S. Long and J. Yang(2012)Melting and nonisothermal crystallization behavior of polypropylene/hemp fiber composites. J. Compos. Mater. 46(2):203–210.
Nourbakhsh, A. and A. Ashori (2008) Fundamental studies on wood-plastic composites: Effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite. Polym. Composite. 29(5):569–573.
Ou, R., C. Guo, Y. Xie and Q. Wang (2011) Non-isothermal crystallization kinetics of kevlar fiber-reinforced wood flour/HDPE composites. BioResources 6(4):4547–4565.
Ozawa, T. (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158.
Phuong, N. T., and V. Girbert (2010) Non-isothermal crystallization kinetics of short bamboo fiber-reinforced recycled polypropylene composites. J. Reinf. Plast. Compos. 28:1–16.
Pritchard, G. (2004) Two technologies merge: Wood plastic composites. Reinforced Plastics 48(6):26–29.
Raj, R. C., B. V. Kokta, Dembele and B. Sanschagrain (1989) Compounding of cellulose fibers with polypropylene: Effect of fiber treatment on dispersion in the polymer matrix. J. Appl. Polym. Sci. 38:1987–1996.
Rajan, T. P. D., R. M. Pillal and B. C. Pai (2008) Functionally graded Al-Al3Ni in situ intermetallic composites: Fabrication and microstructural characterization. J. Alloys Compd. 453(1-2):L4–L7.
Stark, N. M., L. M. Matuana and C. M. Clemons (2004) Effect of processing method on surface and weathering characteristics of wood-flour/HDPE composites. J. Appl. Polym. Sci. 93:1231–1238.
Smith, P. M. (2001) Wood fiber-plastic composite decking market. In: Proc. Sixth International Conference on Wood fiber-Plastic Composites. Forest Prod. Soc., Madison, WI. pp. 13–17.
Sombatsompop, N., A. Kositchaiyong and E. Wimolmal(2006)Experimental analysis of temperature and crystallinity profiles of wood sawdust/polypropylene composites during cooling. J. Appl. Polym. Sci. 102(2):1896–1905.
Tamrakar S., R. A. Lopez-Anido, A. Kiziltas and D. J. Gardner (2011) Time and temperature dependent response of a wood-polypropylene composite. Compos. Part A-Appl. S. 42(7):834–842.
Tajvidi, M., R. H. Falk and J. C. Hermanson (2005) Time-temperature superposition principle applied to a kenaf-fiber/high-density polyethylene composite. J. Appl. Polym. Sci. 97(5):1995–2004.
Yao, F. and Q. Wu (2010) Coextruded polyethylene and wood-flour composite: Effect of shell thickness, wood loading, and core quality. J. Appl. Polym. Sci. 118(6):3594–3601.
Yeo, S.-S. and Y. G. Hsuan (2009) Predicting the creep behavior of high density polyethylene geogrid using stepped isothermal method. In: J. W. Martin, R. A. Ryntz, J. Chin and R. A. Dickie eds. Service life prediction of polymeric materials. Springer, N. Y. pp. 205–218.
Yuan, Q., S. Awate and R. D. K. Misra (2006) Nonisothermal crystallization behavior of polypropylene-clay nanocomposites. Eur. Polym. J. 42:1994–2003.