跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/06 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許瀞尹
研究生(外文):Chin-Yin Hsu
論文名稱:竹粒片含量對層狀結構竹材塑膠複合材之物理機械性質及結晶動力學之影響
論文名稱(外文):Effects of Bamboo Particle Content on the Physicomechanical Properties and Crystallization Kinetics of Layered Bamboo-Plastic Composites
指導教授:吳志鴻吳志鴻引用關係
口試委員:王松永卓志隆楊德新楊登鈞
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:65
中文關鍵詞:層狀結構竹材塑膠複合材物理機械性質階段式等應力試驗法非等溫結晶動力學結晶活化能
外文關鍵詞:Layered bamboo plastic compositePhysicomechanical propertyStepped isostress methodNon-isothermal crystallization kineticCrystallization activation energy
相關次數:
  • 被引用被引用:2
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
  本研究利用桂竹(Phyllostachys makinoi)刨屑、生物炭(Bio-char)與聚丙烯(Polypropylene,PP)作為試驗材料製備層狀結構竹材塑膠複合材(Layered bamboo plastic composites,BPCL),同時利用萬能強度試驗機、X-ray密度分析儀與示差掃描熱分析儀等儀器,探討複合材不同組成比例其物理機械性質及結晶動力學之影響。試驗結果顯示,利用配層比例1:3:1且表底層竹粒片添加量為40 wt%所製備之BPCL,具有較優異之物理機械性質。此外,BPCL心層中添加不同生物炭含量時,以添加量5 wt%者具有最佳之抗濕性與木螺釘保持力;而添加1 wt%者,則具有最佳之抗彎性質。另一方面,利用階段式等應力試驗法(Stepped isostress method,SSM)進行短期加速潛變試驗時,不同SSM試驗條件所繪製之各潛變主曲線(Master curves)間具有高度之一致性,且該結果顯示單層結構複合材之抗潛變性能較層狀結構者為佳。
  而在結晶動力學研究方面,本論文以非等溫結晶動力學(Non-isothermal crystallization kinetics)模式分析竹粒片與生物炭添加量對塑膠基質結晶行為之影響。由試驗結果可以得知,隨著竹粒片含量的增加,複合材中塑膠基質之結晶速率亦隨之增加。而添加生物炭於複合材中,則會阻礙PP分子鏈的結晶,使複合材中PP基質結晶速率呈現下降之趨勢。此外,由結晶活化能分析結果可以得知,當竹粒片添加量小於40 wt%時,其複合材之活化能小於純PP。然而,當添加量超過40 wt%時,其活化能則與純PP相似。此外,添加1及5 wt%生物炭於複合材當中,會使複合材之結晶活化能有所提高,而添加3 wt%生物炭時,活化能與未添加生物炭者間則無明顯之差異。


In this study, makino bamboo (Phyllostachys makinoi) residue, bio-char and polypropylene (PP) were used as raw materials to manufacture the layered bamboo plastic composite (BPCL). The effects of bamboo/PP ratio and layering on physicomechanical properties and crystallization kinetics of BPCL were evaluated by universal testing machine, X-ray density profiler and differential scanning calorimetry (DSC), etc. These results showed that the 3-layer BPCL with volume ratio 1:3:1 and surface/back layer with 40 wt% bamboo content exhibited the best physicomechanical properties. In addition, the BPCL with 5 wt% bio-char in core layer has the best moisture resistance and wood screw-holding strength, whereas the flexural properties of BPCL could be increased by adding 1 wt% bio-char in core layer. To predict the long-term creep behavior of BPCL, a short-term and accelerated creep testing method, termed the stepped isostress method (SSM) was used. The results indicated that the creep master curves constructed from the different SSM testing parameters have highly consistency. Moreover, the creep resistance of single layer BPC was better than that of BPCL.
With regard to crystallization kinetics analysis, the non-isothermal crystallization kinetic models were applied to investigate the effects of bamboo particle and bio-char content on the crystallization behavior of plastic matrix within the BPC. The results showed that the crystallization rate of PP increased with increasing the bamboo content of composites. In contrast, adding the bio-char into the composite, which hinder the rearrangement of PP molecular chains to crystal surface, could reduce the crystallization rate of PP in the composites. As for the crystallization activation energ, the crystallization activation energy of composites was smaller than that of neat PP, when the amount of bamboo was less than 40 wt%. Once the bamboo loading exceeded 40 wt%, however, the activation energy of composites was similar to neat PP. Furthermore, the crystallization activation energy of composite increased with the addition of 1 and 5 wt% bio-char into a composite, and there were no significant differences between the activation energy of composites with 3 wt% bio-char and the without one.


摘要 i
Abstract ii
表目次 vi
圖目錄 ix
第一章 前言 1
第二章 文獻回顧 4
一、成型方式對木材塑膠複合材性質之影響 4
二、竹纖維塑膠複合材之性質 6
三、階段式等應力試驗法之理論基礎 7
四、非等溫結晶動力學之理論基礎及應用 11
(一)非等溫結晶動力學理論 12
(二)非等溫結晶動力學應用於天然纖維塑膠複合材料結晶行為之探討 14
第三章 材料與方法 17
一、試驗材料 17
(一)桂竹粒片 17
(二)塑膠材料 17
(三)生物炭 17
二、層狀結構竹材塑膠複合材之製備 17
三、BPCL性質分析 20
(一)BPCL物理性質 20
(二)BPCL機械性質 21
(三)潛變試驗 22
(四)非等溫結晶動力學 23
(五)統計分析 24
第四章 結果與討論 25
一、層狀結構對竹材塑膠複合材之影響 25
(一)層狀結構對竹材塑膠複合材物理性質之影響 25
(二)層狀結構對竹材塑膠複合材機械性質之影響 27
二、添加生物炭對BPCL性質之影響 31
(一)添加生物炭對BPCL物理性質之影響 31
(二)添加生物炭對BPCL機械性質之影響 32
三、以階段式等應力法預測BPC之長期潛變行為 34
四、竹材塑膠複合材之結晶行為 39
(一)以非等溫結晶動力學探討複合材結晶行為 39
(二)以Avrami模式探討複合材內塑膠基質之結晶行為 45
(三)以Mo模式探討複合材內塑膠基質之結晶行為之探討 50
(四)竹粒片及生物炭添加量對複合材內塑膠基質結晶活化能之影響 53
第五章 結論 55
參考文獻 57


卜恒勇、趙誠、盧晨(2009)功能梯度材料的製備與應用進展。材料導報 23(12A):109–112。
王思群(1994)竹木複合定向粒片板尺寸穩定性研究。林產工業 13(2):295–303。
任文涵、張丹、王戈、李文燕、程海濤(2014)竹質纖維–HDPE複合材料的力學和熱性能研究。北京林業大學學報 36(4):133–140。
汪淮、林太仁(1984)竹材加工廢料高收率製漿之研究。林產工業 3(1):32–48。
谷雲川、王益真(1990)台灣竹材製漿之回顧與展望。林產工業 9(1):115–122。
黃文正、宋洪丁、陳恬恬(2006)農林廢棄物製造複合材之研究。林產工業 25(3):295–303。
黃妙修(2002)「竹產業轉型與振興計畫」執行成果。農政與農情。第126期。
黃浪、王海剛、王清文(2014)木粉/聚丙烯複合材料的非等溫結晶動力學分析。中國工程科學 16(4):21–24。
陳合進、陳載永、徐俊雄、黃偉銘(2003)模壓式製造木材–HDPE塑膠複合材戶外利用之接受性調查(I):新安裝之設施的接受性。國立國立中興大學農林學報52(4):11–20。
陳載永、王瀛生(1981)竹材廢料製造建築用粒片板之研究。中華林學季刊 14:39–60。
陳載永、陳合進、F. A. Kamke(2002)平壓式製造木材粒片–塑膠複合材之探討。木工家具 216:108–112。
陳載永、薛秀輝(1983)水泥膠合竹材粒片板與竹筋補強混泥土之研究。林產工業 4(2):2–16。
洪克昌(2010)乙醯化處理竹粒片對竹材塑膠複合材強度及耐候性質之影響。國立國立中興大學森林學系碩士論文。70頁。

吳東霖、陳載永、吳志鴻(2011)竹材加工廢料應用在生物可分解型塑膠複合材製備之研究。中華林學季刊 44(4):613–625。
徐俊雄、陳載永、陳合進(1999)石膏–農林廢料複合材之性質。林產工業 18(3):287–296。
葉誌峰(2007)農林廢料–塑膠複合材製造及其性質之研究。國立國立中興大學森林學系碩士論文。52頁。
殷敬華、莫志深(2001)現代高分子物理學。科學出版社。第102–125頁。
梁釗、徐成、許超(2010)聚氯乙烯木塑複合材料的生產工藝與性能。包裝學報 2(4):58–60。
涂曉蓉(2010)木質纖維強化聚乳酸複合材料之製備與特性研究。國立台北科技大學有機高分子研究所碩士論文。81頁。
褚晴暉、歐怡良(2006)功能梯度材料之破裂力學回顧。中華民國力學學會學術研討會。第115期。
Achereiner, F., K. Engelsing, M. Bastian and P. Heidemeyer (2013) Accelerated creep testing of polymers using the stepped isothermal method. Polym. Test. 32:447–454.
Adhikary, K. B., S. Pang and M. P. Staiger (2008) Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos. Part B-Eng. 39:807–815.
Ashori, A. (2008) Wood-plastic composites as promising green-composites for automotive industries. Bioresource Technol. 99:4661–4667.
Arbelaiz, A., B. Fernández, J. A. Ramos and I. Mondragón (2006) Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: Effect of treatments. Termochim. Acta 440:111–121.
Avrami, M. (1939) Kinetics of phase change. I. General theory. J. Chem. Phys. 7:1103–1112.
Avrami, M. (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8:212–224.
Avrami, M. (1941) Granulation, phase change and microstructure. Kinetics of phase change. III. J. Chem. Phys. 9:177–184.
Ayrilmis, N., J. H. Kwon, T. H. Han and A. Durmus (2015) Effect of wood-derived charcoal content on properties of wood plastic composites. Mat. Res. 18(3):654–659.
Bledzki, A. K and J. Gassan (1999) Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24:221–274.
Bouza, R., C. Marco, G. Ellis, Z. Martín, M. A. Gómez and L. J. Barral (2008) Analysis of the isothermal crystallization of polypropylene/wood flour composites. J. Therm. Anal. Calorim. 94:119–127.
Brinson, L. C. (1995) Effects of physical aging on long term creep of polymers and polymer matrix composites. Int. J. Solids. Struct. 32(6-7):827–846.
Chaharmahali, M., M. Tajvidi and S. K. Najafi (2008) Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard. Polym. Composite. 29(6):606–610.
Chen, X., Q. Guo and Y. Mi (1998) Bamboo fiber-reinforced polypropylene composites: A study of the mechanical properties. J. Appl. Polym. Sci. 69:1891–1899.
Clemons, C. (2002) Wood-plastic composites in the United States: The interfacing of two industries. Forest Prod. J. 52(6):10–18.

Clemons, C. M. and R. E. Idach (2004) Effects of processing method and moisture history on laboratory fungal resistance of wood-HDPE composites. Forest Prod. J. 54:50–57.
Deka, B. K. and K. M. Tarun (2012) Effect of silica nanopowder on the properties of wood flour/polymer composite. Polym. Eng. Sci. 52(7):1516–1523.
Devi, R. R. and T. K. Maji (2011) Preparation and characterization of wood/styrene-acrylonitrile copolymer/MMT nanocomposite. J. Appl. Polym. Sci. 122(3):2099–2109.
Espert, A., F. Vilaplana and S. Karlsson (2004) Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos. Part A-Appl. S. 35:1267–1276.
Giannopoulos, I. P. and C. J. Burgoyne (2011) Predication of the long-term bahaviour of high modulus fibers using the stepped isostress method (SSM). J. Mater. Sci. 46:7660–7671.
Giannopoulos, I. P. and C. J. Burgoyne (2012) Accelerated and real-time creep and creep-rupture results for aramid fibers. J. Appl. Polym. Sci. 125:3856–3870.
Hadid, M., B. Guerira, M. Bahri and A. Zouani (2014) Assessment of the stepped isostress method in the prediction of long term creep of thermoplastics. Polym. Test. 34:113–119.
Homkhiew, C., T. Ratanawilai and W. Thongruang (2014) Time-temperature and stress dependent behaviors of composites made from recycled polypropylene and rubberwood flour. Constr. Build. Mater. 66:98–104.


Hung, K.-C. and J.-H. Wu (2010) Mechanical and interfacial properties of plastic composite panels made from esterified bamboo particles. J. Wood Sci. 56:216–221.
Hung, K.-C., Y.-L. Chen and J.-H. Wu (2012) Natural weathering properties of acetylated bamboo plastic composites. Polym. Degrad. Stabil. 97:1680–1685.
Ichazo, M. N., C. Albano, J. González, R. Perera and M.V. Candal (2001) Polypropylene/wood flour composites: Treatments and properties. Compos. Struct. 54(2-3):207–214.
Jeziorny, A. (1978) Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D.S.C. Polymer 19:1142–1144.
Kumari, R., H. Ito, M. Takatani, M. Uchiyama and T. Okamoto (2007) Fundamental studies on wood/cellulose-plastic composites: Effects of composition and cellulose dimension on the properties of cellulose/PP composite. J. Wood Sci. 53(6):470–480.
Kozlowski, R. and M. Wladyka-Przybylak (2004) Uses of natural fiber reinforced plastics. In: F. T. Wallenberger and N. Weston eds. Natural Fibers, Plastic and Composites. MA: Kluwer Academic Publishers, Norwell. pp. 249–271.
Lee, S.-Y., H.-S. Yang, H.-J. Kim, C.-S. Jeong, B.-S. Lim and J.-N. Lee (2004) Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Compos. Struct. 65(3-4):459–469.
Lee, S.-H. and S. Wang (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos. Part A-Appl. S. 37(1):80–91.


Li, X., B. Lei, Z. Lin, L. Huang, S. Tan and X. Cai (2013) The utilization of bamboo charcoal enhances wood plastic composites with excellent mechanical and thermal properties. Mater. Design 53:419–424.
Lin, H. C., Y. Fujimoto, Y. Murase and Y. Mataki (2002) Behavior of acoustic emission generation during tensile tests perpendicular to the plane of particleboard II: Effects of particle sizes and moisture content of boards. J. Wood Sci. 48:374–379.
Liu, J. and Z. Mo (1991) Crystallization kinetics of polymers. Chinese. Polym. Bull. 4:199–207.
Liu, T., Z. Mo, S. Wang and H. Zhang (1997) Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym. Eng. Sci. 37(3):568–575.
Lu, J. Z., Q. Wu and H. S. McNabb (2000) Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments. Wood Fiber Sci. 32:88–104.
Luo, S. and A. N. Netravail (1999) Interfacial and mechanical properties of environment-friendly “green” composites made from pineapple fibers and poly(hydroxybutyrate-co-valerate) resin. J. Mater. Sci. 34:3709–3719.
Luo, A. A., B. R. Powell and M. P. Balogh (2002) Creep and microstructure of magnesium-aluminum-calcium based alloys. Metall. Mater. Trans. A 33(3):567–574.
López Manchado, M. A., J. Biagiotti, L. Torre and J. M. Kenny (2000) Effects of reinforcing fibers on the crystallization of polypropylene. Polym. Eng. Sci. 40:2194–2204.
Mandelkern, L. (2002) Crystallization of polymers. vol 1. Equilibrium concepts, 2nd ed. Cambridge University Press. McGraw-Hill, N.Y. 448 pp.
Migneault, S., A. Koubaa, F. Erchiqui, A. Chaala, K. Englund and M. P. Wolcott (2009) Effects of processing method and fiber size on the structure and properties of wood-plastic composites. Compos. Part A-Appl. S. 40:80–85.
Mwaikambo, L. Y. and M. P. Ansell (1999) The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Angew. Makromol. Chem. 272(1):108–116.
Najafi, A. and S. K. Najafi (2008) Effect of load levels and plastic type on creep behavior of wood sawdust/HDPE composites. J. Reinf. Plast. Comp. 28(21): 2645–2653.
Niu, P., X. Wang, B. Liu, S. Long and J. Yang(2012)Melting and nonisothermal crystallization behavior of polypropylene/hemp fiber composites. J. Compos. Mater. 46(2):203–210.
Nourbakhsh, A. and A. Ashori (2008) Fundamental studies on wood-plastic composites: Effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite. Polym. Composite. 29(5):569–573.
Ou, R., C. Guo, Y. Xie and Q. Wang (2011) Non-isothermal crystallization kinetics of kevlar fiber-reinforced wood flour/HDPE composites. BioResources 6(4):4547–4565.
Ozawa, T. (1971) Kinetics of non-isothermal crystallization. Polymer 12:150–158.
Phuong, N. T., and V. Girbert (2010) Non-isothermal crystallization kinetics of short bamboo fiber-reinforced recycled polypropylene composites. J. Reinf. Plast. Compos. 28:1–16.
Pritchard, G. (2004) Two technologies merge: Wood plastic composites. Reinforced Plastics 48(6):26–29.

Raj, R. C., B. V. Kokta, Dembele and B. Sanschagrain (1989) Compounding of cellulose fibers with polypropylene: Effect of fiber treatment on dispersion in the polymer matrix. J. Appl. Polym. Sci. 38:1987–1996.
Rajan, T. P. D., R. M. Pillal and B. C. Pai (2008) Functionally graded Al-Al3Ni in situ intermetallic composites: Fabrication and microstructural characterization. J. Alloys Compd. 453(1-2):L4–L7.
Stark, N. M., L. M. Matuana and C. M. Clemons (2004) Effect of processing method on surface and weathering characteristics of wood-flour/HDPE composites. J. Appl. Polym. Sci. 93:1231–1238.
Smith, P. M. (2001) Wood fiber-plastic composite decking market. In: Proc. Sixth International Conference on Wood fiber-Plastic Composites. Forest Prod. Soc., Madison, WI. pp. 13–17.
Sombatsompop, N., A. Kositchaiyong and E. Wimolmal(2006)Experimental analysis of temperature and crystallinity profiles of wood sawdust/polypropylene composites during cooling. J. Appl. Polym. Sci. 102(2):1896–1905.
Tamrakar S., R. A. Lopez-Anido, A. Kiziltas and D. J. Gardner (2011) Time and temperature dependent response of a wood-polypropylene composite. Compos. Part A-Appl. S. 42(7):834–842.
Tajvidi, M., R. H. Falk and J. C. Hermanson (2005) Time-temperature superposition principle applied to a kenaf-fiber/high-density polyethylene composite. J. Appl. Polym. Sci. 97(5):1995–2004.
Yao, F. and Q. Wu (2010) Coextruded polyethylene and wood-flour composite: Effect of shell thickness, wood loading, and core quality. J. Appl. Polym. Sci. 118(6):3594–3601.

Yeo, S.-S. and Y. G. Hsuan (2009) Predicting the creep behavior of high density polyethylene geogrid using stepped isothermal method. In: J. W. Martin, R. A. Ryntz, J. Chin and R. A. Dickie eds. Service life prediction of polymeric materials. Springer, N. Y. pp. 205–218.
Yuan, Q., S. Awate and R. D. K. Misra (2006) Nonisothermal crystallization behavior of polypropylene-clay nanocomposites. Eur. Polym. J. 42:1994–2003.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top