(3.235.236.13) 您好!臺灣時間:2021/05/15 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:成允聖
研究生(外文):Yun-Sheng Cheng
論文名稱:造林對回收農地土壤及土壤水養分動態的影響
論文名稱(外文):Effects of Afforestation on Soil and Soil Solution Nutrient Dynamics in Agricultural Land
指導教授:劉瓊霦劉瓊霦引用關係
口試委員:許博行詹勳全李錦育陸象豫
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:森林學系所
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:106
中文關鍵詞:土地利用造林土壤土壤水養分
外文關鍵詞:land useafforestationsoisoil solutionnutrient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為了解大梨山地區回收造林數十年後,造林地是否有如天然林等森林生態系,具有調控養分離子、吸附並減少養分離子流失與增加環境中養分離子庫含量等功能。從2014年3月到2015年12月,每月收集梨山地區畢祿溪、晉元溪與有勝溪三個集水區中高山菜園、果園、天然林與造林地等不同土地利用的土壤水進行比較分析。畢祿溪、晉元溪與有勝溪三個集水區在土壤養分含量與土壤水離子濃度中都呈現有勝溪 > 晉元溪 > 畢祿溪的現象,而在所有樣區當中,天然林陽離子交換容量(cation exchange capacity, CEC)較高,有機質累積量較多,與其他樣區相比有較高的養分留存能力,且土壤含水率有明顯分層。
由梨山地區農業用地在土壤與土壤水化學性質,可明顯看出大量施肥所造成的影響,在土壤水組成上也顯示有受到農業汙染,而果園與菜園因農耕形式的不同,在回收造林後有截然不同的反應,菜園地在回收造林後,土壤水離子濃度會快速降低,並由以硫酸鈣(CaSO4)與氯化鈣(CaCl2)為主的受農業汙染組成狀態恢復成以碳酸氫鈣(Ca(HCO3)2)為主的未受汙染的組成狀態,然而長期耕作的影響使其組成與以碳酸氫鈣(Ca(HCO3)2)、碳酸氫鎂(Mg(HCO3)2)與碳酸氫鈉(NaHCO3)多種混和為主的天然林完全不同,且不易恢復,而果園地雖然其土壤水組成以碳酸氫鈣(Ca(HCO3)2)、碳酸氫鎂(Mg(HCO3)2)、硫酸鈣(CaSO4)、硫酸鎂(MgSO4)、氯化鈣(CaCl2)、氯化鎂(MgCl2)等多種型態為主,其受農業汙染的程度不如菜園地,但在回收造林後,土壤水濃度下降較緩慢,待恢復成以碳酸氫鈣與碳酸氫鎂為主的未受農業汙染組成狀態需較長的時間,然而在土壤水組成上卻與天然林較相近。
菜園和果園用地在回收造林後,土壤水 NO3 濃度有先降後升的現象,推測是由於造林初期,停止施肥、氣溫低與土壤 CEC 的降低使 NO3 濃度迅速減少,而在林相恢復後,有機質的分解、微生物活性增加與硝化作用速率提升,使土壤水 NO3 濃度再度增加,此外,梨山地區因為長期的農業活動與過量的施肥,導致過剩的養分離子在深層土壤中累積,加上農作物與造林初期的苗木根系發展不完全,對於水分的吸收效率較低,使多數淺層土壤中的土壤水,隨重力向下移動,增加停留於土壤中的時間,並溶解出因長期施肥而累積於深層土壤的養分,導致土壤水養分離子濃度在深層高於淺層。


In order to see whether or not after over a decade of afforestation at Lishan, Taiwan, the silvicultural stands has the ability to regulate nutrients, absorb ions, reduce nutrient loss, and increase environmental nutrient pool as a natural forest, we collect and analysis soil and soil water samples from three watersheds in Lishan, which were Bi Lu, Jin Yuan, and You Sheng. Results showed that comparing the three watersheds, soil and soil solution nutrients has a trend of You Sheng > Jin Yuan > Bi Lu, and of all land types, natural forest had the highest cation exchange capacity (CEC), soil organic matter, and can preserve more nutrients, also by the results of soil volumetric water content, the nature forest show a more improve and sound developed root system, which leads to a significant low water content at the deep soil.
The chemistry characteristic of soil and soil solution show a significant impact of fertilization in the agricultural land of Lishan, and the nutrients in soil solution show an agricultural polluted composition (CaSO4、CaCl2). Among agricultural lands (orchard and vegetable fields), due to cultivation process, showed a totally different result after afforestation. The concentration of soil solution quickly decreased after afforestation at former vegetable fields, but as a result of enduring cultivation, though the composition of soil solution showed no sign of agricultural pollution (Ca(HCO3)2), it is nothing near the composition of soil solution in natural forest (Ca(HCO3)2、Mg(HCO3)2、NaHCO3) and did not restore even after 11 years. Intern of former orchard lands, though pollution from farming is not as strong as vegetable fields, the pollutants seems to stay in the environment for a fairly longer time before the composition of soil solution restore to an unpolluted form, but compared to former vegetable fields, silvicultural land of former orchards had a composition much similar to natural forest.
The concentration of NO3 in soil solution showed a decreased trend at the early stage of afforestation and increased as the stand development. Due to the stop of fertilizing, low temperature and the decrease of CEC at the early stage of afforestation, and as the stand development, the accumulation of organic matter increased the activity of microbe, causing an enhance of nitrification. And furthermore, owing to years of excess fertilization, great amount of excessive nutrients accumulated in the deep soil, moreover the root system in vegetable fields and early stage afforestation lands are not yet fully developed, causing a large proportion of soil solution moving downward due to gravitational force, and increased the residence time in soil. The accumulated nutrients in the deep soil are then dissolved into soil solution for the longer period of residence time and causes the higher concentration of nutrients compare to the topsoil.


謝誌 i
摘要 iii
Abstract v
目錄 vii
表目錄 x
圖目錄 xi
壹、前言 1
貳、文獻回顧 4
一、農業活動對環境之影響 4
二、森林生態系的養分循環與留存 7
(一)森林土壤 7
1.土壤固態基質 7
2.土壤液態基質 8
(二)森林對養分的吸收 8
(三)森林生態系養分內循環 9
三、造林對土壤環境之影響 12
參、材料與方法 13
一、樣區介紹 13
(一)試驗地概況 13
1. 畢祿溪集水區 15
2. 晉元溪集水區 16
3. 有勝溪集水區 16
(二)試驗地區土壤型狀態 18
二、樣區架設與資料收集 19
(一)土壤水 19
(二)土壤 19
(三)土壤含水率 19
三、樣本分析 21
(一)水樣檢測與分析 21
1. 酸鹼值、電導度及總溶解固體 21
2. 無機陽離子與無機陰離子 21
3. 碳酸氫根離子 22
4. 溶解性有機碳與溶解性總氮 22
(二)土壤性質分析 23
1. 土壤酸鹼度測定 23
2. 土壤有機質含量測定 23
3. 土壤置換性陽離子濃度測定 23
4. 土壤陽離子交換容量測定 24
5. 土壤置換性養分潛力指數 25
6. 土壤總氮測定 25
肆、結果 26
一、土壤化學性質空間變異 26
(一)土壤 pH 值 26
(二)土壤有機質含量 28
(三)土壤 CEC 28
(四)土壤置換性陽離子 30
(五)土壤全氮量 32
(六)土壤置換性養分潛力指數 33
(七)土壤化學性質相關性分析 34
二、土壤水化學性質 35
(一)土壤水 pH 值 35
(二)土壤水電導度與總溶解固體 36
(三)無機陰離子及陽離子 39
1. 離子間差異 39
2. 各集水區樣區間差異 43
(1.)無機陰離子 43
(2.)無機陽離子 53
(四)土壤水溶解性有機碳與總氮 56
三、土壤水化學性質時間變異 57
(一)土壤水電導度 57
(二)無機陰陽離子 60
1. 菜園地 60
2.菜園回收地 62
3. 果園回收地 63
4. 天然林 64
四、土壤水三角形水質圖解法 77
(一)畢祿溪集水區 78
(二)晉元溪集水區 80
(三)有勝溪集水區 82
五、土壤含水率 84
伍、討論 86
一、回收地造林對土壤與土壤水化學的影響 86
(一)酸鹼度 86
(二)置換性養分含量 87
(三)氮循環 89
(四)水化學優勢度組成 91
二、回收地造林對不同深度土壤與土壤水的影響 92
陸、結論 96
柒、參考文獻 98


王一雄、陳尊賢、李達源(1995)土壤汙染學。國立空中大學用書。
王敏昭(1993)德基水庫周緣林帶對其上坡處蔬菜園及果園施用肥料緩衝之研究。經濟部德基水庫管理委員會委託研究計劃。
李芳胤、陳世賢(2007)土壤分析實驗手冊。新文京開發出版股份有限公司。共 396 頁。
余瑞珠、王亞男、蕭英倫、林法勤、柯淳涵(2009)人工造林與天然林對溪流水質之影響。中華林學季刊 42 (4) :529-539。
吳俊宗、高麗珠、黃文亞 (2000) 翡翠水庫浮游藻與水質關係之研究 (V)。台北翡翠水庫管理局研究報告。
吳正宗(2009)肥料學。國立國立中興大學土壤環境學系。共 227 頁。
林景和、賴惠珍(2000)蔬菜栽培之化肥施用現況與改進。合理化施肥技術 21-24。
林俊義(2005)永續農業之理念與發展策略。合理化施肥專刊 1-14。
金恆鑣、劉瓊霦、夏禹九、黃正良(2003)福山天然闊葉林生態系對降水水化學的交互作用。台灣林業科學 18(4):363-373。
洪富文、程煒兒(1996)福山闊葉林生態系的土壤養分庫及其有效養分動態。台灣林業科學 11(4): 465-473。
夏禹九、金恆鑣、洪富文、黃正良、王立志、劉瓊霦(1994)植生型與施肥作業對濱岸帶土壤水化學性質的影響。林業試驗所研究報告季刊 9(1):39-50。
張育齊(2009)茶園施肥對北勢溪之影響。國立台灣大學環境工程學系碩士論文。
郭孟斯(1998)關刀溪森林生態系三種林分之土壤理化性質及土壤水化學成分。國立國立中興大學森林系碩士論文。
郭鴻裕、朱戩良、劉滄棽、劉禎祺、江志峰(1999)本省農田土壤劣化問題之檢討與改進。台灣省農業試驗所技術服務 37(3):11-16。
郭魁士(1983)土壤學。中國書局。
陳亮谷 (1996) 台灣中部高山土壤中施肥對養分流失之研究。國立國立中興大學土壤學系碩士論文。
陳世芳、林錦宏、許家勝(2014)台中區合理化施肥政策效益之分析。台中區農業改良場研究彙報 124: 69-83。
陳尊賢(1995)水庫及河流周緣緩衝帶肥料之截取作用。集水區土壤肥料講習。中華土壤肥料學會編印 p.55-72。
彭宗仁、范家華(2006)梨山農作區水體中 NO3 之來源與轉化。土壤與環境 9 (1,2) : 43-58.
彭宗仁、董奇矗、陳琦玲、范家華、朱戩良、林毓雯、劉滄棽(2008)南投名間農業區與城鎮區地下水水質特徵比較。中華水土保持學報 39(3):241-253。
程兆熊(1978)梨山區果樹的來龍去脈及其問題。中國園藝 24(5,6):189-190。
程煒兒、洪富文 (1994) 桉樹造林對土壤肥力之影響。林業研究報告季刊 9(3): 241-256。
黃柏松(2007)退輔會榮民安置與梨山地區農業發展。國立中央大學歷史系碩士論文。
黃裕銘(1995)高冷蔬菜施肥管理。集水區土壤肥料講習。中華土壤肥料學會編印 p.47-54
楊秋忠、蘇秋華(1994)坡地土壤有機質及養分含量之研究。82 年度水土保持及集水區經營研究計畫。林業特刊 46: 57-66。
楊秋忠(1995)德基水庫集水區土壤、植物、降水、空氣及水中農藥殘留量分析研究。經濟部水資源統一規畫委員會。
葉春國、廖學誠、詹進發、黃正良、薛美莉 (2008) 水里溪上游集水區土地利用與溪流水中硝酸鹽濃度關係之探討。中華水土保持學報 39(2):141-153。
蔡智賢(1991)數種作物對水分之反應。國立國立中興大學植物學系博士論文。
蔡佳育、陳明義、陳恩倫、陳文民、俞秋豐(2006)畢祿溪流域之植群分類與製圖。林業研究季刊 28(3):1-16。
劉文徹(1993)陽離子交換能量。土壤分析手冊。中華土壤肥料學會。
劉瓊霦、許博行(1999)幹流水和穿落水的水量及水質在三種林分的變化。林業研究季刊 21(2):51-59。
劉瓊霦、許博行(1999)森林生態系的氮飽和。林業研究季刊 21(4):93-100。
謝孟修(2007)崩積層之類併構岩材料力學行為模式 – 以梨山地滑區為例。國立交通大學土木工程學系碩士論文。

Adams, M. B., T. R. Angradi, and J. N. Kochenderfer(1997)Stream water and soil solution responses to 5 years of nitrogen and sulfur additions at the Fernow Experimental Forest, West Virginia. Forest Ecology and Management 95(1):79-91.
Aldrich, W. W., R. A. Work, and M. R. Lewis (1935) Pear root concentration in relation to soil-moisture extraction in heavy clay soil. Journal of Agricultural Research 50: 975-988.
Amans, E. B., and J. H. G. Slangen (1994) The effect of controlled-release fertilizer “Osmocote” on growth, yield and composition of ion plants. Fertilizer Research 37: 79-84.
Apha, A. WPCF (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC, 456.
Barling, R. D., and I. D. Moore. (1994) Role of buffer strips in management of waterway pollution: a review. Environmental Management 18 (4) :543-558.
Berden, M., S. I. Nilsson, and P. Nyman (1997) Ion leaching before and after clear-cutting in a Norway spruce stand—Effects of long-term application of ammonium nitrate and superphosphate. Water, Air, and Soil Pollution 93 (1-4): 1-26.
Bhunia, G. S., P. K. shit, and R. Maiti (2016) Spatial variability of soil organic carbon under different land use using radial basis function (RBF). Modeling Earth Systems and Environment 2: 17-25.
Blackmer, A. M. (1987) Losses and transport of nitrogen from soils. p85-103. In F. M. D’Itri and L. G. Wolfson. Rural Groundwater Contamination. Lewis Publishers Inc., Chelsea, MI.
Chauhan, R. P., K. R. Pande, and S. Thakur (2014) Soil properties affected by land use systems in Western Chitwan, Nepal. International Journal of Applied Sciences and Biotechnology 2 (3): 265-269.
Coile, T. S. (1937) Distribution of forest tree roots in North Carolina Piedmont soils. Journal of Forest Research 35: 247-257.
Comerford, N. B., D. G. Neary, and R. S. Mansel (1992) The effectiveness of buffer strips for ameliorating offsite transport of sediment, nutrients, and pesticides from silvicultural operations. National Council Paper Industry Air and Stream Improvement Technical Bulletin 631, New York.
Dou, X., Q. Deng, M. Li, W. Wang, Q. Zhang, and X. Cheng (2013) Reforestation of Pinus massoniana alters soil organic carbon and nitrogen dynamics in eroded soil in south China. Ecological Engineering 52:154-160.
Emmett, B. A., S. A. Brittain, S. Hughes, J. Görres, V. Kennedy, D. Norris, R. Rafarel, B. Reynolds, and P. A. Stevens (1995) Nitrogen additions (NaNO3 and NH4NO3) at Aber forest, Wales: I. Response of throughfall and soil water chemistry. Forest Ecology and Management, 71(1): 45-59.
Fisher, R. F. (1990) Amelioration of soils by tree. In Sustained productivity of forest soils. North America Forest Soils Conference 7th, Vancouver, BC, Faculty of Forestry Publication, University of British Columbia, Vancouver.
Fu, B. J., X. D. Guo, L. D. Chen, K. M. Ma, and J. R. Li (2001). Soil nutrient changes due to land use changes in Northern China: a case study in Zunhua County, Hebei Province. Soil Use and Management, 17(4), 294-296.
Gomes, S.L., and T. L. Loynachan (1984) Nitrification of anhydrous ammonia related to nitropyrene and time-temperature interactions. Agronomy Journal 76: 9-12.
Gundersen, P., and L. Rasmussen (1995) Nitrogen mobility in a nitrogen limited forest at Klosterhede, Denmark, examined by NH4NO3 addition. Forest Ecology and Management, 71(1): 75-88.
Heihden, G. V., A. Legout, B. Pollier, L. Mareschal, M. Turpault, J. Ranger, and E. Dambrine (2013) Assessing Mg and Ca depletion from broadleaf forest soils and potential causes - A case study in the Morvan Mountains. Forest Ecology and Management 293: 65-78.
Heihden, G. V., A. Legout, M. Nicolas, E. Ulrich, D. W. Johnson, and E. Dambrine (2011) Long-term sustainability of forest ecosystems on sandstone in the Cosges Mountains (France) facing atmospheric deposition and silvicultural change. Forest Ecology and Mangement 261: 730-740.
Horng, F. W. (1987) Nutrient cycling in plantation forests in Taiwan. p 79-94. In T. Kiang, C. Y. Yang and Y. P. Kao eds. Forest productivity and site evaluation.
Hough, W. A., F. W. Woods, and M. L. McCormack (1965) Root extension of individual trees in surface soils of a natural longleaf pine-turkey oak stand. Forest Science 11: 223-242.
Ingerslev, M. (1997) Effects of liming and fertilization on growth, soil chemistry and soil water chemistry in a Norway spruce plantation on a nutrient-poor soil in Denmark. Forest Ecology and Management, 92(1): 55-66.
Johnson, D. W., G. S. Henderson, and D. E. Todd (1988) Changes in nutrient distribution in forests and soils of Walker Branch Watershed over an eleven-year period. Biogeochemistry 5: 275-293.
Joslin, J. D., P. A. Mays, M. H. Wolfe, J. M. Kelly, R. W. Garber, and P. F. Brewer (1987) Chemistry of tension lysimeter and later flow in spruce and hardwood stands. Journal of Environmental Quality 16(2): 152-160.
Kilham K. (1994) Soil ecology. Cambridge University Press.
Kiuchi, M., R. Horton, and T. C. Kaspar (1994) Leaching characteristics of repacked soil columns as influenced by subsurface flow barrier. Soil Science Society of America Journal 58: 1212-1218.
Knoepp, J. D., and W. T. Swank (1994) Long-term soil chemistry changes in aggrading forest ecosystems. Soil Science Society of America Journal 58: 325-331.
Kozlowski,T. T., and S. G. Pallardry (1997) Physiology of woody plants. Academic Press, New York.
Kramer, P. J. (1969) Plant and soil water relationships: A modern synthesis. McGraw-Hill Book Company. New York, St. Louis, San Francisco, London, Sydney, Toronto, Mexico, Panama.
Kuusemets, V., and Ü. Mander (1999) Ecotechnological measures to control nutrient losses from catchments. Water Science and Technology 40(10): 195-202.
Lal R. (2001) Soil degradation by erosion. Land Degradation and Development 12: 519-539.
Likens, G. E., and F. H. Bormann (1995) Biogeochemistry of a forested ecosystem. Spring-Veroeg, New York, p159.
Lowrance, R., L. S. Altier, J. D. Newbold, R. R. Schnabel, P. M. Groffman, J. M. Denver, D. L. Correll, J. W. Gilliam, J. L. Robinson, R. B. Brinsfield, K. W. Staver, W. Lucas, and A. H. Todd (1997) Water quality functions of riparian forest buffers in Chesapeake Bay watersheds. Environmental Management, 21(5) : 687-712.
McDowell, T. R., and J. M. Omernik (1979) Nonpoint source-stream nutrient level relationships: a nationwide study. Corvallis Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
Musters, P. A. D., W. Bouten, and J. M. Verstraten (2000) Potentials and limitations of modeling vertical distributions of root water uptake of an Austrian pine forest on a sandy soil. Hydrological processes 14(1): 103-115.
Nolan, B. T. (2001) Relating nitrogen sources and aquifer susceptibility to nitrate in shallow groundwater of the United States. Ground water 39: 290-229.
Peterjohn, W. T., and D. L. Correll (1984) Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65(5): 1466-1475.
Proebsting, E. L. (1943) Root distribution of some deciduous fruit trees in a California orchard. Proceedings of the American Society for Horticultural Science. 43: 1-4.
Qiao, D. M., H. B. Shi, H. B. Pang, X. B. Qi and F. Plauborg (2010). Estimating plant root water uptake using a neural network approach. Agricultural Water Management 98(2): 251-260.
Richards, B. N. (1987) The microbiology of terrestrial ecosystems. Longman Scientific and Technical, New York. 399 pp.
Rhoades, C. C., G. E. Eckert, and D. C. Coleman (1998) Effect of pasture trees on soil nitrogen and organic matter: Implications for tropical montane forest restoration. Restoration Ecology 6:262-270.
Scowcroft, P. G., and J. Jeffrey (1999) Potential significance of frost, topographic relief, and Acacia koa stands to restoration of mesic Hawaiian forests on abandoned rangeland. Forest Ecology and Management 114:447-458.
Scowcroft, P. G., J. E. Haraguchi, and N. V. Hue (2004) Reforestation and topography affect montane soil properties, nitrogen pools, and nitrogen transformations in Hawaii. Soil science society of America 68: 959-968.
Singh, B. K., R. Bardgett, P. Smith, and D. Reay (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology 8:779-790.
Terman G. L. (1979) Volatilization losses of nitrogen as ammonia from surface-applied fertilizers, organic amendments and crop residue. Advances in Agronomy 31: 189-223
Triska, F. J., J. H. Duff, and R. J. Avanzino (1993) The role of water exchange between a stream channel and it hyporheic zone in nitrogen cycling at the terrestrial-aquatic interface. Hydrobiologia 251: 167-184.
Vitousek. P. M., and J. Sanford (1986) Nutrient cycling in moist tropical forest. Annual Review of Ecology, Evolution, and Systematics 17: 137-167.
Walker, T. W., and J. Syers (1976) The fate of phosphorus during pedogenesis. Geoderma 15: 1-19.
Welsch, D. J. (1991) Riparian forest buffers. United States Department of Agriculture Forest Service Publication Number NA-PR-07-91. Radnor, Pennsylvania.
Yimer, F., G. Alemu, and A. Abdelkadir (2015) Soil property variations in relation to exclosure and open grazing land use types in the Central Rift Valley area of Ethiopia. Environmental System Research 4: 17-27
Young, W. J., F. M. Marston, and J. R. Davis (1996) Nutrient exports and land use in Australian catchments. Environmental Management 47: 165–183.
Zanner, C. W., and P. R. Bloom (1995). Mineralization, nitrification, and denitrification in Histosols of Northern Minnesota. Soil Science Society of America Journal, 59(5), 1505-1511.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 余瑞珠、王亞男、蕭英倫、林法勤、柯淳涵(2009)人工造林與天然林對溪流水質之影響。中華林學季刊 42 (4) :529-539。
2. 林俊義(2005)永續農業之理念與發展策略。合理化施肥專刊 1-14。
3. 夏禹九、金恆鑣、洪富文、黃正良、王立志、劉瓊霦(1994)植生型與施肥作業對濱岸帶土壤水化學性質的影響。林業試驗所研究報告季刊 9(1):39-50。
4. 郭鴻裕、朱戩良、劉滄棽、劉禎祺、江志峰(1999)本省農田土壤劣化問題之檢討與改進。台灣省農業試驗所技術服務 37(3):11-16。
5. 彭宗仁、董奇矗、陳琦玲、范家華、朱戩良、林毓雯、劉滄棽(2008)南投名間農業區與城鎮區地下水水質特徵比較。中華水土保持學報 39(3):241-253。
6. 程兆熊(1978)梨山區果樹的來龍去脈及其問題。中國園藝 24(5,6):189-190。
7. 葉春國、廖學誠、詹進發、黃正良、薛美莉 (2008) 水里溪上游集水區土地利用與溪流水中硝酸鹽濃度關係之探討。中華水土保持學報 39(2):141-153。
8. 蔡佳育、陳明義、陳恩倫、陳文民、俞秋豐(2006)畢祿溪流域之植群分類與製圖。林業研究季刊 28(3):1-16。
9. 劉瓊霦、許博行(1999)幹流水和穿落水的水量及水質在三種林分的變化。林業研究季刊 21(2):51-59。
10. 劉瓊霦、許博行(1999)森林生態系的氮飽和。林業研究季刊 21(4):93-100。
 
無相關點閱論文