(3.236.118.225) 您好!臺灣時間:2021/05/16 10:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔡叡奇
研究生(外文):Jui-Chi Tsai
論文名稱:蕪菁嵌紋病毒鞘蛋白的第五個胺基酸決定其在單斑寄主長距離移行及在系統性寄主蚜傳之性狀
論文名稱(外文):The fifth residue of the coat protein of Turnip mosaic virus is responsible for long distance movement in a local-lesion host and aphid transmissibility in a systemic host
指導教授:葉錫東葉錫東引用關係
指導教授(外文):Shyi-Dong Yeh
口試委員:詹富智陳煜焜張雅君洪挺軒
口試委員(外文):Fuh-Jyh JanYuh-Kun ChenYa-Chun ChangTing-Hsuan Hung
口試日期:2016-06-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:60
中文關鍵詞:馬鈴薯Y群病毒屬蕪菁嵌紋病毒長距離移動蚜蟲傳播
外文關鍵詞:PotyvirusTurnip mosaic viruslong-distance movementaphid transmission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
過去有報導指出馬鈴薯 Y 群病毒屬病毒之 HC-Pro 以及 CP 能夠促進病毒的細胞間移行,並同時參與病毒的系統性移動。此外,HC-Pro 以及 CP 之間的交互作用也被證實是病毒被蚜蟲傳播時所必要的。過去在我們實驗室構築了蕪菁嵌紋病毒(Turnip mosaic virus, TuMV)的具感染力轉殖株 pYC5D。然而其所衍生的病毒卻無法在單斑寄主葵藜(Chenopodium quinoa)上進行系統性移動,並喪失了在系統性寄主圓葉菸草(Nicotiana benthamiana)上被蚜傳之能力。在這篇報告中,我們自當初分離之野生型蕪菁嵌紋病毒YC5 增幅了 HC-Pro 以及 CP 區段之 cDNA,並置換到 pYC5D 的對應區段。我們的結果發現來自野生型蕪菁嵌紋病毒的 CP 區段具有回復病毒在葵藜上行系統性移動的能力。此外,較高之溫度亦無法回復 YC5D 無法進行系統性移動之現象,因此我們推論 YC5D並非一種對溫度敏感之突變株。經過分析 pYC5D 以及野生型 YC5 病毒之 CP 序列後,我們發現 pYC5D 的 CP 區段之 N 端及 C 端各有一處點突變,分別位於第 5 個胺基酸,由原本的亮胺酸(leucine, L)突變為脯氨酸(proline, P) (L5P);另一處則位在第 262 個胺基酸,由原本的蘇胺酸(threonine, T)突變為丙胺酸(alanine, A) (T262A)。值得注意的是,點突變 L5P 的發生位置就緊鄰於 DAG 區段,而該區段曾被報導和馬鈴薯 Y 群病毒屬之病毒被蚜蟲傳播之性狀有緊密的關聯。經由點突變之手法分析後,我們發現將第 5 個胺基酸由脯氨酸回復至亮胺酸後,可以修復 YC5D 病毒在葵藜上系統移行的能力。為了追蹤蕪菁嵌紋病毒在葵藜中移行的路徑,我們將 GFP 或者 GUS 基因標定至 pYC5D-P5L以及 pYC5D-A262T 上。經由螢光顯微鏡的鏡檢,我們發現 YC5D-P5L-GFP 的螢光可在接種葉及系統葉被觀察到;然而YC5D-A262T-GFP的螢光則只被侷限於接種葉之葉柄。另外,透過 GUS 之染色手法,YC5D-A262T-GUS 的訊號被發現在葵藜接種葉的葉柄與主莖連接處被阻擋。綜合上述結果,我們發現 L5P 之點突變會使得病毒被阻擋在接種葉葉柄之維管束而無法進入葵藜的主莖。而藉由蚜蟲傳播能力試驗,我們發現 P5L 能夠回復 pYC5D 的蚜傳能力缺失。總結這些結果,我們證明蕪菁嵌紋病毒鞘蛋白上的第五個胺基酸,負責該病毒在其單斑寄主上進行系統移行以及在系統性寄主上被蚜蟲傳播之能力。然而此二現象其背後的機制連結還需要更多的實驗證據來加以證實。

Previous studies revealed that HC-Pro and CP genes of a potyvirus facilitate cell-to-cell movement and involve in systemic movement of the viruses. In addition, the interaction between HC-Pro and CP is mandatory for aphid transmission. Previously, we constructed an in vivo Turnip mosaic virus (TuMV) infectious clone pYC5D, however, its derived virus cannot move systemically in Chenopodium quinoa plants and loses aphid transmissibility in Nicotiana benthamiana plants. In this study, the HC-Pro and CP regions of pYC5D infectious clone were replaced with the corresponding cDNA fragments amplified from the original virus isolate YC5. Our results showed that the newly replaced wild type CP region restored the ability for systemic movement in inoculated C. quinoa plants. In addition, YC5D is not a temperature-sensitive mutant since higher temperature failed to restore the ability of YC5D for systemic movement. Sequencing analysis indicated that leucine (L) at position 5 and threonine (T) at position 262 of the wild type CP were changed to proline (P) and alanine (A), respectively, in YC5D virus. Interestingly, the L5P mutation was found adjacent to the 6DAG8 motif, which is involved in aphid transmissibility. Analysis by site-directed mutagenesis, our results indicated that P5L, but not A262T, is critical to permit systemic spread of the YC5 virus in C. quinoa plants. GFP-tagged or GUS-tagged TuMVs with or without changes in the two aa residues were constructed for investigation of long distance movement of TuMV within C. quinoa plants. The results of fluorescence microscopy revealed that GFP signal can be observed in petioles of inoculated leaves and upper leaves of C. quinoa plants infected by YC5D-P5L-GFP, while that of YC5D-A262T-GFP was observed only in petioles of inoculated leaves. In addition, visualization of the GUS activity revealed that the GUS signal of YC5D-A262T-GUS was blocked at the basal part of the petiole connecting to the main stem of the inoculated C. quinoa plants. Taken together, our results suggest that amino acid substitution from leucine to proline (L5P) in the CP of TuMV hampers the virus to enter the vascular tissue of the main stem of C. quinoa plants. Also, aphid transmission test of YC5D-P5L recombinant virus showed that its aphid transmissibility is restored. Taken our results together, we conclude that a single amino acid, the residue L5 at the N-terminal region, adjacent to the 6DAG8 motif, is important for the systemic translocation ability in a local-lesion host and aphid transmissibility in a systemic host. However, the exact correlation between the two phenotypes remains to be further investigated.


摘要 i
ABSTRACT ii
目次 iv
前人研究及實驗目的 1
馬鈴薯Y群病毒屬(Potyvirus)基因特性及其功能 1
蕪菁嵌紋病毒(Turnip mosaic virus)之特性與概況 3
植物病毒的轉移蛋白 (movement protein, MP) 3
細胞間移行 (cell-to-cell movement) 4
長距離移行 (long-distance movement) 5
植物病毒的傳播 (transmission) 6
實驗目的 6
INTRODUCTION 8
MATERIALS and METHODS 13
Virus source and its cDNA infectious clone 13
Plant growth, virus inoculation and long-term storage 13
Total RNA extraction and RT-PCR 14
Replacement of HC-Pro and CP coding regions of pYC5 with the corresponding region of the wild type YC5 and the phenotypes of the recombinants 14
Sub-cloning and site-directed mutagenesis to generate recombinant viruses 16
Aphid transmission assay 17
Indirect-ELISA 18
Construction of GFP fused recombinant viruses and investigation of its infectivity 19
Detection of GFP using fluorescence microscopy 20
Construction of GUS fused recombinant viruses 20
Detection of GUS activity 21
Western blotting 21
Statistical analysis 22
RESULTS 23
TuMV YC5D displayed systemic translocation deficiency in the local-lesion host Chenopodium quinoa and loss of aphid transmissibility in the systemic host Nicotiana benthamiana 23
The deficiency in systemic translocation of YC5D within C. quinoa plants was restored by replacement of CP fragment with that from wild type YC5 isolate 23
The fifth residue of the coat protein of Turnip mosaic virus from proline (P) to leucine (L) restored both the deficient systemic translocation ability of YC5D in C. quinoa plants and loss of aphid transmissibility in N. benthamiana plants 24
The recombinant TuMV expressing GFP showed different location in C. quinoa plants 26
The YC5D-T262A expressing GUS was restricted in the petiole region of C. quinoa plants 26
DISCUSSION 28
REFERENCES 36
TABLES and FIGURES 49
Table 1 The aphid transmissibility of each recombinant Turnip mosaic virus in Nicotiana benthamiana plants and the ability for systemic translocation in Chenopodium quinoa plants 49
Table 2 Oligonucleotide primers used in this study 50
Fig. 1 The virus YC5D derived from previously constructed Turnip mosaic virus cDNA infectious clone pYC5D lost the ability for systemic translocation in the local lesion host Chenopodium quinoa plant and was not able to be aphid-transmitted in its systemic host Nicotiana benthamiana. 51
Fig. 2 The deficiency in systemic translocation of YC5D in Chenopodium quinoa plants was restored by replacement of CP fragment from wild type YC5 isolate. 53
Fig. 3 The fifth residue of the coat protein of Turnip mosaic virus changed from proline (P) to leucine (L) restored the systemic translocation ability of YC5D in Chenopodium quinoa plants. 55
Fig. 4 The recombinant Turnip mosaic virus tagged with GFP for tracking the virus in Chenopodium quinoa plants. 57
Fig. 5 The YC5D-T262A expressing GUS was restricted in the petiole region of Chenopodium quinoa plants. 59



Abdul‐Razzak, A., Guiraud, T., Peypelut, M., Walter, J., Houvenaghel, M.C., Candresse, T., Le Gall, O., and German‐Retana, S. 2009. Involvement of the cylindrical inclusion (CI) protein in the overcoming of an eIF4E‐mediated resistance against Lettuce mosaic potyvirus. Molecular Plant Pathology 10:109-113.
Adams, M.J., Antoniw, J.F., and Beaudoin, F. 2005. Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Molecular Plant Pathology 6:471-487.
Andersen, K., and Johansen, I.E. 1998. A single conserved amino acid in the coat protein gene of Pea seed-borne mosaic potyvirus modulates the ability of the virus to move systemically in Chenopodium quinoa. Virology 241:304-311.
Atreya, C.D., Raccah, B., and Pirone, T.P. 1990. A point mutation in the coat protein abolishes aphid transmissibility of a potyvirus. Virology 178:161-165.
Atreya, P.L., Atreya, C.D., and Pirone, T.P. 1991. Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proceedings of the National Academy of Sciences 88:7887-7891.
Atreya, P.L., López-Moya, J.J., Chu, M., Atreya, C.D., and Pirone, T.P. 1995. Mutational analysis of the coat protein N-terminal amino acids involved in potyvirus transmission by aphids. Journal of General Virology 76:265-270.
Ballut, L., Drucker, M., Pugniere, M., Cambon, F., Blanc, S., Roquet, F., Candresse, T., Schmid, H.-P., Nicolas, P., and Le Gall, O. 2005. HcPro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities. Journal of General Virology 86:2595-2603.
Betti, C., Lico, C., Maffi, D., D''angeli, S., Altamura, M., Benvenuto, E., Faoro, F., and Baschieri, S. 2012. Potato virus X movement in Nicotiana benthamiana: new details revealed by chimeric coat protein variants. Molecular Plant Pathology 13:198-203.
Blanc, S., López-Moya, J.J., Wang, R., García-Lampasona, S., Thornbury, D.W., and Pirone, T.P. 1997. A specific Interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231:141-147.
Blanc, S., Ammar, E.D., Garcia-Lampasona, S., Dolja, V.V., Llave, C., Baker, J., and Pirone, T.P. 1998. Mutations in the potyvirus helper component protein: effects on interactions with virions and aphid stylets. Journal of General Virology 79:3119-3122.
Cao, M., Ye, X., Willie, K., Lin, J., Zhang, X., Redinbaugh, M.G., Simon, A.E., Morris, T.J., and Qu, F. 2010. The capsid protein of Turnip crinkle virus overcomes two separate defense barriers to facilitate systemic movement of the virus in Arabidopsis. Journal of Virology 84:7793-7802.
Carrington, J.C., Jensen, P.E., and Schaad, M.C. 1998. Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. The Plant Journal 14:393-400.
Chellappan, P., Vanitharani, R., Ogbe, F., and Fauquet, C.M. 2005. Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiology 138:1828-1841.
Chen, C.C. 2006. Development of Turnip mosaic virus as a plant viral vector for expressing foreign proteins and generation of attenuated strains for cross protection. (Doctoral dissertation) Department of plant pathology (Taichung: National Chung Hsing University).
Chen, C.C., Chao, C.H., Chen, C.C., Yeh, S.D., Tsai, H.T., and Chang, C.A. 2003. Identification of Turnip mosaic virus isolates causing yellow stripe and spot on calla lily. Plant Disease 87:901-905.
Chen, C.C., Chen, T.C., Raja, J.A.J., Chang, C.A., Chen, L.W., Lin, S.S., and Yeh, S.D. 2007. Effectiveness and stability of heterologous proteins expressed in plants by Turnip mosaic virus vector at five different insertion sites. Virus Research 130:210-227.
Christiaens, O., Swevers, L., and Smagghe, G. 2014. DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides 53:307-314.
Chung, B.Y.-W., Miller, W.A., Atkins, J.F., and Firth, A.E. 2008. An overlapping essential gene in the Potyviridae. Proceedings of the National Academy of Sciences 105:5897-5902.
Citovsky, V., Wong, M.L., Shaw, A.L., Prasad, B.V., and Zambryski, P. 1992. Visualization and characterization of Tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell 4:397-411.
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., and Marraffini, L.A. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819-823.
Cronin, S., Verchot, J., Haldeman-Cahill, R., Schaad, M.C., and Carrington, J.C. 1995. Long-distance movement factor: a transport function of the potyvirus helper component proteinase. Plant Cell 7:549-559.
del Campillo, E., and Lewis, L.N. 1992. Identification and kinetics of accumulation of proteins induced by ethylene in bean abscission zones. Plant Physiology 98:955-961.
Demski, J., Reddy, D., Sowell, G., and Bays, D. 1984. Peanut stripe virus‐a new seed‐borne potyvirus from China infecting groundnut (Arachis hypogaea) 1. Annals of Applied Biology 105:495-501.
Deom, C.M., Oliver, M.J., and Beachy, R.N. 1987. The 30-Kilodalton gene product of Tobacco mosaic virus potentiates virus movement. Science 237:389-394.
Desbiez, C., Chandeysson, C., and Lecoq, H. 2014. A short motif in the N‐terminal part of the coat protein is a host‐specific determinant of systemic infectivity for two potyviruses. Molecular Plant Pathology 15:217-221.
Ding, B., Turgeon, R., and Parthasarathy, M.V. 1992. Substructure of freeze-substituted plasmodesmata. Protoplasma 169:28-41.
Dolja, V.V., Haldeman, C.R., Robertson, N.L., Dougherty, W.G., and Carrington, J.C. 1994. Distinct functions of capsid protein in assembly and movement of Tobacco etch potyvirus in plants. The EMBO journal 13:1482.
Dolja, V.V., Haldeman, C.R., Montgomery, A.E., Vandenbosch, K.A., and Carrington, J.C. 1995. Capsid protein determinants involved in cell-to-cell and long distance movement of Tobacco etch potyvirus. Virology 206:1007-1016.
Dougherty, W.G., and Carrington, J.C. 1988. Expression and function of potyviral gene products. Annual Review of Phytopathology 26:123-143.
Dunoyer, P., Thomas, C., Harrison, S., Revers, F., and Maule, A. 2004. A cysteine-rich plant protein potentiates potyvirus movement through an interaction with the virus genome-linked protein VPg. Journal of Virology 78:2301-2309.
Edwardson, J.R., and Christie, R. 1991. A monograph on the Potyvirus group. Monograph/Agricultural Experiment Station.
Ellis, C.M., Nagpal, P., Young, J.C., Hagen, G., Guilfoyle, T.J., and Reed, J.W. 2005. Auxin response factor 1 and auxin response factor 2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563-4574.
Fernández-Calvino, L., Goytia, E., López-Abella, D., Giner, A., Urizarna, M., Vilaplana, L., and López-Moya, J.J. 2010. The helper-component protease transmission factor of Tobacco etch potyvirus binds specifically to an aphid ribosomal protein homologous to the laminin receptor precursor. Journal of General Virology 91:2862-2873.
Fernández, A., Guo, H.S., Sáenz, P., Simón-Buela, L., de Cedrón, M.G., and García, J.A. 1997. The motif V of Plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication. Nucleic Acids Research 25:4474-4480.
Fujisawa, I. 1990. Turnip mosaic virus strains in cruciferous crops in Japan. Japan Agricultural Research Quarterly 23:289-293.
Gardner, M.W., and Kendrick, J.B. 1921. Turnip mosaic. Journal of Agricultural Research 22:121.
George, J.A., and Davidson, T.R. 1963. Pollen transmission of Necrotic ring spot and Sour cherry yellows viruses from tree to tree. Canadian Journal of Plant Science 43:276-288.
Gibbs, A. 1976. Viruses and plasmodesmata. Pages 149-164 in: Intercellular Communication in Plants: Studies on Plasmodesmata, B.E.S. Gunning and A.W. Robards, eds. Springer Berlin Heidelberg.
Gilbertson, R.L., and Lucas, W.J. 1996. How do viruses traffic on the ‘vascular highway’? Trends in Plant Science 1:250-251.
Glais, L., Faurez, F., Tribodet, M., Boulard, F., and Jacquot, E. 2015. The amino acid 419 in HC-Pro is involved in the ability of PVY isolate N605 to induce necrotic symptoms on potato tubers. Virus Research 208:110-119.
Gopinath, K., and Kao, C.C. 2007. Replication-independent long-distance trafficking by viral RNAs in Nicotiana benthamiana. The Plant Cell 19:1179-1191.
Govier, D.A., and Kassanis, B. 1974. A virus-induced component of plant sap needed when aphids acquire Potato virus Y from purified preparations. Virology 61:420-426.
Grangeon, R., Jiang, J., and Laliberté, J.F. 2012. Host endomembrane recruitment for plant RNA virus replication. Current Opinion in Virology 2:683-690.
Grangeon, R., Jiang, J., Wan, J., Agbeci, M., Zheng, H., and Laliberté, J.F. 2013. 6K2-induced vesicles can move cell to cell during Turnip mosaic virus infection. Front Microbiolology 4:10.3389.
Green, S.K., and Deng, T.C. 1985. Turnip mosaic virus strains in cruciferous hosts in Taiwan. Plant Disease 69:28-31.
Grzela, R., Strokovska, L., Andrieu, J.P., Dublet, B., Zagorski, W., and Chroboczek, J. 2006. Potyvirus terminal protein VPg, effector of host eukaryotic initiation factor eIF4E. Biochimie 88:887-896.
Herranz, M.C., Pallas, V., and Aparicio, F. 2012. Multifunctional roles for the N-terminal basic motif of Alfalfa mosaic virus coat protein: nucleolar/cytoplasmic shuttling, modulation of RNA-binding activity, and virion formation. Molecular Plant-Microbe Interactions 25:1093-1103.
Hong, Y., and Hunt, A.G. 1996. RNA polymerase activity catalyzed by a potyvirus-encoded RNA-dependent RNA rolymerase. Virology 226:146-151.
Hull, R. 1989. The movement of viruses in plants. Annual Review of Phytopathology 27:213-240.
Hull, R. 2013. Plant virology. Academic press.
James, C.K., and Falk, B.W. 2006. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annual Review of Phytopathology 44:183-212.
Jenner, C.E., Tomimura, K., Ohshima, K., Hughes, S.L., and Walsh, J.A. 2002. Mutations in Turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300:50-59.
Jenner, C.E., Wang, X., Tomimura, K., Ohshima, K., Ponz, F., and Walsh, J.A. 2003. The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in Brassicas. Molecular Plant-Microbe Interactions 16:777-784.
Jiang, J., Patarroyo, C., Cabanillas, D.G., Zheng, H., and Laliberté, J.F. 2015. The vesicle-forming 6K2 protein of turnip mosaic virus interacts with the COPII coatomer Sec24a for viral systemic infection. Journal of Virology 89:6695-6710.
Jones, D.R. 2003. Plant Viruses Transmitted by whiteflies. European Journal of Plant Pathology 109:195-219.
Kasschau, K.D., and Carrington, J.C. 1998. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461-470.
Kasschau, K.D., and Carrington, J.C. 2001. Long-distance movement and replication maintenance functions correlate with silencing suppression activity of potyviral HC-Pro. Virology 285:71-81.
Keller, K.E., Johansen, E., Martin, R.R., and Hampton, R. 1998. Potyvirus genome-linked protein (VPg) determines Pea seed-borne mosaic virus pathotype-specific virulence in Pisum sativum. Molecular Plant-Microbe Interactions 11:124-130.
Kimalov, B., Gal-On, A., Stav, R., Belausov, E., and Arazi, T. 2004. Maintenance of coat protein N-terminal net charge and not primary sequence is essential for Zucchini yellow mosaic virus systemic infectivity. Journal of General Virology 85:3421-3430.
King, A.M.Q., Adams, M.J., and Lefkowitz, E.J. 2011. Virus taxonomy: classification and nomenclature of viruses: ninth report of the international committee on taxonomy of viruses. Elsevier, International Committee on Taxonomy of Viruses.
Kung, Y.J., Lin, P.C., Yeh, S.D., Hong, S.F., Chua, N.H., Liu, L.Y., Lin, C.P., Huang, Y.H., Wu, H.W., and Chen, C.C. 2014. Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Molecular Plant-Microbe Interactions 27:944-955.
López-Moya, J.J., Wang, R.Y., and Pirone, T.P. 1999. Context of the coat protein DAG motif affects potyvirus transmissibility by aphids. Journal of General Virology 80:3281-3288.
López, L., Urzainqui, A., Domı́nguez, E., and Garcı́a, J.A. 2001. Identification of an N-terminal domain of the Plum pox potyvirus CI RNA helicase involved in self-interaction in a yeast two-hybrid system. Journal of General Virology 82:677-686.
Lecoq, H., Ravelonandro, M., Wipf-Scheibel, C., Monsion, M., Raccah, B., and Dunez, J. 1993. Aphid transmission of a non-aphid-transmissible strain of Zucchini yellow mosaic potyvirus from transgenic plants expressing the capsid protein of Plum pox potyvirus. Molecular Plant-Microbe Interactions 6:403-406.
Leonard, D.A., and Zaitlin, M. 1982. A temperature-sensitive strain of Tobacco mosaic virus defective in cell-to-cell movement generates an altered viral-coded protein. Virology 117:416-424.
Li, W.X., and Ding, S.W. 2001. Viral suppressors of RNA silencing. Current Opinion in Biotechnology 12:150-154.
Lin, S.S., Wu, H.W., Jan, F.J., Hou, R.F., and Yeh, S.D. 2007. Modifications of the helper component-protease of Zucchini yellow mosaic virus for generation of attenuated mutants for cross protection against severe infection. Phytopathology 97:287-296.
Lough, T.J., Emerson, S.J., Lucas, W.J., and Forster, R.L. 2001. Trans-complementation of long-distance movement of White clover mosaic virus triple gene block (TGB) mutants: phloem-associated movement of TGBp1. Virology 288:18-28.
Maia, I.G., Haenni, A.L., and Bernardi, F. 1996. Potyviral HC-Pro: a multifunctional protein. Journal of General Virology 77:1335-1341.
Merits, A., Guo, D., Järvekülg, L., and Saarma, M. 1999. Biochemical and genetic evidence for interactions between Potato A potyvirus-encoded proteins P1 and P3 and proteins of the putative replication complex. Virology 263:15-22.
Michon, T., Estevez, Y., Walter, J., German-Retana, S., and Le Gall, O. 2006. The potyviral virus genome-linked protein VPg forms a ternary complex with the eukaryotic initiation factors eIF4E and eIF4G and reduces eIF4E affinity for a mRNA cap analogue. FEBS Journal 273:1312-1322.
Miles, P.W. 1999. Aphid saliva. Biological Reviews of the Cambridge Philosophical Society 74:41-85.
Murphy, J.F., Klein, P.G., Hunt, A.G., and Shaw, J.G. 1996. Replacement of the tyrosine residue that links a potyviral VPg to the viral RNA is lethal. Virology 220:535-538.
Nishiguchi, M., Motoyoshi, F., and Oshima, N. 1978. Behaviour of a temperature sensitive strain of Tobacco mosaic virus in tomato leaves and protoplasts. Journal of General Virology 39:53-61.
Niu, Q.W., Lin, S.S., Reyes, J.L., Chen, K.C., Wu, H.W., Yeh, S.D., and Chua, N.H. 2006. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nature Biotechnology 24:1420-1428.
Patterson, S.E. 2001. Cutting loose. abscission and dehiscence in Arabidopsis. Plant Physiology 126:494-500.
Peng, Y.H., Kadoury, D., Gal-On, A., Huet, H., Wang, Y., and Raccah, B. 1998. Mutations in the HC-Pro gene of Zucchini yellow mosaic potyvirus: effects on aphid transmission and binding to purified virions. Journal of General Virology 79:897-904.
Pirone, T.P. 1998. Charge changes near the N terminus of the coat protein of two potyviruses affect virus movement. Journal of General Virology 79:161-165.
Przybys, M., Doroszewska, T., and Berbec, A. 2013. Point mutations in the viral genome-linked protein (VPg) of Potato virus Y probably correspond with ability to overcome resistance of tobacco. International Journal of Food, Agriculture and Environment 11:986-989.
Revers, F., and Garcia, J.A. 2015. Molecular biology of potyviruses. Advances in Virus Research 92:101-199.
Riechmann, J.L., Laín, S., and García, J.A. 1992. Highlights and prospects of potyvirus molecular biology. Journal of General Virology 73:1-16.
Riechmann, J.L., Cervera, M.T., and García, J.A. 1995. Processing of the Plum pox virus polyprotein at the P3-6K1 junction is not required for virus viability. Journal of General Virology 76:951-956.
Roberts, I.M., Wang, D., Findlay, K., and Maule, A.J. 1998. Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (CIs) show that the CI protein acts transiently in aiding virus movement. Virology 245:173-181.
Rodríguez-Cerezo, E., Findlay, K., Shaw, J.G., Lomonossoff, G.P., Qiu, S.G., Linstead, P., Shanks, M., and Risco, C. 1997. The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology 236:296-306.
Rojas, M.R., Zerbini, F.M., Allison, R.F., Gilbertson, R.L., and Lucas, W.J. 1997. Capsid protein and helper component-proteinase function as potyvirus cell-to-cell movement proteins. Virology 237:283-295.
Sáenz, P., Cervera, M.T., Dallot, S., Quiot, L., Quiot, J.B., Riechmann, J.L., and Garcı́a, J.A. 2000. Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K1. Journal of General Virology 81:557-566.
Sánchez, F., Martı́nez-Herrera, D., Aguilar, I., and Ponz, F. 1998. Infectivity of Turnip mosaic potyvirus cDNA clones and transcripts on the systemic host Arabidopsis thaliana and local lesion hosts. Virus Research 55:207-219.
Schaad, M.C., Lellis, A.D., and Carrington, J.C. 1997. VPg of Tobacco etch potyvirus is a host genotype-specific determinant for long-distance movement. Journal of Virology 71:8624-8631.
Schaad, M.C., Haldeman, C.R., Cronin, S., and Carrington, J.C. 1996. Analysis of the VPg-proteinase (NIa) encoded by Tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. Journal of Virology 70:7039-7048.
Sorel, M., Garcia, J.A., and German-Retana, S. 2014. The Potyviridae cylindrical inclusion helicase: a key multipartner and multifunctional protein. Molecular Plant-Microbe Interactions 27:215-226.
Suehiro, N., Natsuaki, T., Watanabe, T., and Okuda, S. 2004. An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. Journal of General Virology 85:2087-2098.
Tatineni, S., and French, R. 2013. The C-terminus of Wheat streak mosaic virus coat protein is involved in differential infection of wheat and maize through host-specific long-distance transport. Molecular Plant-Microbe Interactions 27:150-162.
Tatineni, S., Van Winkle, D.H., and French, R. 2011. The N-terminal region of Wheat streak mosaic virus coat protein is a host-and strain-specific long-distance transport factor. Journal of Virology 85:1718-1731.
Tena Fernández, F., González, I., Doblas, P., Rodríguez, C., Sahana, N., Kaur, H., Tenllado, F., Praveen, S., and Canto, T. 2013. The influence of cis-acting P1 protein and translational elements on the expression of Potato virus Y helper-component proteinase (HCPro) in heterologous systems and its suppression of silencing activity. Molecular Plant Pathology 14:530-541.
Thomas, C.L., Bayer, E.M., Ritzenthaler, C., Fernandez-Calvino, L., and Maule, A.J. 2008. Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLOS Biology 6:e7.
Tomlinson, J.A., and Walkey, D.G.A. 1967. Effects of ultrasonic treatment on Turnip mosaic virus and Potato virus X. Virology 32:267-278.
Ülker, B., Mukhtar, M.S., and Somssich, I.E. 2007. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226:125-137.
Ullman, D.E., Sherwood, J.L., German, T.L., and Lewis, T. 1997. Thrips as vectors of plant pathogens. Thrips as Crop Pests:539-565.
Valli, A., Gallo, A., Calvo, M., Pérez, J.d.J., and García, J.A. 2014. A novel role of the potyviral helper component proteinase contributes to enhance the yield of viral particles. Journal of Virology 88:9808-9818.
Varrelmann, M., and Maiss, E. 2000. Mutations in the coat protein gene of Plum pox virus suppress particle assembly, heterologous encapsidation and complementation in transgenic plants of Nicotiana benthamiana. Journal of General Virology 81:567-576.
Verchot, J., and Carrington, J.C. 1995. Evidence that the potyvirus P1 proteinase functions in trans as an accessory factor for genome amplification. Journal of Virology 69:3668-3674.
Vuorinen, A.L., Kelloniemi, J., and Valkonen, J.P. 2011. Why do viruses need phloem for systemic invasion of plants? Plant Science 181:355-363.
Waltermann, A., and Maiss, E. 2006. Detection of 6K1 as a mature protein of 6 kDa in Plum pox virus-infected Nicotiana benthamiana. Journal of General Virology 87:2381-2386.
Wan, J., Cabanillas, D.G., Zheng, H., and Laliberte, J.F. 2015. Turnip mosaic virus moves systemically through both phloem and xylem as membrane-associated complexes. Plant Physiology 167:1374-1388.
Wang, D., and Maule, A.J. 1994. A model for seed transmission of a plant virus: genetic and structural analyses of pea embryo invasion by Pea seed-borne mosaic virus. The Plant Cell 6:777-787.
Wei, T., and Wang, A. 2008. Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. Journal of Virology 82:12252-12264.
Wei, T., Zhang, C., Hong, J., Xiong, R., Kasschau, K.D., Zhou, X., Carrington, J.C., and Wang, A. 2010. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLOS Pathogen 6:e1000962.
Wen, R.-H., and Hajimorad, M. 2010. Mutational analysis of the putative pipo of Soybean mosaic virus suggests disruption of PIPO protein impedes movement. Virology 400:1-7.
Williamson, M.P. 1994. The structure and function of proline-rich regions in proteins. Biochemical Journal 297:249.
Wintermantel, W.M., Banerjee, N., Oliver, J.C., Paolillo, D.J., and Zaitlin, M. 1997. Cucumber mosaic virus is restricted from entering minor veins in transgenic tobacco exhibiting replicase-mediated resistance. Virology 231:248-257.
Wittmann, S., Chatel, H., Fortin, M.G., and Laliberté, J.F. 1997. Interaction of the viral protein genome linked of Turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234:84-92.
Wolf, S., Lucas, W.J., Deom, C.M., and Beachy, R.N. 1989. Movement protein of Tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377-379.
Xiong, R., and Wang, A. 2013. SCE1, the SUMO-conjugating enzyme in plants that interacts with NIb, the RNA-dependent RNA polymerase of Turnip mosaic virus, is required for viral infection. Journal of Virology 87:4704-4715.
YanHong, Q., DongMei, L., Tao, Z., and ZaiFeng, F. 2009. Immuno-localization of the CI protein of Sugarcane mosaic virus in the phloem cells of maize. Acta Phytophylacica Sinica 36:234-238.
Yelina, N.E., Savenkov, E.I., Solovyev, A.G., Morozov, S.Y., and Valkonen, J.P. 2002. Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in Hordei-and Potyviruses: complementary functions between virus families. Journal of Virology 76:12981-12991.
Yoon, J.Y., Green, S.K., and Opena, R.T. 1993. Inheritance of resistance to Turnip mosaic virus in Chinese cabbage. Euphytica 69:103-108.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文