(18.206.238.77) 您好!臺灣時間:2021/05/18 06:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳依純
研究生(外文):Yi-Chun Chen
論文名稱:稻稈與杏鮑菇廢棄木屑資源化於蔬菜栽培之研究
論文名稱(外文):Reusing Rice Straw and King Oyster Mushroom (Pleurotus eryngii) Waste Sawdust for Vegetable Culture
指導教授:宋妤
指導教授(外文):Yu Sung
口試委員:林深林蔡宜峰
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:60
中文關鍵詞:稻稈廢棄木屑堆肥化
外文關鍵詞:rice strawwaste sawdustcompost
相關次數:
  • 被引用被引用:1
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
農業副產物蘊含許多有機成分,經適當的資源化處理可為介質使用,本試驗使用稻稈與廢棄杏鮑菇木屑藉由堆肥處理或快速處理將其資源化後各別與椰纖(C)混合,分析其物理、化學性質,期許找出最適當配方作為育苗及袋耕栽培介質使用,配合適宜的養液。經裁切稻稈(R)、杏鮑菇廢棄木屑(M)添入大豆粕與菌種混拌後堆積11 週,定期翻攪並供水保持堆肥含水量,成品之碳氮比皆低於20 達堆肥腐熟標準。堆積處理稻稈(RC)以中顆粒為主,總孔隙度達75.37%,液相比例高,其總體密度為0.119 g/cm3,pH 值7.8,EC 值為2370 μS/cm,有效性鉀含量為2.55%,氮含量達2.09%。堆積處理木屑(MC)據木屑崩解粗顆粒佔27.24%,而中顆粒達44.82%,空氣孔隙率、介質含水量與液氣比顯著低於RC,富含有效性鎂。快速處理稻稈(RF)與快速處理杏鮑菇廢棄木屑(MF)乃委託國立國立中興大學土壤環境系楊秋忠教授之微生物與生物化學研究室處理。RF、MF均以中顆粒為主,兩者之液相表現均高於未處理與堆積處理之材料,RF 之pH 為5.8,MF 為5.9。RF 之EC 值顯著高於其他處理介質達2745 μS/cm,而MF 的EC 僅615 μS/cm。將 RF、RC、MF、MC 分別以40%、60%與椰纖混拌,RF、MF、MC 隨比例增加而中顆粒佔有率上升,pH 值以RC4、RC6 較高達6.0、6.1,電導度以堆積處理顯著高於快速處理。稻稈處理組之有效鉀與錳含量顯著高於廢棄木屑。‘新嬌’胡瓜育苗以RC4、RC6 之效果顯著,種苗各項數值表現皆優於泥炭土,其中又以RC6 最適於胡瓜育苗,碳水化合物的澱粉顯著高於其他處理組。‘小明’番茄種子萌芽率以木屑處理組表現較佳且無抑制發芽現象發生,以MC6之種苗性狀、澱粉含量較泥炭土佳,番茄育苗以MC6 為首選。使用堆積成品混合椰纖作胡瓜袋耕栽培介質,配合鉀、鈣肥養液施用,結果顯示以改良山崎氏1.5 倍鉀養液各介質之植株性狀表現無顯著差異,其表現優於1.5 倍硝酸鈣肥養液處理組,結果數與結果率表現最顯著者為1.5 倍硝酸鉀養液澆灌RC6 介質,而以1.5 倍硝酸鈣養液澆灌MC4、MC6 則有較佳的果實產率,果實重以MC6 配合1.5 倍硝酸鉀養液之處理最佳。

Agricultural waste has a predominantly organic composition. Using a suitable composting process, this waste can become a useful substrate for plant growth. This study compared conventional composting with a fast fermentation method that used rice straw and sawdust from king oyster mushroom (Pleurotus eryngii) culture waste as the material to prepare two different types of compost. The two types of compost were then mixed with coir to create substrates for vegetable-growing. The study investigated the physical and chemical characteristics of the two types of substrate with the aim of identifying the best substrate, and used the substrates with appropriate nutrient solutions for vegetable seeding and bag culture. Rice straw (R) residue was shredded into 5-mm pieces. R residue and sawdust of king oyster mushroom culture waste (M) were individually mixed with soybean meal and Trichoderma-and-Bacillus culture, then composted for 11 weeks in heaps. The heaps were turned regularly, and water was added to maintain the moisture level. The carbon to nitrogen (C:N) ratios of the composts were all below 20, reaching the standard for compost maturity. Rice straw conventional (RC) compost had medium-sized particles, with a porosity of 75.37% and a high liquid content. In addition, RC had a high density of 0.119 g/cm3, a pH value of 7.8, an electrical conductivity (EC) of 2370 μS/cm, an available potassium level of 2.55%, and a total nitrogen content of 2.09%. Mushroom culture sawdust conventional (MC) compost had 27.24% large-sized particles and 44.82% medium-sized particles, which decayed from the sawdust. The MC compost also had a significantly lower porosity, volumetric water content and liquid/air ratio than the RC compost, but was rich in available magnesium. Rice straw fast (RF) compost and mushroom culture sawdust fast (MC) compost were prepared in the laboratory of Professor Chiu-Chung Young at the Microbiological and Biochemical Laboratory of the Department of Soil and Environmental Sciences, National Chung Hsing University. The particles of both RF and MF were all mainly medium in size, and both had higher liquid levels than the untreated and conventional composted materials. The pH values of RF and MF were 5.8 and 5.9, respectively. The EC value of RF was 2745 μS/cm, which was significantly higher than the values of the other compost media, the EC value of MF being only 615 μS/cm. Different mixed substrates were prepared using 40% or 60% RF, RC, MF and MC mixed with coir. With a higher percentage of compost, substrates prepared from RF, MF and MC had higher contents of medium-sized particles. RC4 (40% RC-60% coir) and RC6 (60% RC-40% coir) had higher pH values of 6.0 and 6.1, respectively. Substrates prepared from compost obtained using the conventional composting process (RC and MC) had a significantly higher EC than those prepared by the fast method (RF and MF). Substrates prepared from rice straw compost (RC and RF) had significantly higher available potassium and magnesium percentages than those made from mushroom culture sawdust waste (MC and MF). For seeding of cucumber ‘Sin-Jiao’, RC4 and RC6 demonstrated the best results, all the parameters of seeding growth being better than those obtained using peat moss as the substrate. Among the different substrates, RC6 was best for cucumber breeding, resulting in a higher starch content than other substrates. Germination of tomato ‘Siao-Ming’ had better results using substrates prepared from mushroom culture sawdust waste, with no inhibition effect. The seedling characteristics and starch contents of the plants grown using MC6 were better than those grown using peat moss. Therefore, MC6 was concluded to be the best substrate for tomato seeding. Conventional compost mixed with coir was then used as the substrate for cucumber bag culture. When the substrates were used in combination with different potassium and calcium nutrient solutions, modified Yamazaki’s 1.5× potassium (1.5× K) nutrient solution resulted in better plant characteristics than modified Yamazaki’s 1.5× calcium (1.5× Ca) nutrient solution. The results showed that plants grown using RC6 with 1.5× K solution had the greatest numbers of fruit sets and higher percentages of fruit sets; plants grown using MC4 and MC6 with 1.5× Ca solution had the best fruit yields; and plants grown using MC6 with 1.5× K solution exhibited a greater fruit weight.

摘要... i
Abstract ... ii
目錄... iii
圖次... v
表次... vi
壹、前言... 1
貳、前人研究... 2
一、農業副產物再生利用之現況... 2
二、商用栽培介質與特性... 3
三、堆肥化作用... 6
四、影響堆肥腐熟之因子... 7
五、胡瓜介紹... 8
六、袋耕養液栽培... 9
參、材料方法... 11
試驗一、介質物理與化學性質分析... 11
試驗二、以堆肥處理與快速處理之稻稈及木屑分別與椰纖混合對胡瓜、番茄之育苗影響... 14
試驗三、以堆肥處理之稻稈與木屑混合椰纖為袋耕栽培介質硝酸鉀及硝酸鈣肥處理對小胡瓜生長之影響... 16
肆、結果... 18
試驗一、介質物理性與化學性質分析... 18
試驗二、以堆肥處理與快速處理之稻稈及木屑分別與椰纖混合對胡瓜、番茄之育苗影響... 20
試驗三、以堆肥處理之稻稈與木屑混合椰纖為袋耕栽培介質硝酸鉀及硝酸鈣肥處理對小胡瓜生長之影響... 21
伍、討論... 48
一、介質物理性與化學性質分析... 48
二、以堆肥處理與快速處理之稻稈及木屑分別與椰纖混合對胡瓜、番茄之育苗影響... 50
三、以堆肥處理之稻稈與木屑混合椰纖為袋耕栽培介質硝酸鉀及硝酸鈣肥處理對小胡瓜生長之影響... 51
陸、結論... 53
柒、參考文獻... 54

行政院農業委員會。2014。農業統計資料查詢。事業廢棄物、一般廢棄物與有機廢棄物統計調查結果。
行政院農業委員會農糧署。2013。肥料種類品目及規格。
< http://www.coa.gov.tw/view.php?catid=2447498> 民國102 年4 月20 日修正。
朱祐賢、林信輝。2011。菇類廢棄木屑堆肥保水性及種子發芽試驗之研究。水土保持學報43:69-82。
吳正宗、陳仁炫、陳鴻基、黃裕銘、鄒裕民、鐘仁賜。2008。土壤與肥料分析手冊(一)土壤化學性質分析。中華土壤肥料學會。
李哖。1988。育苗介質與施肥。園藝種苗產銷技術研討會專輯。p.188-202。
李哖。1989。固體介質之養液栽培。養液技術栽培講習會專刊第二輯。行政院農業委員會。p. 78-87。
李國權、林深林、林慧玲。1999。蔬菜容器栽培之介質與營養管理蔬菜容器技術開發研討會專輯。國立國立中興大學編印。
李文汕。2011。有機栽培介質的生產製造及應用。台灣有機廢棄物的再利用─有機質肥料之生產及應用研究。p.101-126。
李阿嬌。1995。栽培介質對籃耕紅色甜椒栽培之影響。桃園區農情月刊73:1-4。
林子凱、蕭吉雄。2005。胡瓜農家要覽 第三版。p.475-480。
林信山、柯南靖、郭聰欽。2004。2004 果菜健康管理研討會專集小胡瓜之設施栽培管理。財團法人全方位農業振興基金會。台北。
林景和。1993。利用廢棄菇類栽培介質製作堆肥之研究。台中區農業改良場研究彙報39:17-27。
柯勇。2004。植物生理學。藝軒出版社p.762。
范美玲、洪登村、黃泮宮。1992。鈣、鉀、矽肥料處理對甜椒生育之影響。中國園藝38:117-127。
洪崑煌、華傑。1975。作物殘渣對後作之影響 (二)稻草及蔗渣之分解對水稻之發芽及幼苗吸收養分之影響。中國農業化學會誌13: 41~45。
財團法人台灣綠色生產力基金會。2005。堆肥技術與設備手冊及案例彙編pp.152。經濟部工業局。
倪禮豐。2007。稻穀再利用技術。花蓮區農業專訊。花蓮區農業改良場61:19-20。
孫騫、楊軍、張紹陽、張鳳琪、丁士林。2006。鉀營養與果樹光合生理及果實品質關係研究進展。廣東農業科學12:126-129。
許韻聲。2011。胡瓜 ‘夏笛’無土有機栽培技術之研究。國立國立中興大學園藝學系碩士論文。台中。
莊老達。2012。溫度及替代介質對杏鮑菇生長及發育之影響。國立國立中興大學園藝學系博士論文。台中。
莊作權。1997。土壤肥料。三民書局股份有限公司。台北。pp.362。
張仲民。2005。普通土壤學。茂昌圖書有限公司。台北。p.438-440。
張淑賢。1995。有機資材利用之試驗研究現況與展望。有機質肥料合理施用技術研討會專刊。農業試驗所。台中。p.1-14。
陳美杏、李瑋崧、吳寬澤、簡宣裕、呂昀陞。2013。杏鮑菇廢棄基質災
菇類栽培之應用。台灣農業研究62(2):126-136。
陳仁炫。1991。土壤管理手冊。國立國立中興大學土壤調查試驗中心。p.199-251。
陳仁炫。2005。有機質肥料品質及施肥技術。台南區農業改良場技術專刊3:75-93。
陳仁炫。2011。台灣有機廢棄物之來源及再生資源。台灣有機廢棄物的再利用有機質肥料之生產及應用研究。中正基金會專題研究報告 p.22-58。
陳仁炫、黃裕銘、吳正宗。2000。88 年度全省禽畜糞堆肥場堆肥成品分析試驗及處理技術手冊。國立國立中興大學土壤調查試驗中心。
曾光明、黃國和、袁興中、楊朝暉、胡天覺、謝更新。2006。堆肥環境生物與控制。科學出版社。北京。
黃振文、彭玉湘。2008。利用農業廢棄物研發抑病介質與有機添加物。節能減碳與作物病害管理研討會專刊p.127-136。
劉興隆、白桂芳、沈原民、趙佳鴻。2009。設施花胡瓜病害之非農藥管理實務。
有機農業產業發展研討會專輯行政院農業委員會臺中區農業改良場特刊第
96 號。p.82-86。
蔡正宏。2007。鈣、鉀元素對養液栽培胡瓜‘夏笛’植株生育及果實品質之影響。國立國立中興大學園藝學系碩士論文。
蔡東纂。2013。胡瓜農民講堂-瓜類篇。國立國立中興大學植物病理系。p.152-185。
蔡宜峰、黃翔慶。1994。不同有機資材及通氣量對堆肥中營養要素之影響。台中區農業改良場研究彙報43:25-33。
蔡宜峰、高德錚。2002。本土化蔬果有機介質配方之開發。台中區農業專訊38:4-11。
蔡宜峰。2008。有機質肥料的研發與應用。有機作物栽培技術研討會專刊p.165-178。
蔡宜峰、陳俊位。2014。果菜渣堆肥製作技術之研究。台中區農業改良場研究彙報122:1-9。
簡宣裕、朱戩良、林財旺、鄭智馨。2001。廢棄物堆肥化技術。永續農業 第一輯【作物篇】。p.158-175。
簡宣裕、張明暉、劉禎祺。2005。堆肥品質之判斷。農業試驗所特刊 121:279-288。
楊秋忠。2011。快速處理的生產製造。台灣有機廢棄物的再利用有機質肥料之生產及應用研究。中正基金會專題研究報告 p.127-132。
薛佑光。2000。介質理化特性及對甘藍與番茄穴盤苗之影響。國立國立中興大學園藝系碩士論文。台中。pp.92。
謝明憲。2001。花胡瓜設施栽培。台南區農業專訊第35 期。p.4-10。
Arvanitoyannis, I. S. and P. Tserkezou. 2008. Wheat, barley and oat waste: a comparative and critical presentation of methods and potential uses of treated waste. Int. J. Food Sci. Technol. 43:694-725.
Arvanitoyannis, I. S. and P. Tserkezou. 2008. Corn and rice waste: a comparative and critical presentation of methods and current and potential uses of treated waste.
Int. J. Food Sci. Technol. 43:958-988.
Banik S. and Nandi R. 2004. Effect of supplementation of rice straw with biogas residual slurry manure on the yield, protein and mineral contents of oyster mushroom. Ind. Crops Prod.20:311–319.
Bao, H. N. D., Y. Shinomiya, H. Ikeda, and T. Ohshima. 2009. Preventing discoloration and lipid oxidation in dark muscle of yellowtail by feeding an extract prepared from mushroom(Flammulina vehutipes) cultured medium. Aquaculture 295:243-249.
Bilderback, T. E., S. L. Warren, J. S. Owen, and J. P. Albano. 2005. Healthy substrates need physicals too. HortTechnology 15:747-751.
Bowman, D. C., R. Y. Evens, and L. L. Donge. 1994. Growth of chrysanthemum with ground automobile tires used as a container soil amendment. Hort Sci. 29:774-776.
Britz, S. J. and P. Adamse. 1994. UV-B-induced increase in specific leaf weight of cucumberas a consequence of increased starch content. Photochemistry & Photobioloby 60:116-119.
Chang, J. I., J. J. Tsai, and K. H. Wu. 2005. Mathematical model for carbon dioxide evolution from the thermophilic composting of synthetic food wastes made of dog food. Waste Manage. 25:1037-1045.
Chung, W. C., J. W. Huang, H. C. Huang, and J. F. Jen. 2002. Effect of grund Brassica seed meal on control of Rhizoctonia damping-off of cabbage. Can. J. Plant Pathol.
24: 211–218.
De Bertoldi, M., G. Vallint, A. Pera and F. Zucconi. 1985. Technological aspects of composting including moddling and microbiology. In: Composting of agricultural
and other wastes, J.K. R. Gasser(eds.), Elsevier Applied Science, London,UK, p.27-40.
De Boodt, M. and O. Verdonck. 1972. The physical properties of ther substrates in horticulture. Acta Hort. 26:37-44.
Delfine, S., F. Loreto, and A. Alvion. 2001. Drought-stress effects on physiology, growth and biomass production of rainfed and irrigated bell pepper plants in the Mediterranean region. J. Amer. Soc. Hort. Sci. 126:297-304.
Drzal, M. S., D. Keith Cassel, and W. C. Fonteno. 1999. Pore fraction analysis: a new tool for substrate testing. Acta Horticultureae 148:43-53.
Dudeck, A. E. and C. H. Peacock. 1985. Effect of compost maturity on tomato seedling growth. Scientia Hortic. 27:199-208.
Epstein, E., D. B. Keane, J. J. Meisinger, and J. O. Legg. 1978. Mineralization of nitrogen from sewage sludge and sludge compost. J. Environ. Qual. 7: 217-221.
Fidanza, M. A., D. L. Sanford, D.M. Beyer, and D. J. Aurentz. 2010. Analysis of fresh mushroom compost. Hort. Technol. 20(2):449-453.
Fonteno, W. C. and T. E. Bilderback. 1993. Impact of hydrogel on physical properties of coarse-structured horticultural substrates. J. Amer. Soc. Hort. Sci. 118:217-222.
Ghanbari, J. M. and A. Aboutalebi. 2009. Garden compost as a substrate for vegetable transplant production. Intl. Symp. Seed, Transplant and Stand Establishment Hort.
Crop 898: 1650-170.
Goldschmidt, E. E. and S. C. Huber. 1992. Regulation fo photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant
Physiol. 99:1443-1448.
Golueke, C. G. 1994. Principles of composting- Designing a well-operated facility.pp.12-15. In: Biocycle Journal fo composting & recycling(eds.). Composting source separated organic. The JG press. Inc. USA
González-Marcos, A., Alba-Elías, F., Martínez-de-Pisón, F. J., Alfonso-Cendón, J., and M. Castejón-Limas. 2015. Composting of Spent Mushroom Substrate and Windery
Sludge. Compost Science & Utiliztion. 23:58-65.
Goonani, Z., K. Sharifi, and H. Riahi. 2011. The effects of spent mushroom compost and municipal solid waste compost on Phytophthora drechsleri in vivo and in vitro. Arch. Phyto. Plant Protection 44:1171-1181.
Harada, Y. 1990. Composting and application of animal wastes. ASPAC/FFTC Extension Bulletin 311:19-31.
Huang, J. W. and H. C. Huang. 2000. A formulated container medium suppressive to Rhizoctonia damping-off of cabbage. Bot. Bull. Acad. Sin. 41:49-56.
Haug, R. T. 1993. The Practical Handbook of Compost Engineering. Lewis Publishers, Boca Paton, FL, USA.
International peat society. 2014. Peatlands and Peat. Jyväskylä, Finland. < http://www.peatsociety.org/peatlands-and-peat>
Jane, L. and H. Bingru. 2004. Thermotolerance and antioxidant system in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide and ethylene. J. Plant. Physiol. 161:405-413.
Jenkins, J. R. and W. M. Jarrell. 1989. Predicting physical and chemical properties of container mixtures. Hort Sci. 24(2):292-295.
Jeris, J. S. and R. W. Regan. 1973. Controlling environmental parameters for optimum composting II: Moisture, free air space and recycle. Compost Sci. 14:8-15.
Jiang, T., F. Schuchardt, G. X. Li, R. Guo, and Y. Q. Zhao. 2011. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. J. Environ. Sci. 23:1754-1760.
Jokela, W. E. 1992. Nitrogen fertilizer and dairy mannure effects on corn yield and soil nitrate. Soil Sci. Soc. Am. J. 56: 148-154.
Koranski, D. S. 1993. Plug production technique. 園藝種苗產銷技術研討會p.15-28 .
Li, Z., H. Lu, L. Ren, and L. He. 2013. Experimental and modeling approaches for food waste composting: A review. Chemosphere 93(7): 1247-1257.
Mackowiak, C. L., G. W. Stutte , J. L. Garland, B. W. Finger, and L. M. Ruffe. 1997. Hydroponic potato production on nutrients derived from anaerobically-processed potato plant residues. Adv. Space Res. 20:2017-2022.
Martinez, F. X., S. Bures, F. Blance, M. P. Yuste, and J. Valero . 1991. Experimental and theoretical air/water ratios of different substrate mixtures at container capacity. Acta Hort. 294:241-248.
Marschner, H. 1995. Mineral nutrition of higher plants. p.254-256. Second Edition. Academic press.
McLean, E. O. 1982. Soil pH and Lime requirement. p199-224. In A. Klute et al. (ed.)
Method of Soil Analysis. Park I. 2nd edition. ASA, Madison, WI.USA.
Mehta, M., U. Palni, F.W. I.H, and A.K. Sharma. 2014. Compost: its role, mechanism and impact reducing soil-borne plant diseases. Waste Manag. 34:607-622.
Miyatake, F.,and K. Iwabuchi. 2005. Effect of high compost temperature on enzymatic and species diversity of culturable bacteria in cattle manure compost. Bioresour.
Technol. 96:1821-1825.
Mohammad Hosseini, S. and A.A, Hamidi. 2013. Evaluation of thermochemical pretreatment and continuous thermophilic condition in rice straw composting
process enhancement. Plant Protection 133:240-247.
Moinuddin, K. S., S. K. Bansal, and N. S. Pasricha. 2004. Influence fo graded levels of potassium fertilizer on growth, yield, and economic parameters of potato. J. plant nutr. 27:239-259.
Murty, K. S., T. A. Smith., and C. Bould. 1971. The relation between the putrescine content and potassium status of black current leaves. Ann. Bot. 35:687-695.
Nakasaki, K., H. Y. Sasaki, and H. Kubota. 1993. Effects of pH control on composting of garbage. Waste Manage. Res. 11:117-125.
Nakasaki, K., N. Aoki, and H. Kubota. 1994. Accelerated composting of grass clippings by controlling moisture level. Waste Manage. Res. 12:12-20.
Nakhshiniev, B., K. B. Muhammad, G. B. Hazel, S. Hiroaki, and Y. Kunio. 2014. Evaluation of hydrothermal treatment in enhancing rice straw compost stability and maturity. Bioresour. Technol. 151:306-313
Nakhshiniev, B., H.B. Gonzales, and K.Yoshikawa. 2012.Hydrothermal treatment of date palm lignocellulose residue for organic fertilizer conversion: effect on cell wall and aerobic degradation rate. Compost Science & Utilization 20:245-253.
Nelson, A. J. and L. E. Sommers. 1982. Total carbon organic carbon, and organic matter. In: Methods of Soil Analysis. Part2. 2nd. Ed, A.L. Page, R. H. Miller, D. T.
Keeney(eds.), SSSA and ASA Press, Madison, WI, USA. p.539-579.
Nelson, P. V. 1991. Greenhouse Operation and Management. Prentice-Hell, Englewood Cliffs, New Jersey, USA. pp.612.
Nukaya, A., K. Goto, H. Jang, A. Kano, and K. Ohkawa. 1995. Effect of K/Ca ratio in the nutrient solution on incidence of blossom-end rot and gold specks of tomato fruit grown in rockwool. Acta Hort. 396: 123-130.
Ntougias, S., K. Papadopoulou, G. Zervakis, N. Kavroulakis, and C. Ehaliotis. 2008.
Suppression of soil-borne pathogens of tomato by composts derived from agro-industrial wastes abundant in Mediterranean regions. Biol. Fertil. Soils 44:1081-1090.
Obodai, M., J. Cleland-Okine, and K. A. Vowotor. 2003. Comparative study on the growth and yield of pleurotus ostreatus mushroom on different ligocellulosic by-products. J. Ind. Microbiol. Biotechnol. 30;146-149.
Öborn I., Y. Andrist-Range, M. Askekaard, C.A. Grant, C.A. Watson, and A. C. Edwards. 2005. Critical aspects of potassium management in agricultural systems. Soil Use and Management 21:102-112.
Olympios C. M. 1992. Soiless media under protected cultivation:rockwool, peat, perlite and other substrates. Acta Hort. 323:215–234.
Poovaiah, B. R. 1988. Molecular aspect of calcium action in plant. HortScience 23:267-271.
Qiang, Xu., X. Xin, Z. Yan, J. Kum, J. H. Stephen, and H. Lin. 2008. Salicylic acid, hydrogen peroxide and calcium induced saline tolerance associated with endogenous hydrogen peroxide homeostasis in naked oat seedlings. Plant Growth Regul. 54:249-259.
Ragunathan, R., R. Gurusamy, M. Palaniswamy, and K. Swaminathan. 1996. Cultivation of Pleurotus spp. on various agro-residues. Food Chem. 55:139-144.
Rodríguez Couto, S., M. Gundín, M. Lorenzo, and M. A. Sanromaín. 2002. Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid-state conditions. Process Biochem. 38;249-255.
Sanchez, C. 2010. Influence of Substrate on the Ultrastructure of Pleurotus pulmonarius
fruid body Primordia. Appl. Microbio. Biotechnolol. 64:691-694
Shiau, F.L., W.C. Chung, J.W. Huang, and H.C. Huang. 1999. Organic amendment of commercial culture media for improving control of Rhizoctonia damping-off of
cabbage. Plant Pathology 21:368-374
Simonsson, M., S. Andersson, Y. Andrist-Rangel, S. Hillier, L. Mattsson, and I.Öborn. 2007. Potassium release and fixation as a function of fertilizer application rate and soil parent material. Geoderma 140:188-198.
Suelter, C. H. 1970. Enzymes activated by monovalent cations. Science 168:789-795.
Tang, J., S. Atsushi, Z. Qixing, and K. Arata. 2007. Effect of temperature on reaction rate and microbial community in composting of cattle manure with rice straw. The Society for Biotechnol. 104:321-328.
Van Soest, P. J.. 2006. Rice straw, the role and treatments to improve quality. Anim. Feed Sci. Technol. 120:137-171.
Wei, H., M. P. Tucker, J. O. Baker, M. Harris, Y. Luo, Q. Xu, M. E. Himmel, and S. Y. Ding. 2012. Tracking dynamics of plant biomass composting by changes in substrate structure , microbial community, and enzyme activity. Bio. for Biofuels 5(20):1-14.
White, R. H. 1979. Nutrient cycling. In: Introduction to the Principles and Practice of Soil Science.Blackwell Scientific Publications. Oxford. London. p.129-143.
Wilson, G. C. S. 1985. New perlite system for tomatoes and cucumbers. Acta Hort. 172:151–156.
Ye, R., T. A. Doane, J. Morris, W. R. Horwath. 2015. The effect of rice straw on the priming of soil organic matter and methane production in peat soils.Soil Bio. &
Bioch. 81:98-107.
Yeager, T. C. Gilliam, T. E. Bilderback, D. Fare, A. Niemiera, and K. Tilt. 1997. Best management practices, guide for producing container-grown plants. Southern
Nursery Association, Atlanta, Georgia.
Yogev, A., R. Michael, H. Yitzhak, C. Roni, W. Shmuel, G. Lidor, and K. Jaacov. 2010. Induced resistance as putative component of compost suppressiveness. Biol.
54:46-51.
Zhang, R. H., Z. Q. Duan, and Z. G. Li. 2012. Use of spent mushroom substrate as growing media for tomato and cucumber seedlings. Pedosphere 22:333-342.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top