(3.235.139.152) 您好!臺灣時間:2021/05/11 05:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:葉士財
研究生(外文):Shih-Tsai Yeh
論文名稱:紅龍果莖潰瘍病之病原菌特性及其防治
論文名稱(外文):Characteristics of Neoscytalidium dimidiatum from Pitaya and Its Control
指導教授:謝慶昌謝慶昌引用關係
口試委員:林學詩黃振文鐘文鑫郭章信鄭安秀林慧玲謝慶昌
口試日期:2016-07-27
學位類別:博士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:171
中文關鍵詞:紅龍果莖潰瘍病中藥煎汁液防治殺菌劑分子鑑定貯藏
外文關鍵詞:pitayapitaya stem cankerherbs extractcontrolFungicidemolecular identificationstorage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1225
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:0
紅龍果為臺灣的新興作物之一,經濟效益高,近年來紅龍果莖潰瘍病(由Neoscytalidium dimidiatum引起)在中部地區發生嚴重,5-8月為罹病高峰期,該病原可經由孢子侵入當年生嫩莖、花器及果實,造成腐爛,由於目前尚無抗病品種,發病時嚴重影響植株生育及產量。本研究自田間所分離形態學與Neoscytalidium屬相似之菌株經增幅ITS序列約可得605bp DNA條帶,將PCR產物委經解序,並將其結果上傳於NCBI基因庫中比對,結果指出,菌株與NCBI 資料庫中N. dimidiatum菌株 BWH-TS1 (Acess no :JX524168.1) 之相似度達99%;再經柯霍氏法則測試病原性,確認可造成紅龍果產生莖潰瘍病(Pitaya stem canker)。
自田間蒐集疑似感染N. dimidiatum病斑之植物,包括大花咸豐草(Bidens pilosa var. radiata)、咖啡(Coffea arabica L.)、文旦(Citrus grandis L.)、龍葵(Solanum americanum Miller)、木瓜(Carica papaya Linn.)、牽牛花(Ipomoea nil L.)、小葉桑(Morus australisPoir.)、山葡萄(Ampelopsis brevipedunculata Maxim.)、姬牽牛(Ipomoea obscura L.)、葡萄(巨峰)(Vitis vinifera L. var. Kyoho)及紫背草(Emilia sonchifolia L.)等10種植物,經分離並以無傷口及傷口接種測試病原性,確定可讓原植物及紅龍果果實產生過敏性反應,再依ITS序列鑑定為N. dimidiatum。另以TCDF8菌株測試可能寄主範圍,結果證實自田間分離後之菌株經傷口回接後具有感染植物,包括甘藷(Ipomoea batatas L.)、義大利葡萄(V. vnifera L.cv. Cabernet Sauvignon)、血桐(Macaranga tanarius L.)、文心蘭(Oncidium flexuosum Lodd.)、紫背草、紫蘇(Perilla frutescens var. crispa)、蝴蝶蘭(Phalaenopsis amabilis L.)、蒟蒻(Amorphophallus konjac)、扁蒲(Lagenaria siceraria Molina)、櫻花(Prunus serrulata)、紅肉李(Prunus salicina Lindl.)、葡萄(巨峰)、山苧麻(Boehmeria nivea L.)及櫻桃(Cerasus pseudocerasus)等14種植物可產生過敏性反應。與TCDF8菌株經溫室接種後,具感染的植物包括,甘藷、義大利葡萄、文心蘭、紫背草B、紫蘇、蝴蝶蘭及木瓜A等7種植物,確定經傷口回接至紅龍果果實產生過敏性反應。「探討中寮鄉罹病區附近所分離之植物莖潰瘍病菌與感染區紅龍果莖潰瘍病菌之差異性,將來自上列植物(包括10種寄主)所得菌株以RAPD (Random Amplified Polymorphic DNA)進行聚合酵素連鎖反應,結果指出來自大花咸豐草V22菌株之親緣較其他菌株遠,其次為來自文心蘭V5菌株,代表病原菌在不同植物間仍有差異」。
比較不同紅龍果品係間對TCDF8菌之差異,經接種紅龍果嫩莖,7天後,經傷口接種後紅肉紅龍果莖感染率為56%,而白肉紅龍果莖為46%,對照組嫩莖則皆無發病;而以無傷口方式接種結果指出,在第7天後,嫩莖感染率平均在88%,對照無發病。另接種黃龍莖的罹病度為92%,對照3%。紅龍果莖潰瘍病菌株生物特性測試結果,指出菌絲在11~40℃之間皆可生長,以15~40℃較佳,於35℃下第2天即長滿90mm培養皿,如果以連續在11~13℃溫度下培養12天,菌絲仍可緩慢生長。紅龍果莖潰瘍病菌發芽率測試結果,指出10℃與50℃紅龍果潰瘍病菌發芽率低,分別為3%與0.5%。20~40℃為發芽適溫,發芽率達92%以上,其中35℃發芽率最高達96.8%。另pH值測試結果,指出pH7最適本病原菌孢子及菌絲的生長,pH9可抑制本病菌菌絲之生長。測試植物保護手冊中登記許可在紅龍果炭疽病之藥劑對紅龍果莖潰瘍病菌之防治效果,其中以得克利、賽普護汰寧及免得爛等藥劑效果最好,可達百分之百抑制菌絲生長效果。其他未登記許可藥劑,可完全抑制病原菌絲生長的藥劑有平克座、撲克拉、邁克尼、滅特座、待普克利及普克利等單一劑型藥劑;而混合劑有得克芬胺、三氟得克利、賓得克利、甲基鋅乃浦、銅快得寧、鋅錳克絕、福賽快得寧、鋅錳毆殺斯及鋅錳曼普胺,生物製劑為枯草桿菌。於田間藥劑防治試驗中得知,施用25.9%得克利水基乳劑時發病率最低(31.75±3.9%)、其次為62.5%賽普護汰寧水分散性粒劑(42±4.7%)、325g/L亞托待克利水懸劑(44.75±6.7%)及40%克熱淨可溼性粉劑(48.5±9.8%)。
本研究亦測試非農藥防治對抑制紅龍果莖潰瘍病菌株之效果,包括溫度處理、UV-C60W ( UV-C 253.7nm )照射、抗病品種篩選及中藥煎汁液處理等。測試結果顯示,以65℃處理病原孢子(102 spores mL-1)30分鐘,70℃處理病原孢子(103 spores mL-1)20分鐘或以75℃處理(103 spores mL-1)病原孢子10分鐘,皆可達到百分之百抑制發芽。於UV-C60W照射,距離在24cm,連續照射30分鐘效果最佳,培養2天後菌落直徑為24.1±0.6mm;而莖潰瘍病病菌(N. dimidiatum)孢子測試結果顯示,在35mm距離,連續照射103 spores mL-1、105 spores mL-1等倍數平板,達10分鐘、30分鐘及60分鐘,皆可完全抑制孢子發芽。不同品系對病原菌感受測試,證實以無傷口接種幼苗後,大紅(Dahong)x白肉(Baicou)之雜交組合的罹病度最低為30%。
以車前子煎汁液處理對紅龍果莖潰瘍病菌孢子發芽之影響,稀釋10倍對莖潰瘍病菌孢子完全抑制發芽,對照孢子發芽率達到91.5%。白花蛇舌草(H. diffusa)煎汁液分別稀釋10-10,000倍等,對孢子抑制率為89.2-98.6%。黃芩煎汁液(S. Radix)分別稀釋10-10,000倍,其孢子抑制率達到50.3-66.5%。另測試58種中藥煎汁液對紅龍果莖潰瘍病菌生長抑制效果得知,車前子(Plantago asiatica)、白花蛇舌草(Hedyotis diffusa)及黃芩(Scutellariae radix)等3種中藥於培養第3天後,具有抑制紅龍果莖潰瘍病菌菌絲生長效果,而培養4天後車前子仍具明顯抑制效果。2013年以車前子與白花蛇舌草等煎汁液稀釋20倍後,進行田間防治莖潰瘍病試驗,結果顯示處理後,紅龍果果實之罹病度分別為71.9%與75.5%:而嫩莖罹病度,則分別為31.3%與43.8%。2014年以車前子煎汁液稀釋20倍持續進行莖潰瘍病防治試驗,結果得知,果實罹病度為54.2%,效果最佳,與對照處理間(96.9%)有顯著差異。同樣又以車前子煎汁液稀釋20倍處理嫩莖之防治效果最佳(罹病度23.8%),與對照處理間(93.8%)有顯著差異。證實車前子煎汁液具有防治紅肉紅龍果果實及嫩莖莖潰瘍病之潛力。
調查紅龍果採後貯藏期間的病害,顯示可引起果腐病之病原有Bipolaris cactivora、Fusarium sp.、F. oxysporum、F. dimerum、Aspergillus sp.、Alternaria alternata、A. carthami、Dothideomycetes sp.、Diaporthe endophytica及Cladosporium sp.等10種。將白肉紅龍果果實以車前子煎汁液稀釋20倍處理後21天,於10℃、15℃、20℃、25℃及30℃等5個溫度下調查防治效果,結果以10℃貯藏下防治效果最佳,於第19天開始發病,對照組則在第11天即發病;而紅肉紅龍果方面,處理14天後,於10℃貯藏下,較對照組可延遲7天發病。上述結果證實,經車前子煎汁液處理及配合低溫貯藏,可有效降低兩種紅龍果果實罹病腐爛,增加櫥架壽命。


Pitaya is one of the commercial fruits in Taiwan. Recent years, the serious occurances of pitaya stem canker disease (Neoscytalidium dimidiatum) in central part of Taiwan happened during May till August. The infection can be caused by the mycelium or spores penetrate the immature stems, flowers and fruits. Nowadays, there are still no resistance varieties and this disease seriously affect the plant gowth and productivity. In this research, through theITS sequencing was found 605 bpband. After sequencing, the results was aligned with NCBI gene bank data and showed 99% similiarity with Neoscytalidium dimidiatum isolate BWH-TS1 (access no:JX524168.1). This result has been confirmed by using Koch’s postulate method.
The investigation of pitaya stem canker disease in other plants after using Koch’s postulate method with or without wounding condition and ITS sequence confirmation showed that 12 plants such as Bidens pilosa var. radiata, Coffea arabica L., Citrus grandis (L.), Solanum americanum Miller, Carica papaya Linn., Macaranga tanarius (L.), Ipomoea nil (L.), Morus australis Poir., Ampelopsis brevipedunculata (Maxim.), Ipomoea obscura (L.),Vitis vinifera L. var. Kyoho, and Emilia sonchifolia L. can be infected by N. dimidiatum.
In addition, the observation of other 14 kinds possibility host plants after inoculation by using TCDF8 (N. dimidiatum)line showed that Ipomoea batatas L., Vitis vinifera L., Oncidium flexuosum Lodd., Carica papaya Linn, Emilia sonchifolia L., Perilla frutescens var. crispa, Phalaenopsis amabilis (L.), Amorphophallus konjac C., Lagenaria siceraria (Molina), Prunus serrulata, Prunus salicina Lindl., Vitis vinifera L.var Kyoho, Boehme rianivea (L.) and Cerasus pseudocerasus can induce hypersensitive response. The isolation of pitaya stem canker pathogen from many plants including 12 host plants (discrpt above) usingRAPD(Random Amplified Polymorphic DNA)methods including showed that the polygenetic relationship in Bidens pilos avar. Radiate showed the farthest relationship followed by Oncidium flexuosum Lodd.These results showed variety of the pathogens in each plants.The effect of different pitaya cultivars on TCDE8 pathogen after inoculation to immature stem of pitaya showed that the spores able to penetrate the wounded immature stem after 7 days with infection rate about 56% in red pitaya, white pitaya was about 46% while no treated plant showed no infection. The inoculation without wounding on immature stem showed 88% infection rate after 7 days; no treated plant showed no infection. Meanwhile, yellow pitaya showed 92% infection rate and no treated plant has 3% infection rate.
In the observation red and white pitaya infection rate showed that white pitaya (29.2%) has lower infection rate than red pitaya (70.8%). The mycelium growth temperature is about 11-400C whereas 350C showed the fastest growth rate. However, when the mycelium was incubated at 11-130C, it needs 12 days to reach diameter 90 mm. the investigation of mycelium growth in different pH medium showed pH 9 can inhibit the mycelium growth and pH 7 is the optimum condition for mycelium ltogrow.The spore germination at 100C and 500C showed the lowest germination rate about 3% and 0.5%, respectively. 200 to 400C is suitable for spore to germinate (above 92%) whereas 350C has the best germination rate about 96.8%.The investigation of in vitro stem canker inhibition in nine kinds of fungicides showed that Tebuconazole, cyprodinil+fludioxonil, metiram and non-available fungicide such as followed by penconazole, prochlorax, myclobutanil, metconazole, Difenoconazole + Propiconazole, Propiconazole 25% EC, Tebuconazole + cyflufenamid, Trifloxystrobin + tebuconazoled, Pencycuron + tebuconazole, propineb, Copper hydroxide + oxine-copper, Mancozeb + cymoxanil, Fosetyl-aluminium +oxine-copper, Mancozeb + oxadixyl, Mancozeb + mandipropamid, and biopesticide such as bacillus sp.showed 100% inhibition. In field investigation showed that 25.9% Tebuconazoleshowed the lowest incidence rate (31.75±3.9%) followed by 62.5% cyprodinil + fludioxonil(42±4.7%), 325g/L SC Azoxystrobin + Difenoconazole (44.75±6.7%); and multisite contant inhibition fungicide, 40% Iminoctadine Triacetate (48.5±9.8%) showed potential to controlpitaya stem canker disease.
In UV light exposed UV-C60W ( UV-C 253.7nm ) on mycelium showed that 24cm height for 30 min has the best result with diameter is around 24.1±0.6mm in2 days and control is around 31.3±0.3mm. In spore germination research, 103/spores ml、105/spores ml exposed with UV light for 10, 30, and 60 min able to inhibit spore germination.The inoculation of pitaya stem cankers in immature plant without wounding condition found that Dahong x Baicou plants has the lowest infection rate about 30%.Plantago asiatica extract treated to Neoscytalidium dimidiatum spore showed that 0.1% dilution on Plantago asiatica extract are able to inhibit spore germination while control treatement showed 91.5% germination rate. H. diffusa dilute 10-10,000(X) treated to spore showed 89.2-98.6% inhibition. S. radix dilute 10-10,000(X)treated to spore showed 50.3-66.5% inhibition. Using 58 kinds of herbs extract treated on mycelium showed that Plantago asiatica, Hedyotis diffusa, and Scutellariae radix extract showed an inhibition on mycelium growth for three days.However, the mycelium started to grow at day 4 except Plantago asiatica extracttreatment.In 2013 pitaya stem canker disease management by using Plantago asiatica, extract (20 x dilutions) on pitaya fruits showed 71.9% and 75.5% incidence rate. The incidence rate on immature stem after treated with herbs extract were about 31.3%and 43.8%. Next year, the investigation of Plantago asciatica L., had 54.2% infection rate while control fruits wereabout 97.9% infection rate. The similar results also can be found in immature stem research whereas Plantago asiatica L.extract treatment had the lowest infection rate (23.8%) compare to control. These results has proofed that Plantago asiaticaL.extract has potential to contolpitaya stem canker disease
Several pathogens that cause fruit decay that has been recorded such as Bipolaris cactivora, Fusarium oxysporum, Fusarium sp., Fusarium dimerum, Aspergillus sp., Alternaria alternata, Alternaria carthami, Dothideomycetes sp., Diaporthe endophytica and Cladosporium sp. When the fruits were treated with Plantago asiatica L. extract (20x dilution) onwhitepitaya fruit and observed the diseases appearance during 21 days storage at 10, 15, 20, 25, and 30oC showed that the fruits which stored at 100C showed the lowest decay rate whearse the incidence rate started to appear at day 19 while the incidence rate in control fruits appeared at day 11. The investigation of postharvest disease on red pitaya fruits showed that the incidence rate of fruits when stored at 100C was delayed 7 days compared with non-treated fruits. Meanwhile without treated with Plantago asiaticaL.extract (20x dilution), the incidence rate of red pitaya fruits started at day 7.Based on these two pitaya cultivars, the combination of Plantago asiaticaL.extract and low temperature storage can able to reduce the fruits decay and extend the fruits’ shelf-life.


目錄
中文摘要…………………………………………………………………i
英文摘要…………………………………………………………………iv
目錄……………………………………………………………………viii
圖目錄……………………………………………………………………ix
表目錄……………………………………………………………………xi
第一章、前人研究………………………………………………………1
第二章、紅龍果莖潰瘍病之病原菌特性………………………………13
中文摘要…………………………………………………………………13
英文摘要…………………………………………………………………14
前言………………………………………………………………………16
材料與方法………………………………………………………………18
結果………………………………………………………………………31
討論………………………………………………………………………41
第三章、篩選可有效抑制紅龍果莖潰瘍病菌之資材與評估田間防治…
效果………………………………………………………………………70
中文摘要…………………………………………………………………70
英文摘要…………………………………………………………………72
前言………………………………………………………………………74
材料與方法………………………………………………………………77
結果………………………………………………………………………85
討論………………………………………………………………………93
第四章、紅龍果採後病害相調查與管理……………………………118
中文摘要………………………………………………………………118
英文摘要………………………………………………………………119
前言……………………………………………………………………120
材料與方法……………………………………………………………122
結果……………………………………………………………………125
討論……………………………………………………………………129
第五章、總結論………………………………………………………139
參考文獻………………………………………………………………143

圖目錄
圖序                  頁碼

圖2-1.紅龍果莖潰瘍病感染枝條及果實病徵…………………………51
圖2-2.不同地區紅龍果莖潰瘍病發生率之周年變化…………………51
圖2-3.紅龍果莖潰瘍病病原?在馬鈴薯葡萄糖瓊脂菌落生長情形分生
孢子菌絲及節孢子形態…………………………………………………52
圖2-4.以引子對ITS1/ITS4 針對紅龍果莖潰瘍病之DNA 進行PCR後,增幅產物之瓊脂凝膠電泳圖……………………………………………53
圖2-5.紅龍果嫩莖在受傷下接種莖潰瘍病菌孢子後之發病病徵……54
圖2-6.黃龍品種嫩莖在受傷下接種莖潰瘍病菌孢子後之發病病徵。無接種之黃龍接種之黃龍…………………………………………………54
圖2-7.紅龍果品種嫩莖接種莖潰瘍病菌孢子後之罹病率……………55
圖2-8.紅龍果莖潰瘍病接種幼株發病外觀……………………………56
圖2-9.紅龍果雜交播種苗無傷口接種莖紅龍果潰瘍病菌孢子之罹病率…………………………………………………………………………57
圖2-10.白肉?和紅肉?紅龍果嫩莖傷口接種莖潰瘍病菌菌絲後之發病病徵………………………………………………………………………58
圖2-11.白肉及紅肉紅龍果嫩莖傷口接種莖潰瘍病菌絲後之罹病度…………………………………………………………………………58
圖2-12.白肉紅龍果H. undatus及紅肉紅龍果H. polyrhizus接種紅龍果果實莖潰瘍病菌孢子罹病情形………………………………………59
圖2-13.不同寄主經接種N. dimidiatum表現之病徵…………………60
圖2-14.以引子對ITS1/ITS4 針對接種植物病原菌 (N. dimidiatum)之DNA 進行PCR後,增幅產物之瓊脂凝膠電泳圖……………………61
圖2-15.不同寄主之莖潰瘍病罹病率…………………………………62
圖2-16.以引子對ITS1/ITS4 針對寄主植物病原菌 (N. dimidiatum)之DNA 進行PCR後,增幅產物之瓊脂凝膠電泳圖……………………63
圖2-17.田間發生及回接在植物上的N.dimidiatum引起病徵………64
圖2-18. 11種寄主病原菌及20種接種植物病原菌經RAPD群集分析之聚類樹狀圖…………………………………………………………………66
圖2-19.紅龍果莖潰瘍病菌在不同溫度下培養2天之菌落直徑………67
圖2-20.紅龍果莖潰瘍病病原菌菌絲在不同溫度下連續12天之菌落生長變化……………………………………………………………………67
圖2-21.pH值處理對紅龍果莖潰瘍病菌落培養7及50小時菌落直徑之影響…………………………………………………………………………68
圖3-1. UV-C燈照射距離對紅龍果莖潰瘍病菌絲培養24小時的生長之影響……………………………………………………………………104
圖3-2.以車前子煎汁液後24小時抑制莖潰瘍病菌之效果…………105
圖3-3.以白花蛇舌草煎汁液後24小時抑制莖潰瘍病菌之效果……105
圖3-4.以黃芩煎汁液後24小時抑制莖潰瘍病菌之效果……………106
圖3-5.以沒藥煎汁液後24小時抑制莖潰瘍病菌之效果……………106
圖3-6.車前子煎汁液在25℃放置天數對紅龍果莖潰瘍病病原菌絲生長情形……………………………………………………………………107
圖3-7.不銹鋼鍋處理不同放置倍數的車前子煎汁液添加PDA培養基對紅龍果莖潰瘍病病原菌絲生長情形…………………………………108
圖3-8.不同處理的車前子種子煎汁液添加PDA培養基對紅龍果莖潰瘍病病原菌絲第2天之生長情形…………………………………………109
圖3-9.不同放置溫度的車前子煎汁液添加PDA培養基對紅龍果莖潰瘍病病原菌絲第2天之生長情形…………………………………………109
圖3-10.不同過濾方法的車前子煎汁液添加PDA培養基對紅龍果莖潰瘍病病原菌絲第2天之生長情形…………………………………………110
圖3-11.不同貯藏光度的車前子煎汁液添加PDA培養基對紅龍果莖潰瘍病病原菌絲第2天之生長情形…………………………………………110
圖3-12.不同藥劑於田間防治紅龍果果實莖潰瘍病菌之影響………111
圖3-13.田間噴施白花蛇舌草及車前子煎汁液6次防治紅龍果果實莖潰瘍病之效果……………………………………………………………112
圖3-14.田間噴施兩種中藥煎汁液防治紅龍果果實莖潰瘍病之效果………………………………………………………………………112
圖3-15.田間噴施白花蛇舌草及車前子煎汁液6次防治紅龍果嫩莖莖潰瘍病之效………………………………………………………………113
圖3-16.田間噴施兩種中藥煎汁液防治紅龍果嫩莖莖潰瘍病之效果………………………………………………………………………113
圖3-17.3種中藥煎汁液及對照藥劑田間防治紅龍果果實莖潰瘍病之效果………………………………………………………………………114
圖3-18.田間噴施3種中藥煎汁液及對照藥劑防治紅龍果果實莖潰瘍病之效果…………………………………………………………………114
圖3-19.3種中藥煎汁液及藥劑田間防治紅龍果嫩莖莖潰瘍病之效果………………………………………………………………………115
圖3-20.田間噴施3種中藥煎汁液及對照藥劑防治紅龍果嫩莖莖潰瘍病之效果…………………………………………………………………115
圖3-21.田間以中藥煎汁液處理紅龍果對果皮色差之影響…………116
圖3-22.田間以中藥煎汁液處理紅龍果對嫩莖皮色差之影響………116
圖3-23.紅龍果嫩莖接種莖潰瘍病菌絲14天後之乙烯連續釋放率的影響………………………………………………………………………117
圖3-24.紅龍果嫩莖接種莖潰瘍病菌絲14天後之呼吸率連續釋放率的影響……………………………………………………………………117
圖4-1.紅龍果貯藏中之各種病原菌為害病徵………………………………………………………………………132
圖4-2車前子煎汁液處理紅肉紅龍果之第2、6、11天防治效果………………………………………………………………………134
圖4-3.於不同溫度使用車前子煎汁液處理紅肉紅龍果後14天之病害發生情形…………………………………………………………………135
圖4-4.車前子煎汁液處理白肉紅龍果之第1、10、20天防治效果…136
圖4-5.於不同溫度使用車前子煎汁液處理白肉紅龍果後21天之病害發生情形…………………………………………………………………137
圖4-6.噴車前子煎汁液及Water Agar後接種紅龍果莖潰瘍病之效果………………………………………………………………………138
圖4-7.車前子煎汁液處理及Water Agar接種後紅龍果果實莖潰瘍病之情形……………………………………………………………………138

表目錄
表序 頁碼

表2-1自紅龍果分離之3種菌株N. dimidiatum利用ITS1/ITS4序列,上傳於NCBI基因庫中併列鑑定……………………………………………45
表2-2.紅龍果莖潰瘍病菌絲培養時間對其孢子萌芽率的影響………45
表2-3.接種植物之莖潰瘍病菌N.dimidiatum專一性片段解序後比對…………………………………………………………………………46
表2-4.自不同寄主採集專一性片段解序後比對………………………47
表2-5.11株非紅龍果植物病原菌ITS1/ITS4序列相似性(%)…………48
表2-6不同溫度對紅龍果莖潰瘍病菌孢子發芽之影響………………48
表2-7.具碳素源在高溫處理下對紅龍果莖潰瘍病菌2×102 spores / mL之孢子發芽影響………………………………………………………49
表2-8.具碳素源在高溫處理下對紅龍果莖潰瘍病菌2×103 spores / mL之孢子發芽影響………………………………………………………49
表2-9.不同pH值對紅龍果莖潰瘍病菌孢子發芽之影響………………50
表3-1.數種殺菌劑對紅龍果莖潰瘍病菌分離株孢子發芽之影響……97
表3-2數種藥劑對紅龍果莖潰瘍病菌菌絲第2 天抑制生長情形……97
表3-3添加不同藥劑於PDA培養基上抑制紅龍果莖潰瘍病菌絲生長第2天之影響…………………………………………………………………98
表3-4.UV-C照射對紅龍果莖潰瘍病菌孢子第24小時發芽之影響…102
表3-5.中藥煎汁液對紅龍果莖潰瘍病菌分離株孢子發芽之影響…102
表3-6.添加不同中藥煎汁液於PDA培養基上抑制紅龍果莖潰瘍病菌絲之第2天生長情形………………………………………………………103
表4-1紅龍果果果實採後病害之專一性片段解序後比對……………131

附錄目錄
附錄序 頁碼

附錄2-1.紅龍果嫩莖罹病度不同等級區分圖………………………160
附錄2-2.紅龍果雜交後代幼苗之無傷口接種紅龍果莖潰瘍病組合………………………………………………………………………160
附錄2-3.車前子煎汁液防治紅龍果莖潰瘍病及採後病害所使用的倍數………………………………………………………………………160
附錄2-4.紅龍果莖潰瘍病之病原性之供測定植物種類來源………161
附錄2-5.31接種植物之病原菌菌株來源……………………………162
附錄2-6本試驗所引RAPD的引物序列…………………………………163
附錄3-1紅龍果莖潰瘍病之室內試驗登記許可藥劑劑型與使用倍數………………………………………………………………………163
附錄3-2.紅龍果莖潰瘍病之室內試驗所用藥劑劑型與使用倍數…164
附錄3-3.紅龍果莖潰瘍病之室內試驗所用中草藥煮汁液種類……169
附錄3-4.紅龍果莖潰瘍病之田間試驗藥劑劑型與使用倍數………170
附錄3-5.2013年田間試驗所用之中草藥煎汁液與使用倍數………170
附錄3-6.2014年田間試驗所用之中草藥煎汁液與使用倍數………170
附錄4-1.17種紅龍果果實採後病害菌株之來源種類………………171






毛青樺。2008。蟹爪蘭X病毒與紅龍果X病毒之分子特性與偵測。國立台灣大學植物病理與微生物學研究所碩士論文。臺灣臺北。62pp。
王智立、林正忠。2005。紅龍果果腐及仙人掌莖腐病。植物病理學會刊 14(4):269-274。
王蕙巧。2006。紅龍果果實生長發育之理化特性與採後生理之研究。屏東科技大學農園生產系 碩士論文。92pp。
朱英、陶剛、劉作易、韋茜、金吉芬、劉濤。2008。火龍果基因組DNA提取的新方法。種子 27(11):111-112。
江一蘆。2005。攀附性仙人掌果品系分類,開花著果習性與修剪。國立台灣大學園藝學研究所 碩士論文。臺灣臺北。102pp。
江迪蔚。2006。枯草桿菌Bacillus subtilis於檬果黑斑病防治之應用潛力與作用機制。國立國立中興大學植物病理學系 碩士論文。79pp。
李文權。1988。高等植物的化學防衛物質。科學農業36:109-144。
李玉平、馮俊濤、邵紅軍、祝木金、慕小倩、張興。2003。25種菊科植物提取物對3種植物病原菌的藥效試驗。西北農林科技大學學報(自然科學版) 31(4):123-126。
李家輝。2015。紅龍果肉質莖礦物營養調查、花芽誘導與抗莖潰瘍病品系篩選。國立國立中興大學園藝學系 碩士論文。臺灣臺中。113pp。
易潤華、甘羅軍、晏冬華、吳澤菁、童依婷、吳鳳發。2013。火龍果潰瘍病病原菌鑑定及生物學特性。植物保護學報 40(2):102-108。
林正忠、賴秋炫、蔡叔芬。2003。番石榴果實新病害黑星病及其他病害生態調查。植保會刊45:263-270。
林筑蘋、安寶貞、蔡志濃、徐子惠、張捷婷。2014。台灣新紀錄真菌Gilbertella persicaria引起之紅龍果濕腐病。植物病理學會刊 23(2):109-124。
林漢釗、黃文的、楊尚書、曾德賜。2008。枯草桿菌Bacillus subtilis WG6-14對水稻秧苗之生長促進及對Sclerotium rolfsii所造成水稻秧苗立枯病之防治效果。植物病理學會刊 17(1):53-64。
侯敏、馬秀敏、丁劍冰。2009。唇形科植物抗炎、抗過敏和抗氧化活性研究進展。 科技導報 27: 98-101。
段中漢、蔡武雄、杜金池。1991。楊桃炭疽病菌之病原性及感染源。中華農業研究 40(4):425-432。
洪爭坊、張碧芳、張景宜、黃振文。2006。小星辰花炭疽病菌之鑑定及其病原性測定。植物病理學會刊 15(4):241-249。
倪蕙芳、黃巧雯、許淑麗、賴素玉、楊宏仁。2013。紅龍果莖潰瘍病之病原特性及防治藥劑篩選。台灣農業研究 62(3):225-234。
徐萬德。2004。Hylocereus spp. 仙人掌紅龍果之栽培、生育習性及物後調查。國立台灣大學園藝學研究所碩士論文。台灣臺北。167pp。
張淳文、Robert L. Rountree、呂理焱。2000。蕉炭疽病在未熟香蕉果皮上之電子顯微鏡觀察。植物保護學會會刊42(3):135-146。
張雪、張志宏、劉月學、馬躍、王豐。2010。木黴菌劑提高‘紅顏’草毒炭疽病抗性的效應。西北農業學報 19(8):153-156。
梁文進。2005。紅龍果病害。台灣農家要覽。植物保護篇。行政院農業委員會出版 p127。
莊再揚、安寶貞。1997。芒果炭疽病之生物防治。植物保護學會會刊39(3):227-240。
郭克忠、李祈益、江叔幸、鄭尤琇。1999。菜豆炭疽病的病原、侵染過程及其藥劑篩選。植物保護學會會刊41(4):265-275。
曾超珍、劉志祥。2009。枸骨葉抑菌物質的提取及抑菌作用研究。北方園藝 8:129-131.
費雯綺、何明勳。2014。農藥作用機制。行政院農業委員會農業藥物毒物試驗所 編印。p.39-55。
黃思齊。2005。熱、乙醇、氣變包裝處理對“富有”甜柿低溫貯藏生理障礙及品質之影響。國立國立中興大學園藝學系 碩士論文。119pp。
楊宏仁、林螢達。1997。溫水處理對臺農一號芒果採後炭疽病之防治效果。植物保護學會會刊39(3):241-249。
葉士財、廖君達、郭建志、柯文華。2011。番石榴瘡痂病、疫病之發生及其防治藥劑篩選。台中區農業改良場研究彙報 110:43-54。
葉洹瑜。2012。台灣紅龍果莖部潰瘍病之研究。國立台灣大學植物病理與微生物學研究所 碩士論文。臺灣臺北。84pp。
廖吉彥、張清安、顏昌瑞、陳昱初、鄧汀欽。2003。感染紅龍果之仙人掌病毒X之鑑定與分佈調查。植物病理學會刊 12(4):225-234。
劉命如、洪建龍、劉瑞芳。2004。引起紅龍果斑駁病徵之Cactus virus X的鑑定與免疫檢測。植物病理學會刊 13(1):27-34。
劉碧鵑。2010。台灣紅龍果的栽培。行政院農業委員會農業試驗所鳳山熱帶園藝試驗分所編印。32pp。
蔡志濃、林筑蘋、 安寶貞、鄧汀欽、廖吉彥、倪蕙芳、楊宏仁。2013。紅龍果的重要病害及其防治(上)。農業試驗所技術服務 95:1-4。
蔡宜儒。2010。台灣枇杷枝枯病菌的鑑定與其感染過程及防治方法。國立國立中興大學植物病理學系 碩士論文。50pp。
蔡怡芳。2004。紅龍果莖腐病病因之探討。國立屏東科技大學植物保護系 碩士論文。臺灣屏東。121pp。
鄭金梅。1990。仙人掌紅龍果(Hylocereus undatus Britt.&Rose)花粉形態與活力及果實生長之研究。國立國立中興大學園藝學系碩士論文。90pp。
蕭文偉、傅春旭、姚瑞禎。2002。楓香之炭疽病。臺灣林業科學 17(1): 119-121。
應紹舜。1992。三角柱。臺灣高等植物彩色圖鑑。第四卷 p310。
謝廷芳、黃晉興、謝麗娟、胡敏夫、柯文雄。2005。植物萃取液對植物病原真菌之抑菌效果。植物病理學會刊 14(1):59-66。
顏昌瑞、張鳳如。1997。仙人掌果紅龍(Hylocereus undatus britt.&Rose)之產期調節。提昇果樹業競爭力研討會專輯Ⅲ p163-170。
蘇明洲、呂仲誠。2008。屏東市高中職校園草本植物調查與分析。大仁學報32::93-114。
蘇雲翰。2005。光週期及修剪對仙人掌紅龍果(Hylocereus spp.)產期調節之影響。國立屏東科技大學農園生產系 碩士論文。臺灣屏東。pp。
Ahmad, S, Al-Mahmeed M, and Khan ZU. 2005. Characterization of Trichosporon species isolated from clinical specimens in Kuwait. J. Med. Microbiol. 54:639-46.
Allende, A., and F. Arte’ s. 2003. UV-C radiation as a novel technique for keeping quality of fresh processed ‘Lollo Rosso’ lettuce. Food Research International. 36: 739-746.
Allende, A., J. L. McEvoy, Y.Luo, F. Artés, and C. Y.Wang. 2006. Effectiveness of twosided UV-C treatments in inhibiting natural microflora and extending the shelflife of minimally processed “Red Oak Leak” lettuce. Food Microbiology. 23: 241-249.
Al-Zoreky, N.S. 2009. Antimicrobial activity of pomegranate (Punica granatum L.)fruit peels. Int. J. Food Microbiol. 134:244-248.
Anderson, J.G., N.J. Rowan, S.J. MacGregor, A.Fouracre, and O.Farish. 2000. Inactivation of food-borne enteropathogenic bacteriaand spoilage fungi using pulsed-light. IEEE Transactions on Plasma. Science 28 (1)83-88.
Anne, B. S. 2000. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J. of Ethnopharmacol.71: 1–2, P. 1–21
Ardjouma, D., S.T. Karim, K. Mamadou, and D.C.Tenebe. 2005. Export papaya postharvest protection by fungicides and the problems of the maximal limit of residues. Afr. J. Biotechnol. 4: 109-112.
Aylor, D.E., and S. Sanogo. 1997. Germinability of Venturia inaequalis conidia exposed to sunlight. Phytopathology. 87: 628- 633.
Baker, K. F. 1987. Evolving concepts of biological control of plant pathogens. Annu. Rev. Phytopathol. 25:67-85.
Baker, K.F. and W.L.Smith. 1969. Heat-induced ultrastructural changes in germinating spores of Rhizopus stolonifer and Monilinia fructicola. Phytopathology 60:869-874.
Barbeau, G. C. 1990. La pitahaya rouge, un nouveau fruit exotique (the red pitahaya, a new exotic fruit). Fruits. 45(2):141–147.
Barkai-Golan, R. and D.J. Phillips. 1991. Postharvest heat treatment of fresh fruits and vegetables for decay control. Plant Disease 75(11) :1085-1088.
Barrera-Necha, L.L., S. Bautista-Baños, L. Bravo-Luna, F.J. García-Suárez, D. Alavéz- Solano, and C. R. Reyes. 2004. Antifungal activity of seed powders, extracts and secondary metabolitos of Pachyrhizus erosus (L.) Urban (Fabaceae) against three postharvest fungi. Mex. J. Phytopathol. 22:356-361.
Basile,F.2001. Economic aspects of Italian pear production and market. JPACD 4:31-46.
Bernstein, B., E. I. Zehr, R. A. Dean, and E. Shabi. 1995. Characteristics of Colletotrichum from peach, apple, pecan, and other hosts. Plant Dis. 79:478–482.
Bintsis, T., E. Litopoulou-Tzanetaki, and R. K. Robinson. 2000. Existing and potential applications of ultraviolet light in the food industry e a critical review. Journal of the Science of Food and Agriculture. 80(6): 637-645.
Binyamini, N., and M. Schiffmann-Nadel. 1972. Latent infection in avocado fruit due to Colletotrichum gloeosporioides. Phytopathology 62:592–594.
Bruns, T. D., T. J. White, and J. W. Taylor 1991. Fungal molecular systematics. Annu. Rev. Ecol. Syst. 22:525-564.
Burgess, L.W., B.A. Summerell, S. Bullock, K.P. Gott, and D. Backhous. 1994. Laboratory manual for Fusarium Research. University of Sydney and Royal Botanic Gardens. Sydney. p.133.
Cairn,S.J., D. W. Albaugh, F. Busey and M. D. Chanay. 1968. The sequential comparison index-a simplified method for non-biologists to estimate relative differences in biological diversity in stream pollution studies. Journal water pollution control federation 40:1607-1613.
Chan, T.Y.K., J.C.N. Chan, B. Tomlinson, and J.A. Critchley. 1993. Chinese herbal medicines revisited: a Hong Kong perspective. Lancet 342:18-25.
Charles, M. T., R. Corcuff, D. Roussel, and J.Arul. 2003. Effect of maturity and storage on Rishitin accumulation disease resistance to Botrytis cinerea in UV-C treated tomato fruit. Acta Horticulturae. 599:573-576.
Chuang, M. F., H. F. Ni, H. R.Yang, S. L. Shu, S. Y. Lai, and Y. L. Jiang. 2012. First report of stem canker disease of pitaya (Hylocereus undatus, H. polyrhizus) caused by N. dimidiatum in Taiwan. Plant Dis. 96: ( 6 ) 906.( abstract)
Chukwuemeka, N.O., and A.B. Anthonia. 2010. Antifungal effects of pawpaw seed extracts and papain on postharvest Carica papaya L. fruit rot. Afr. J. Agric. Res. 5: 1531-1535.
Civello, P.M., G.A. Martı´nez, A.R. Chaves, and M.C. An˜o´n. 1997. Heat treatments delay ripening and postharvest decay of strawberry fruit. J. of Agri. and Food Chemi. 45 (12):4589-4594.
Couey, H.M., A.M. Alvarez, and M.G. Nelson. 1984. Comparison of hot-water spray and immersion treatments for control of postharvest decay of papaya. Plant Dis. 68:436-437.
Crous P.W., B. Slippers, M.J.Wingfield, J.Rheeder, W.F. Marasas, and A.J. Philips. 2006. Phylogenetic lineages in the Botryosphaeriaceae. Stud Mycol 55:235-53.
Da Silva P.A.V., R.B. Martins, S.J. Michereff, M.B. Da Silva, and M.P.S. Câmara. 2012. Sensitivity of Lasiodiplodia theobromae from Brazilian papaya orchards to MBC and DMI fungicides. Eur. J. Plant Pathol. 132, 489-498.
Day, P., 1993. In-vitro studies into host-pathogen interactions of sunflower and Macrophomina phaseolina. Postdoc Day. PhD thesis. 5(10):257-264.
De C. A., and P. Melgarejo. 1999. Effects of long-wave UV light on Monilinia growth and identification of species. Plant Dis. 83:62-65.
Deena, M. J., K. Sreeranjini, and J. E. Thoppil. 2002. Antimicrobial screening of essential oils of Coleus aromaticus and Coleus zeylanicus. Int. J. Aromather. 12(2):103-107.
Dhingra, O.D.and J.B. Sinclair., 1978. Biology and Pathology of Macrophomina phaseolina. Universidade Federal de Vicosa. 166 pp.
Diao ,Y. Z., J. R. Fan, Z. W. Wang, and X. L. Liu., 2013. First Report of Colletotrichum boninense Causing Anthracnose on Pepper in China. The Am. Phytopathol. Soc. 97:( 1) 138
Díaz-Pérez, J.C., A.Mejía, S. Bautista, R. Zavaleta, R.Villanueva, and R. López-Gómez. 2001. Response of sapote mamey (Pouteria sapota (Jacq.) H.E. Moore and Stearn) fruit to hot water treatments. Postharvest Biol. Technol. 22: 159-167.
Donnenberg, M. 2009. Mandell, Douglas, and Bennett''s principles and practice of infectious diseases. Enterobacteriaceae. 218:2827.
Droby, S., M. Wisniewski, D. Macarisin, and C. Wilson, 2009. Twenty years of postharvest biocontrol research: is it time for a new paradigm. Postharvest Biol.Technol. 52:137-145.
Dunn, J.J., M.J.Wolfe, J.Trachtenberg, J.D. Kriesel, R.R. Orlandi, and K.C. Carroll. 2003. Invasive fungal sinusitis caused by Scytalidium dimidiatumin a lung transplant recipient. J ClinMicrobiol.41:5817-5819.
Eckert, J.W., and J.M. Ogawa. 1988. The chemical control of postharvest diseases: deciduous fruits, berries, vegetables and root/tuber crops. Annu. Rev. Phytopathol. 26:433–469.
Fonseca, J. M., and J. W. Rushing. 2006. Effect of ultraviolet-C light on quality and microbial population of fresh-cut watermelon. Postharvest Biology and Technology. 40: 256-261.
Garrett, S. D. 1965. Towards Biological Control of Soil-borne Plant Pathogens. In: Ecology of Soil-borne Plant Pathogens. University of California Press. Berkeley. 571 pp.
Halkier, B. A., and J. Gershenzon. 2006. Biology and biochemistry of glucosinolates. Anni. Rev. plant Biol. 57:303-333.
Hallman,G.J., J.J. Gaffney, and J.L.Sharp. 1990. Vapour heat treatment for grapefruit infested with Caribbean fruit fly (Diptera:Tephritidae). J. Econ. Entomol. 83: 1475-1478.
Hawa, M. M., B Salleh, and Z. Latiffah. 2010. Characterization and intraspecific variation of Fusarium semitectum (Berkeley and Ravenel) associated with red-fleshed dragon fruit (Hylocereus polyrhizus [Weber] Britton and Rose) in Malaysia. Afr. J. of Biotechnol. 9:273-284.
He,P.F., H. Ho, X.X.Wu, M.S. Hou, and Y.Q. He . 2012. Bipolaris cactivora causing fruit rot of dragon fruit imported from Vietnam. Plant Pathol. Quar. 2(1):31-35
Hewitt, C. J., and V. C. G. Nebe. 2004. The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state. Adv. Biochem. Eng. Biotechnol. 89: 197-223.
Ho, W. C., Su, H. J., Li, J. W., Ko, W. H. 2006. Effect of extracts of Chinese medicinal herbs on spore germination of Alternaria brassicicola, and nature of an inhibitory substance from gallnuts of Chinese sumac (Rhus chinensis). Can. J. Pathol. 28:519-525.
Hoa, T. T., C. J. Clark, B. C.Waddell, and A. B. Woolf. 2006. Postharvest quality of dragon fruit (Hylocereus undatus) following disinfesting hot air treatments. Postharvest Biol Technol.. 41:62-69.
Hugo M., R. Mery, C. Josep, S. Alberto ,O. Rosane, and G. Josep. 2009. Genotyping and in vitro antifungal susceptibility of N. dimidiatum isolates from different origins. Int. J. Antiviral Age. 34 : 351-354.
Hyo-Won C., C. Ill-Min, H. S. Mi, S. K.Yu, S. Jung-Bo, K. Jin-Won, D. K.Ki, and C.Se-Chul. 2007. The effect of spent mushroom sawdust compost mixes. calcium cyanamide and solarization on basal stem rot of the cactus Hylocereus trigonus caused by Fusarium oxysporum. Crop Protection 26:162-168.
Islam, S.Z., Y. Honda, and M. Sonhaji. 1998. Phototropism of conidialgerm tubes of Botrytis cinerea and its implication in plant infectionprocesses. Plant Dis. 82:850-856.
Katherine T., A. B. Paul, E. Giles, J. H. ST, and I. B. Treena. 2009. Botryosphaeriaceae from tuart (Eucalyptus gomphocephala) woodland. including descriptions of four new species. Mycological Research 113:337-353.
Kennedy, J. 2005. Herbs and supplements use in the US adult population. Clin. Ther.27:1847-1858.
Koutchma, T.2009. Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology. 2:138-155.
Latoud, C. P., and G. Michel. 1987. Action of iturin A, an antifungal from Bacillus subtilis, on the yeast Saccharomyces cerevisiae:modifications of membrane permeability and lipid composition. J. Antibiotics 40:1588-1595.
Lattanzio, V. 2003. Bioactive polyphenols: their role in quality and storability of fruitand vegetables. J. Appl. Bot. 77:128-146.
Lay-Yee, M., G.K. Clare, J. Petry, R.A. Fullerton, and A. Gunson. 1998. Quality and disease incidence of ‘Waimanalo Solo’ papaya following forced-air heat treatments. HortScience 35:878-880.
Lewis I., M. L., C. Nava-Diaz, and S. A. Miller.,2004. Identification and management of Colletotrichum acutatum on immature bell peppers. Plant disease 88: 1198-1204.
Liao, J. Y., C. A Chang, C. R Yan, Y. C Chen, and T. C. Deng. 2003. Detection and incidence of cactus virus X on pitaya in Taiwan. Plant Pathology Bulletin 12 (4 ):225-234.
Lin C.C., W.B.Guo, and S.F. Cai. 2006. Diseases of red dragon fruit in Taiwan. Good Year (Chinese)56:38-42.
Lorenza Costa a, Ariel R. Vicente a, Pedro M. Civello b, Alicia R. Chaves a, Gustavo A. and Mart´ınez 2006. UV-C treatment delays postharvest senescence in broccoli florets Postharvest Biol Technol.. 39:204-210.
Lu, J.Y., C. Stevens, V.A. Khan, and M. Kabwe, 1991. The effect of ultraviolet irradiation on shelf-life and ripening of peaches and apples. J. Food Quality. 14: 299-305.
Luders L., and G. McMahon. 2006. The Pitaya or dragon fruit (Hylocereus undatus). Crops, Forestry and Horticulture. Darwin. p.1-4.
Maria A. G., I. Antonio, L.Vito, A. C.Nicholas, N. Franco,V.Sebastiano, and D. V. Di. 2011. Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biol Technol. 61:72–82.
Marquenie D., J. Lammertyn, A.H. Geeraerd, C. Soontjens, J.F. Van-Impe,B.M. Nicolaı, and C.W. Michiels. 2002b. Inactivation of conidia of Botrytis cinerea and Monilinia fructigena using UV-C and heat treatment. Int. J. Food Microbiol. 74:27-35.
Marquenie, D., C.W. Michiels, A.H.Geeraerd,,A. Schenk,C.Soontjens, J.F.VanImpe, and B.M.Nicolaı. 2002a. Using survival analysis to investigate the effect of UV-C and heat treatment on storage rot of strawberry and sweet cherry. Int. J. Food Microbiol. 73 (23):191-200.
Martins, D.M.S., L.E.B.Blum, M.C.Sena, J.B. Dutra, L.F. Freitas, L.F. Lopes, O.K.Yamanishi, and A.C. Dianese. 2010. Effect of hot water treatment on the control of papaya (Carica papaya L.) postharvest diseases. Acta Horticult. 864: 181-185.
Masanto M., S. Kamaruzaman, and A.Yahya. 2009. First report on bacterial soft rot disease on dragon fruit (Hylocereus spp.) caused by Enterobacter cloacae in peninsular Malaysia. International Journal of Agriculture and Biology 11:659–666.
Masratul H. M., P.Y. Hew, Z. Latiffah, Z. Maziah, H. Nagao, and B. Salleh. 2008. Aethiology of a new disease on red-fleshed dragon fruit(Hylocereus polyrhizus) caused by Fusarium proliferatum (Abstract).7th MAPPS International Conference on Plant Protection in theTropics. p.27-29..
Masyahit,M.,K.Sijam, Y.Awang, and M.G.., M.Satar. 2009b. In vitro assay of factors affecting the growth of pathogens associated with diseases on dragon fruit(Hylocereus spp.)in Peninsular Malavsia. Plant Pathology Journal 8(4):144-151.
Mazzanti G., L. Battinelli, C. Daniele, S. Costantini , L. Ciarallib,and M.G. Evandri. 2008. Purity control of some Chinese crude herbal drugs marketed in Italy. Food Chem. Toxicol. 46:3043-3047.
McDonald, R.E., T.G. Mc-Collum, and E.A. Baldwin. 1999. Temperature of water heat treatment influences tomato fruit quality following low-temperature storage. Postharvest Biol. Technol. 16:147-155.
Menniti-Ippolito, F., L. Gargiulo, E. Bologna, E. Forcella, and R. Raschetti. 2002. Use of unconventional medicine in Italy: a nation-wide survey. Eur. J. Clin. Pharmacol. 58:61–64.
Mercier, J., J. Arul, and C. Julien. 1993. Effect of UV-C on phytoalexin accumulation and resistance to Botrytis cinerea in stored carrots. J. Phytopathol. 139(17): 17-25
Mizrahi, Y., A. Nerd, and P. S. Nobel. 1997. Cacti as crops. Horticulture Reviews. 18:291-319.
Mohd.M..S., B. Salleh and L. Zakaria. 2013. Identification and molecular characterizations of N. dimidiatum causing stem canker of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia., J. Phytopathol 161:841-849.
Morton, J. 1987. Strawberry pear. In: Fruits of warm climates. Julia F. Morton, Miami, FL. p.347-348.
Murphy, J. F., M. S. Reddy, C. M. Ryu, J. W. Kloepper, and R. Li. 2003. Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus.Phytopathology 93:1301-1307.
Muto, M., H. Takahashi, and J. W. Huang. 2005. Control of black leaf spot(Alternaria brassicicola)of crucifers by extracts of black nightsade(Solanum nigrum). Plant pathol. Bull. 14:25-34.
Muto, M., V. Mulabagal, H. C. Huang, H. Takahashi, H. S. Tsay, and J. W. Huang. 2006. Toxicity of black nightshade(Solanum nigrum)extacts on Alternaria brassicicola, causal agent of black leaf spot of Chinese cabbage(Brassica pekinensis). J. Phytopath. 154(1):45-50.
Nard, A. and Y. Mizrahi. 1997. Reproductive biology of cactus fruit crops. Hort. Rev. 18:321-346.
Narutaki, S., K. Takatori, H. Nishimura. 2002. Identification of fungi based on the nucleotide sequence homology of their internal transcribed spacer 1 (ITS1) region. PDA.J.Pharm.Sci.Technol. 56:90-98.
Nerd, A., N. Tel-Zur, and Y.Mizrahi. 2002. Fruits of vine and columnar cacti. p.185-197. In: Nobel. P.S. (Ed.). Cacti: Biology and Uses. University of California Press. Berkeley. California.
Nigro, F., A. Ippolito, and G. Lima. 1998. Use of UV-C light to reduce Botrytis storage rot of table grape. Postharvest Biol. Technol. 13: 171-181.
Nik, W., W. Zainun, and S. Meon.,1988. seed-borne infection and development of Colletotrichum capsici in naturally infected chili seed. Pertanika 11(3): 341-344.
Nobel, P.S., and E. Barrera, 2002. High temperatures and Net CO2 uptake, growth, and stem damage for the hemiepiphytic cactus Hylocereus undatus. Biotropica. 34: 225-231.
O´Donnel, K. L. 1992. Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete Fusarium sambucinum(Gibberlla pulicaris). Curr. Genet. 22:213-220.
Padin C., G. Fernandez-Zeppenfeldt, F.Yegres, Y.Richard. 2005. N. Scytalidium dimidiatum: an opportunistic fungus for both man and Mangifera indica trees in Venezuela [in Spanish]. Rev Iberoam Micol. 22:172-3.
Palmateer,A.,J.,R.C.Ploetz, E.Santen, and J. C. Correll. 2007. First occurrence of anthracnose caused by Colletotrichum gloesperoides on pitaya. Plant Disease 91(5):631.
Pandey, A., B. R. Maity, and K. R. Samaddar. 1996. Antifungal activity of plant latex towards certain fungal organisms. J. Mycopathol. Res. 34:35-40.
Pezet, R., and V. Pont. 1992. Differing biochemical and histological studies of two grape cultivars in the view of their respective susceptibility and resistance to Botrytis cinerea. In: Verhoeff, K., N.E. Malathrakis, B. Williamson. (Eds.). Recent Advances in Botrytis Research. Proc. Tenth Int. Botrytis Symp. Pudoc Scientific Publisher. Wageningen. The Netherlands. p.93-98.
Phillips, D.J., and R. Barkai-Golan. 1991. Postharvest heat treatment of fresh fruits and vegetables for decay control. Plant Dis. 75:1085-1089.
Polizzi , G., D. Aiello, I. Castello and A. Vitale. 2011. Occurrence, Molecular Characterisation, and Pathogenicity of N. dimidiatum on Citrus in Italy. Acta Hort. 892:237-243.
Polizzi, G., D. Aiello,A.Vitale,F. Giuffrida, J. Z. Groenewald, and P. W. Crous. 2009. First report of shoot blight, canker, and gummosis caused by N. dimidiatum on citrus in Italy. Plant Dis. 93:1215.
Pruvost,O., and J. Luisetti. 1991. Attempts to develop a biological control of bacterial black spot of mangoes. Acta Hort. 291:324-337.
Punithalingam, E. and J.M. Waterston. 1970. Hendersonula toruloidea. C.M.I. Descript.Pathog. Fungi Bact. 274:1-2.
Rajkowski, and T. K. 2007. Inhibition of Shigella sonnei by ultraviolet energy on agar. liquid media and radish sprout S1. Journal of Food Safety. 27(2):233-240.
Ranganna, B., A.C. Kushalappa, and G.S.V. Raghavan. 1997. Ultravioletirradiance to control dry rot and soft rot of potato instorage.Can. J. Plant Pathol. 19:30-35.
Russell, E.C., and P. Felker. 1987. The prickly-pears (Opuntia spp. Cactaceae): a source of human and animal food in semiarid regions. Econ. Bot. 41:433-445.
Sanzani, S.M., F. Nigro, M. Mari, and A. Ippolito. 2009. Innovation in the management of postharvest diseases.Arab. J. Plant Prot. 27:240-244.
Schena, L., F. Nigro, and A.Ippolito. 2008. Natural antimicrobials to improve storage andshelf-life of fresh fruit vegetables and cut flowers. In: Ray, R.C., O.P. Ward, (Eds.),Microbial Biotechnology in Horticulture, vol. 2. Science Publisher, Enfield, NH,USA, p.259-303.
Selvaraj, Y. and D. K. Pal. 1982. Changes in the chemical composition of papaya(Thailand variety)during growth and development. J. Food Sci. Technol. 19:257-259.
Sharma, R.R., D.Singh, and R. Singh. 2009. Biological control of postharvest diseasesof fruits and vegetables by microbial antagonists: a review. Biol. Control 50:205-221.
Shenoy, B. D., R. Jeewon, W. H. Lam, D. J. Bhat, P. P.Than, P. W. Taylor, and K. D. Hyde. 2007. Morpho-molecular characterisation and epitypification of Colletotrichum capsici (Glomerellaceae, Sordariomycetes), the causative agent of anthracnose in chilli. Fungal Diversity 27: 197-211.
Sigler, L., R.C. Summerbell, L. Poole, M. Wieden, D.A. Sutton, and M.G. Rinaldi. 1997. Invasive Nattrassiam angiferaein fections: literature review. and therapeutic andtaxonomic appraisal. J. ClinMicrobio l35:433-40.
Smilanick, J.L., M.F. Mansour, F.M. Gabler, and D. Sorenson. 2008. Control of citrus postharvest green mold and sour rot by potassium sorbate combined with heat and fungicides. Postharvest Biol. Technol. 47:226-238.
Smith, G.S. and O.N.Carvil, 1977. Field screening of Commercial and experimental soybean cultivars for their reaction to Macrophomina phaseolina. Plant Disease (81): 363-368.
Smith, H., G.H.J. Kemp, and M.J. Wingfield. 1994. Canker and die-back of Eucalyptus in South Africa caused by Botryosphaeria dothidea. Plant Pathol. 94: 1031-1034.
Smith, H., P.W.Crous, M.J. Wingfield, T.A. Coutinho, and B.D.Wingfield. 2001. Botryosphaeria eucalyptorum sp. nov., a new species in the B.dothidea complex on Eucalyptus in South Africa. Mycologia 93: 277-285.
Sreenivasaprasad, S., A. E. Brown, and P. R. Mills. 1992. DNA sequence variation and interrelationships among Colletotrichum species causing strawberry anthracnose. Physiol. Mol. Plant Pathol. 41:265–281.
Stevens, C., C.L.Wilson, J.Y.Lu, V.A. Khan, E. Chalutz, S. Droby, M.K. Kabwe, Z. Haung, O. Adeyeye, L.P. Pusey, M.E. Wisniewski, and M. West. 1996. Plant hormesis induced by ultraviolet light-C for controlling postharvest diseases of tree fruits. Crop Prot. 15:129-134.
Stevens, C., J. Liu, V. A. Khan, J. Y. Lu, M. K.Kabwe, and C. L.Wilson. 2004. The effect of low-dose ultraviolet light-C treatment on polygalacturonase activity, delay ripening and Rhizopus soft rot development of tomatoes. Crop Protection. 23: 551-554.
Stevens, C., V. A. Khan, J. Y. Lu, C. L. Wilson, P. L. Pusey, and E. C. K. Igwegbe. 1997. Integration of Ultraviolet (UV-C) Light with Yeast Treatment for Control of Post-harvest Storage Rots of Fruits and Vegetable. Biological Control. 10(2): 98-103.
Stevens, C., V.A. Khan, L.Y.Lu, C.L.Wilson, P.L. Pusey, M.K.Kabwe, E.C.K. Igwegbe, E. Chalutz, and S.Droby. 1998. The germicidaland hormetic effect of UV-C light on reducing brown rot andyeast microflora of peaches. Crop Prot. 17:75-84.
Takahashi, L.M., D.D. Rosa, M. A. Basseto, H. G. Souza, and E. L. Furtado. 2008. First report of Colletotrichum gloesperoideson Hylocereus megalanthus in Brazil. Australasian Plant Dis. 13:27-34.
Tasiwal, V. 2008. Studies of anthracnose-a postharvest disease of papaya. Thesis. College of Agriculture. University of Agricultural Science. Dharwad. Kamataka. India. Ventura, A.J., H. Costa, and T.J. Silva. 2004. Papaya diseases and integrated control. In: Naqvi, S.A.M.H. (Ed.), 2004. Diseases of Fruits and Vegetables. vol. II. Kluwer Academic Publisher. Netherlands. p.201-268.
Thimon L., F. Peypoux, J.Wallach, and G. Michel. 1995. Effect of the lipopetide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cell. FEMS Microbiol. Lett. 128:101-106.
Tran, M.T.T., and M. Farid. 2004. Ultraviolet treatment of orange juice. Innovative Food Science and Emerging Technologies. 5: 495-502.
Vigueras G, A. L., and L. Potilo. 2001. Uses of Opuntia spcies and the potential impact of cactoblastis cactorum (Lepidoptera : pyralidae) in Mexico. Florida Entomologist 84(4) : 494-498.
Volencia-Botin, A. J., J. S. Sandoval-Islas, E. Cardenas-Soriano, T. J. Michailidas, and G. Rendon-Sanchez. 2003. Botryosphaeria dothidea causing stem spots on Hylocereus undatus in Mexico. News Disease Reports 7:25.
Wall, M. M. 2006. Ascorbic acid, vitamin A, and mineral composition of babana(Musa sp.)and papaya(Carica papaya)cultivars grown in Hawaii. J. Food Compos. Anal. 19:434-445.
Wet, J.D.,B.Slippers, and O.Preisig 2008. Phylogeny of the Botryosphaeriaceae reveals patterns of host association Molecular Phylogenetics and Evolution 46:116–126
Wheaton, A.G., H.M. Blanck, Z. Gizlice, and M. Reves. 2005. Medicinal herb use in a population-based survey of adults: prevalence and frequency of use, reasons for use, and use among children. Ann. Epidemiol. 15:678-685.
White, T. J., Bruns, T., Lee, S., and Taylov, J. 1990. Amphi fication and clivect sequening of fungal vibsomal RNA genes for phylugendoc. Page 315-322 in PCR protocols : guide to mathods and Applicattion. M. A.Innis, D. H. Gelfard, J. J. Sninsky, and T. J. unite (eds).Acadence Press: San Fiego, USA.
Willinger, B., G. Kopetzky, F.Harm, P.Apfalter, A.Makristathis, and A. Berer. 2004. Disseminated infection with Nattrassia mangiferae in an immunosuppressed patient. J Clin Microbiol. 42:478-80.
Wilson, C.L., A. E. Ghaouth, E. Chalutz, S. Droby, C.Stevens, J.Y. Lu, V. Khan, and J.Arul. 1994. Potential of induced resistance to control postharvest diseases of fruits and vegetables. Plant Dis. 78:837-844.
Wright, E. R., M. C. Rivera, and A. Ghirlanda. 2007. Basal Rot of Hylocereus undatus Caused by Fusarium oxysporum in Buenos Aires, Argentina. Plant Disease 91(3):323.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文
 
系統版面圖檔 系統版面圖檔