跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 10:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李捷閔
研究生(外文):Jie-Ming Li
論文名稱:氮肥與芽孢桿菌對百慕達草草坪生長之影響
論文名稱(外文):Effects of Nitrogen Fertilizers and Bacillus spp. on the Growth of Bermuda Turf.
指導教授:林深林林深林引用關係
指導教授(外文):Shen-Lin Lin
口試委員:謝清祥陳仁炫
口試委員(外文):Ching-Hsiang HsiehJen-Hshuan Chen
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:91
中文關鍵詞:芽孢桿菌氮肥型態百慕達草
外文關鍵詞:Bacillusnitrogen typebermudagrass
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討施用不同氮肥和芽孢桿菌屬後對百慕達草生長之影響,芽孢桿菌屬包含蕈狀芽孢桿菌(Bacillus. mycoides, BM)、枯草芽孢桿菌(B. subtilis, BS)以及液化澱粉芽孢桿菌(B. amyloliquefaciens, BA),氮肥包含水溶性速效肥料(硝酸鈣、硫酸銨與尿素),以及緩效型的有機質肥料,並比較不同的接種方式,直接澆灌菌液以及配製成微生物混拌介質(Bio-Mix)施用,調查百慕達草生長量並分析植體營養元素以了解芽孢桿菌屬對氮肥吸收的效益。
‘亞利桑納’百慕達草接種菌液並施肥後,BM可以促進植體氮、磷含量提高,降低鐵、銅含量,BS可以提高乾鮮比、植體氮及鐵含量,減少鎂、錳及銅含量,BA提高鮮重、含水率、綠覆蓋率、植體磷、鋅含量,降低鉀、鎂、鈣、鐵、錳及銅含量。硝酸鈣可以提高含水率、綠覆蓋率、植體氮、鈣及鐵含量,硫酸銨可以促進乾重、乾鮮比、綠覆蓋率、植體氮、錳及鋅含量提高,尿素可以增加植體磷、鉀及銅含量。
‘亞利桑納’百慕達草接種Bio-Mix並施肥後,BM提高乾鮮比、植體氮、磷、鎂及錳含量,降低含水率及植體鐵含量,BS提高綠覆蓋率和植體鐵、錳含量,降低植體鉀、鈣含量,BA提高植體磷、鐵及錳含量,降低植體銅含量。硝酸鈣促進乾鮮比、植體氮、鈣含量提高,降低含水率和植體鐵、錳含量,硫酸銨提高鮮重、乾重及植體錳含量,降低植體鉀、鈣含量,尿素提高綠覆蓋率及植體鉀、鐵含量,降低鈣、錳含量。
普通百慕達草接種菌液並施肥後,BM促進乾重、含水率、植體鎂、鈣、銅含量提高,降低乾鮮比及植體鉀、鐵含量,BS提高植體鉀、鎂、鈣及錳含量,降低乾重、植體磷、鐵、鋅及銅含量。硝酸鈣促進鮮重、植體鉀、鎂、鈣及銅含量提高,硫酸銨減少鉀、鎂、鈣及銅含量,尿素提高植體鎂、鈣含量。
‘Dwarf’百慕達草接種菌液並施肥後,BM可以提高鮮重、乾重、土壤pH、植體磷、鉀及鋅含量,降低綠覆蓋率、植體氮、鎂、鈣、鐵、錳、銅及葉片澱粉含量。尿素處理後葉綠素含量增加,植體微量元素減少,施用有機質肥料後土壤EC、植體營養元素及葉片游離胺基酸含量提高,降低葉片全可溶性糖及澱粉含量。


The objective of this study was to evaluate the effects of nitrogen fertilizers and Bacillus spp. applied as PGPR(plant growth-promoting rhizobacteria) on the growth of bermudagrass. Bacillus spp. included B. mycoides (BM), B. subtilis (BS), and B. amyloliquefaciens (BA). Nitrogen fertilizers included three water-soluble fertilizers (calcium nitrate, ammonium sulfate, and urea) and one slow-release organic fertilizer were applied. In order to compare the differences between inoculation methods, cell suspensions drench and Bio-Mix with cell suspensions were applied on bermudagrass. Plant growth and tissue analysis were investigated to find out correlation between Bacillus spp. and nitrogen absorption in bermudagrass.
After PGPR inoculation by cell suspensions drench, BM promoted N and P contents in ‘Arizona’ bermudagrass, but reduced Fe and Cu contents in plants. BS increased dry weight/fresh weight ratio, N, and Fe contents, but decreased Mg, Mn, and Cu contents in plants. BA increased fresh weight, water content, green coverage rate, P, and Zn contents, but decreased K, Mg, Ca, Fe, Mn, and Cu contents in plants. Ca(NO3)2 application promoted water content, green coverage rate, N, Ca, and Fe contents in plants. (NH4)2SO4 treatment increased dry weight, dry weight/fresh weight ratio, green coverage rate, N, Mn, and Zn contents in plants. Urea application increase P, K, and Cu contents in plants.
After PGPR inoculation by Bio-Mix, BM increased dry weight/fresh weight ratio, N, P, Mg, and Mn contens in ‘Arizona’ bermudagrass, but decreased water content and Fe content on plants. BS increased green coverage rate, Fe, and Mn contents but decreased K and Ca contents in plants. BA promoted P, Fe, and Mn contents, but reduced Cu content in plants. Ca(NO3)2 application promoted dry weight/fresh weight ratio, N, and Ca contents, but decreased water content, Fe, and Mn contents in plants. (NH4)2SO4 treatment increased fresh weight, dry weight, and Mn content, but reduced K and Ca contents in plants. Urea application increased green coverage rate, K, and Fe contents, but decreased Ca and Mn contents in plants.
BM inoculation promoted dry weight, water content, Mg, Ca, and Cu contents in common bermudagrass, but reduced dry weight/fresh weight ratio, K, and Fe contents in plants. BS inoculation increased K, Mg, Ca, and Mn contents, but decreased dry weight, P, Fe, Zn, and Cu contents in plants. Ca(NO3)2 application promoted fresh weight, K, Mg, Ca, and Cu contents in plants. (NH4)2SO4 treatment decreased K, Mg, Ca, and Cu contents in plants. Urea application increased Mg and Ca contents in plants.
BM inoculation also promoted fresh weight, dry weight, soil pH, P, K, and Zn contents in ‘Dwarf’ bermudagrass, but reduced green coverage rate, N, Mg, Ca, Fe, Mn, Cu contents in plants, and starch content in leaf. Urea application increased chlorophyll content in leaf, but decreased micro element contents in plants. Organic fertilizer application increased soil EC, all nutrient element contents in plants, and free amino acid content in leaf, but reduced total soluble sugar and starch contents in leaf.

摘要(Abstract) i
Abstract ii
表目錄 vii
圖目錄 ix
前言(Introduction) 1
前人研究(Literature review) 2
一、 草坪與草坪草 2
二、 草坪的發展 2
三、 百慕達草的分類地位與生長習性 2
四、 PGPR的功效 4
五、 芽孢桿菌屬介紹 5
六、 芽孢桿菌屬對植物生長促進的效果 5
七、 植物對不同氮源的吸收與利用 6
八、 草坪管理時氮肥的使用 7
材料與方法(Materials and methods) 9
試驗一、芽孢桿菌屬菌液及不同型態氮肥對‘亞利桑納’百慕達草生長之影響 9
一、 試驗材料 9
二、 試驗方法 9
三、 統計分析 10
試驗二、芽孢桿菌屬混拌介質及不同型態氮肥對‘亞利桑納’百慕達草生長之影響 11
一、 試驗材料 11
二、 試驗方法 11
三、 統計分析 11
試驗三、芽孢桿菌屬及不同型態氮肥對普通百慕達草生長之影響 12
一、 試驗材料 12
二、 試驗方法 12
三、 統計分析 12
試驗四、蕈狀芽孢桿菌及不同種類氮肥對‘TifDwarf’百慕達草生長之影響 13
一、 試驗材料 13
二、 試驗方法 13
三、 統計分析 15
結果(Results) 17
試驗一、芽孢桿菌屬菌液及不同型態氮肥對‘亞利桑納’百慕達草生長之影響 17
一、 PGPR及氮肥對‘亞利桑納’百慕達草生長量之影響 17
二、 PGPR及氮肥對‘亞利桑納’百慕達草綠覆蓋率之影響 17
三、 PGPR及氮肥對‘亞利桑納’百慕達草草屑元素含量之影響 17
試驗二、芽孢桿菌屬混拌介質及不同型態氮肥對‘亞利桑納’百慕達草生長之影響 19
一、 PGPR及氮肥對‘亞利桑納’百慕達草生長量之影響 19
二、 PGPR及氮肥對‘亞利桑納’百慕達草綠覆蓋率之影響 19
三、 PGPR及氮肥對‘亞利桑納’百慕達草草屑元素含量之影響 19
試驗三、芽孢桿菌屬及不同型態氮肥對普通百慕達草生長之影響 20
一、 PGPR及氮肥對普通百慕達草生長量之影響 20
二、 PGPR及氮肥對普通百慕達草綠覆蓋率之影響 20
三、 PGPR及氮肥對普通百慕達草草屑元素含量之影響 20
試驗四、蕈狀芽孢桿菌及不同種類氮肥對‘TifDwarf’百慕達草生長之影響 22
一、 PGPR及氮肥對‘TifDwarf’百慕達草生長量之影響 22
二、 PGPR及氮肥對‘TifDwarf’百慕達草常態化差異性植生指數及綠覆蓋率之影響. 22
三、 PGPR及氮肥對‘TifDwarf’百慕達草植體接種率及土壤菌含量變化之影響……. 22
四、 PGPR及氮肥對‘TifDwarf’百慕達草土壤電導度與酸鹼值之影響 22
五、 PGPR及氮肥對‘TifDwarf’百慕達草植體元素含量之影響 23
六、 PGPR及氮肥對‘TifDwarf’百慕達草葉片分析之影響 23
討論(Discussion) 80
一、 芽孢桿菌屬PGPR對植物生長的影響 80
二、 PGPR接種方法對植物的影響 82
三、 氮肥型態對植物生長的影響 83
結論(Conclusion) 84
參考文獻(References) 85


王裕文. 2000. 草坪草之生態、分佈與利用. 中華民國雜草學會會刊 21:1-16.
王銀波、吳正宗. 1992. 水耕液中的氮素問題. 養液栽培技術講習會專刊 4:15-27.
朱鈞. 1984. 作物學通論-作物與環境. 臺灣商務印書館. 台北. 台灣.
李玫、章金鴻、廖寶文. 2009. 植物促生菌應用研究進展. 廣州環境科學 24:1-5.
沈峻榮. 2014. 鈣肥與芽孢桿菌處理對彩色海芋生長之影響. 國立國立中興大學園藝學系碩士論文. 台中.
林漢釗. 2006. 益生性枯草桿菌Bacillus subtilis WG6-14在水稻栽培與病害管理上之應用性. 國立國立中興大學植物病理學系碩士論文. 台中.
林漢釗、黃文的、楊尚書、曾德賜. 2008. 枯草桿菌Bacillus subtilis WG6-14對水稻秧苗之生長促進及對Sclerotium rolfsii所造成水稻秧苗立枯病之防治效果. 植物病理學會刊 17:53-64.
高君君、康貽軍、程潔、殷士學. 2012. PGPR對水稻塑盤旱育秧苗素質的影響. 土壤 44:126-132.
高祖明、李式軍、索長江、胡躍賓. 1987. 不同光照下硝酸態氮與鉬對葉菜類硝酸鹽積累的影響. 園藝學報 14:192-196.
陳志一. 1993. 草坪栽培管理. 農業出版社. 北京. 中國.
陳宏銘. 2006. 遙感探測在百慕達草草坪管理之應用. 國立臺灣大學農藝學系碩士論文. 台北.
陳和緯. 2008. Bacillus mycoides、水楊酸類似物及harpin蛋白對萵苣幼苗生長及抗病反應的效果. 國立國立中興大學植物病理學系碩士論文. 台中.
陳和緯、林盈宏、黃振文、張碧芳. 2010. Bacillus mycoides CHT2404對萵苣幼苗生長之影響. 植物病理學會刊 19:157-165.
陳俊位. 2014. 拮抗性枯草桿菌在甘藍黑腐病防治之應用. 國立國立中興大學植物病理學系博士論文. 台中.
陳俊位、曾德賜. 2013. 生物製劑枯草桿菌(Bacillus amyloliquefaciens WG6-14)對促進菜豆生長之影響. 臺中區農業改良場研究彙報 120:11-19.
陳柏璁. 2014. 添加芽孢桿菌之微生物介質對百合及其他園藝作物生長的影響. 國立國立中興大學園藝學系碩士論文. 台中.
陳敬文. 2013. 桿菌添加劑對芭菲爾鞋蘭生長之影響. 國立國立中興大學園藝學系碩士論文. 台中.
陳榮輝、陳正男、張粲如、朱富偉. 1993. 夏季結球白菜及甘藍生理障礙之研究. 蔬菜作物試驗研究彙報 7:113-118.
孫吉雄. 1999. 草坪學. 中國農業出版社. 北京. 中國.
康貽軍、沈敏、王歡莉、趙慶新. 2012. 兩株PGPR對豇豆苗期生長及土著細菌群落的影響. 農業環境科學學報. 31:1537-1543.
康貽軍、沈敏、王歡莉、趙慶新. 殷士學. 2012. 兩株植物根際促生菌對番茄青枯病的生物防治效果評價. 中國生物防治學報 228:255-261.
張自和、柴琦. 2009. 草坪學通論. 科學出版社. 北京. 中國.
張建生、呂文通、詹朝清. 1998. 不同型態氮肥對結球白菜類生育之影響.
張新民、胡林、邊秀舉、孫新章. 2002. 草坪專用肥的應用狀況與發展趨勢. 草原與草坪 1:3-6.
張福鎖、曹一平. 1992. 根際動態過程與植物營養. 土壤學報 29:239-250.
黃文達、張新軒. 2000. 百慕達草之特性與利用. 中華民國雜草學會會刊 21:31-40.
黃威特、曾景漢、許書華、牟家緯、黃筑甯、李昆達、盧虎生、劉啟德. 2013. 自台灣本土分離篩選的固氮菌與光合菌對小白菜生長促進效果. 植物病理學會刊 22:31-44.
黃靜淑. 2008. Bacillus mycodes防治甘藍幼苗病害之效果評估. 國立國立中興大學植物病理學系碩士論文. 台中.
彭燕. 1997. 氮肥對草坪的影響(綜述). 四川農業大學學報 15:431-434.
趙林萍、吳禮樹、黃鴻翔、周勇、榮向農. 2006. 施肥對草坪質量及環境的影響. 中國土壤與肥料 4:6-9.
鄧雅靜. 2006. 篩選促進番茄生長之根棲細菌及其對番茄生長、產量及青枯病發生之影響. 國立國立中興大學植物病理學系博士論文. 台中.
薛成、張金志、童良軍、孔祥森. 2007. 水稻施用生長促進菌效果初探. 黑龍江八一農墾大學學報 19:37-40.
謝奉家、李美珍、高穗生. 2003. 枯草桿菌菌體及其代謝產物對病原真菌之抑菌效果評估. 植物保護學會會刊 45:155-162.
Adesemoye, A.O. and J.W. Kloepper. 2009. Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 85:1-12.
Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1-15.
Aslam, M., R.L. Travis, and D.W. Rains. 2001. Different effect of amino acids on nitrate uptake and reduction systems in barley roots. Plant Sci. 160:219-228.
Barker, A.V. and H.A. Mills. 1980. Ammonium and nitrate nutrition of horticultural crops. Hort. Rev. 2:395-423.
Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. J. Biotechnol. Adv. 16:729-770.
Beard, J.B. 1973. Turfgrass: Science and culture. Prentice Hall, Inc. Englewood Cliffs, N.J.
Bennett, A. J., C. Leifert, and J. M. Whipps. 2003. Survival of the biocontrol agents Coniothyrium minitans and Bacillus subtilis MBI 600 introduced into pasteurized, sterilized and non-sterile soil. Soil Biol. Biochem. 35:1565-1573.
Bloemberg, G.V. and B.J. Lugtenberg. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4:343-350.
Bloom, A.J., R.M. Cladwell, J. Finazzo, R.L. Warner, and J. Weissbart. 1989. Oxygen and carbon dioxide fluxes from barley shoots dependent on nitrate assimilation. Plant Physiol. 91:352-356.
Bowman, D.C. and J.L. Paul. 1989. The foliar absorption of urea-N by Kentucky bluegrass turf. J. Plant Nutr. 12:659-673.
Bowman, D.C., and J.L. Paul. 1990. The foliar absorption of urea-N by tall fescue and creeping bentgrass turf. J. Plant Nutr. 13:1095-1113.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
Brimecombe, M. J., F. A. D. Leij, and J. M. Lynch. 2001. The effect of root exudates on rhizosphere microbial populations, p. 95-140. In: R. Pinton, Z. Varanini, and P. Nannipieri (eds.). The Rhizosphere. Marcel Dekker, New York.
Buensanteai, N., G.Y. Yuen, and S. Prathangwong. 2008. The Biocontrol bacterium Bacillus amyloliquefaciens KPS46 produces auxin, surfactin and extracellular proteins for enhanced growth of soybean plant. Thai J. Agr. Sci. 41:101-116.
Ciccillo, F., A. Fiore, A. Bevivino, C. Dalmastri, S. Tabacchioni, L. Chiarni. 2002. Effects of two different application methods of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacterial diversity. Environ. Microbiol. 4:238-245.
Chen, Y. P., P. D. Rekha, A. B. Arun, F. T. Shen, W. A. Lai, and C. C. Young. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34:33–41.
Crawford, N.M. 1995. Nitrate: nutrient and signal for plant growth. Plant Cell 7:859-868.
Crawford, N.M. and A.D.M. Glass. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3:389-395.
Czaban, J., A. Ksiêzniak, and A. Perzyñski. 2004. An attempt to protect winter wheat against Fusarium culmorum by the use of rhizobacteria Pseudomonas fluorescens and Bacillus mycoides. Pol. J. Microbiol. 53:175-182.
Driks, A. 2004. The Bacillus spore coat. Phytopathology 94:1249-1251.
Eggens, J.L., C.M. Wright, and K. Carey. 1989. Nitrate and ammonium nitrogen effects on growth of creeping bentgrass and annual bluegrass. Hortscience 24:952-954.
El-Komy, H. M. A. 2005. Coimmobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphorus and nitrogen nutrition of wheat Plants. Food technol. biotechnol. 43:19–27.
Elsas, J.D.V. and C.E. Heijnen. 1990. Methods for the introduction of bacteria into soil: A review. Biol. Fert. Soil 10:127-133.
Erturk, Y., S. Ercisli, A. Haznedar, and R. Cakmakci. 2010. Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cutting. Biol. Res. 43:91-98.
Franco, C. D., E. Beccari, T. Santini, G. Pisaneschi, and G. Tecce. 2002. Colony shapes as a genetic trait in the pattern-forming Bacillus mycoides. BMC Microbiol. 2:33-48.
Freitas, J. R., M. R. Banerjee, and J. J. Germida. 1997. Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fert. Soil 24:358-364.
Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. Canadian J. Microbiol. 41:109-117.
Glick, B.R . 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1-15.
Glinsk, D.S. 1990. Different nitrogen effect on the root of creeping bentgrass. Hortscience 25:932-933.
Hassen, A. I. and N. Labuschagne. 2010. Root colonization and growth enhancement in wheat and tomato by rhizobacteria isolated from the rhizoplane of grasses. World J. Microbiol Biotechnol. 26:1837-1846.
Hawkins, H.J., G. Wolf., and W.D. Stock. 2005. Cluster Roots of Leucadendron laureolum (Proteaceae) and Lupinus albus (Fabaceae) Take Up Glycine Intact: An Adaptive Strategy to Low Mineral Nitrogen in Soils? Annu. Bot. 96:1275-1282.
Haynes, R.J. and K.M. Goh. 1978. Ammonium and nitrate nutrition of plants. Biol. Rev. 53:465-510.
Idriss, E.E., H. Bochow, H. Ross, and R. Borriss. 2004. Use of Bacillus subtilis as biocontrol agent. VI. Phytohormonelike action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. Dis. Protection 111:583-597.
Idriss, E.E., O. Makarewicz, A. Farouk, K. Rosner, R. Greiner, H. Bochow, T. Richter, and R. Borriss. 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097-2109.
Ikeda, M. and Y. Yamada. 1981. Dark CO2 fixation in leaves of tomato plants grown with ammonium and nitrate as nitrogen source. Plant Soil 60:213-222.
Joo, G.J., Y.M. Kim, J.T. Kim, I.K. Rhee, J.H. Kim, and I.J. Lee. 2005. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J. Microbiol. 43:510-515.
Katz, E. and A.L. Demain. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41:449-474.
Kaye, J.P. and S.C. Hart. 1997. Competition for nitrogen between plants and soil microorganisms. Trends Ecol. Evol. 12:139-143.
Karlidag, H., A. Esitken, M. Turan, and F. Sahin. 2007. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Scientia Hort. 114:16–20.
Karlidag, H., E. Yildirim, M. Turan, M. Pehluvan, and F. Donmez. 2013. Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria ×ananassa). HortScience 48:563-567.
Kloepper, J.W. and M.N. Schroth. 1978. Plant growth promoting rhizobacteria on radishes, p. 879-882. In: Angers (ed.). Proceedings of the fourth international conference on plant pathogenic bacteria. Gibert-Clarey, Tours.
Krebs, B., B. Höding, S. Kübart, M.A. Workie, H. Junge, G. Schmiedeknecht, R. Grosch, H. Bochow, and M. Hevesi. 1998. Use of Bacillus subtilis as biocontrol agent. I. Activities and characterization of Bacillus subtilis strains. J. Plant Dis. Protection 105:181-197.
Kumar, H., V.K. Bajpai, R.C. Dubey, D.K. Maheshwari, and S.C. Kang. 2010. Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Protection 29:591-598.
Lugtenberg, B. and F. Kamilova. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63:541-556.
Magalhase, J.R. and M.S. Fernandes. 1995. Nitrate versus ammonium nutrition and plant growth, p.131-144. In: H.S. Srivastava and R.P. Singh(eds.). Nitrogen nutrition in higher plants. Associated Publishing Company, New Delhi.
Magalhaes, J.R. and G.E. Wilcox. 1983. Tomato growth and mineral composition as influenced by nitrogen form and light intensity. J. Plant Nutr. 6:847-882.
Mcccrimmon, J.N. and K. Karnok. 1992. Nitrogen form and the seasonal root and shoot response of creeping bentgrass. Commun. Soil Sci. Plant Anal. 23:1071-1088.
Mengel, K. and D. J. Pilbeam. 1992. Nitrogen Metabolism of Plants. Oxford Science Publications, New York.
Mengel, K., P. Robin, and L. Salsac. 1983. Nitrate reductase activity in shoots and roots of maize seedlings as affected by the form of nitrogen nutrition and pH of the nutrition solution. Plant Physiol. 71:618-622.
Miller, A.J. and M.D. Cramer. 2004. Root nitrogen acquisition and assimilation. Plant Soil 274:1-36.
Miller R.H. and E.L. Schmidt. 1965. Uptake and assimilation of amino acids supplied to the sterile soil: rootenvironment of the bean plant (Phaseolus vulgaris). Soil Sci. 100:323-330.
Moszer, I, L. M. Jones, S. Moreira, C. Fabry, and A. Danchin. 2002. SubtiList: the reference database for the Bacillus subtilis genome. Nucl. Acid. Res. 30:62-65.
Msadek, T. 1999. When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis. Trends Microbiol. 7:201-207.
Munster, J.E. 2008. Nonpoint sources of nitrate and perchlorate in urban land use to groundwater. PhD. Diss. Stony Brook University, Stony Brook, NY.
Nardi, S., F. Morari, A. Berti, M. Tosoni, and L. Giardini. 2004. Soil organic matter properties after 40 years of different use of organic and mineral fertilisers. Europ. J. Agron. 21:357-367.
Osburn, R.M., J.L. Milner, E.S. Oplinger, R.S. Smith, and J. Handelsman. 1995. Effect of Bacillus cereus UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis. 79:551-556.
Philips, D. A., T. C. Fox, M. D. King, T. V. Bhuvaneswari, and L. R. Teuber. 2004. Microbial products trigger amino acid exudation from plant roots. Plant Physiol. 136:2887-2894.
Piggot, P.J. and D.W. Hilbert. 2004. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7:579-586.
Podile, A.R. and K.G. Kishore. 2007. Plant growth-promoting rhizobacteria, p. 195-230. In: S.S. Gnanamanickam (ed.). Plant-associated bacteria. Springer, Netherlands.
Priest, F.G., M. Goodfellow, L. A. Shute, and R.C.W. Berkeley. 1987. Bacillus amyloliquefaciens sp. nov., nom. rev. Int. J. Syst. Bacteriol. 37: 69-71.
Pye, V.I. and R. Patrick. 1983. Ground water contamination in the United States. Science. 221:713-718.
Rogers, C.A. 2003. You’ve come a long way, Bermuda. Golf Course Mgt. 71:91-95.
Rosen, H. 1957. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67:10-15.
Ryu, C.M., H.H. Chia, D.L. Robert, and J.W. Kloepper. 2005. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 268:285-292.
Sartain, J.B. 2009. Evaluation and Comparison of Slow-Release Nitrogen (N) Sources on Tifway Bermudagrass. University of Florida.
Schallmey, M., A. Singh, and O.P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50:1-17.
Song, X., M. Liu, D. Wu, B. S. Griffiths, J. Jiao, H. Li, and F. Hu. 2015. Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Appl. Soil Ecol. 89:25-34.
Trivedi, P. and A. Pandey. 2008. Plant growth promotion abilities and formulation of Bacillus megaterium strain B388 (MTCC6521) isolated from a temperate Himalayan location. Indian J. Microbiol. 48:342–347.
Turner, J.T. and P.A. Backman. 1991. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 75:347-353.
Velineni, S. and G. P. Brahmaprakash. 2011. Survival and Phosphate solubilizing ability of Bacillus megaterium in liquid inoculants under high temperature and desiccation stress. J. Agr. Sci. Tech. 13:795-802.
Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255:571-586.
Weir, B.L., K.N. Paulson, and O.A. Lorenz. 1972. The effect of ammoniacal nitrogen on lettuce (Lactuca sativa) and radish (Raphanus sativus) plants. Soil Sci. Soc. Amer. 36:462-465.
Whipps, J.M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Expt. Bot. 52:487-511.
Wilcox, G.E., J.R. Magalhaes, and F.L.I.M. Silva. 1985. Ammonium and nitrate concentration as factors in tomato growth and nutrient uptake. J. Plant Nutr. 8:989-998.
Wittwer, S.H., M.J. Bukovac, and H.B. Tukey. 1963. Advances in foliar feeding of plant nutrients. In: M.H. McVickar (ed). Fertilizer technology and use. SSSA, Madison, WI.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top