(3.235.191.87) 您好!臺灣時間:2021/05/13 13:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳明珊
研究生(外文):Ming-Shan Wu
論文名稱:蝴蝶蘭瓶苗分級對出瓶小苗生長與礦物營養含量變化之影響
論文名稱(外文):Effects of plantlet grading in vitro on subsequent growth ex vitro and changes of mineral nutrients in Phalaenopsis cultivars
指導教授:張正張正引用關係
指導教授(外文):Chen Chang
口試委員:林慧玲沈榮壽
口試委員(外文):Huey-Ling LinRong-Show Shen
口試日期:2016-06-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:76
中文關鍵詞:合格率株幅瓶苗品質生長調查營養分析
外文關鍵詞:acceptabilityshoot spanqualitygrowth indexnutritional analysis
相關次數:
  • 被引用被引用:2
  • 點閱點閱:205
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
蝴蝶蘭瓶苗植株大小與品質標準在業界並沒有統一的規格,為調查不同植株分級大小及植體內礦物營養成分對後續出瓶生長的影響。本研究蒐集九個不同花形花色的蝴蝶蘭市面流通品種包括大輪花品種Phal. Sogo Yukidian ‘V3’、 Phal. Sogo Yoshida,中輪花品種Phal. Sogo Manta、Dtps. I-Hsin Ice Coke、Phal. OX Golden Star與小輪花品種Phal. Sogo Jessica、Phal. Sogo Lotte、Phal. Brother pico Bahama及Phal. Sogo Pure蝴蝶蘭的之組織培養瓶苗,分別進行生長指數調查與植體營養成分分析,並將蝴蝶蘭合格瓶苗進行分級種植,並發育到中苗,調查品質指標之結果驗證,結果顯示不同花型蝴蝶蘭品種合格出瓶小苗分級經5個月栽培,分級間對中苗合格率的影響依品種而異,第2級與第3級中苗的生長參數相似,皆較第1級中苗略低。礦物營養成份則依品種不同具有差異性。各分級間營養元素除氮、鉀變動較大外,各分級間營養組成相似,顯示出瓶後適當的肥培管理能使蝴蝶蘭有良好的生長與營養狀態,無法從出瓶小苗的礦物營養濃度看出分級的標準。本研究結果發現分級對瓶苗後續栽培五個月的營養狀態的影響不大,植株大小依分級大小遞減,而對中苗的合格率影響則依蝴蝶蘭品種而有所差異。

The flask plantlet size and quality of Phalaenopsis does not standardize in the industry. In order to understand the effects of size criteria and mineral nutrients composition on subsequent growth of Phalaenopsis plantlets. This research collected the flask plantlets of Phalaenopsis from orchid nursery, including nine market circulating cultivars: Phal. Sogo Yukidian ‘V3’, Phal. Sogo Manta, Phal. Sogo Jessica, Phal. Sogo Yoshida, Dtps. I-Hsin Ice Coke, Phal. Sogo Lotte, Phal. OX Golden Star, Phal. Brother Pico Bahama and Phal. Sogo Pure. The growth index were investigated and the mineral nutrients composition were analyzed. And then the Phalaenopsis plantlets were planted in accordance of size criteria. This plantlet morphology investigation and plant composition analysis were conducted, after 5 months, that were investigated again. Results showed that the flask plantlet morphology were not significantly different among the nine cultivars. In element analysis, we found differences among cultivars. Suitable fertilizer management will affect the growth and nutritional composition of Phalaenopsis. We found plantlet size grading could influence plantlet morphology when plantlet cultivated after five months. Different cultivars of Phalaenopsis will affect the acceptability of plantlet. Investigation Phalaenopsis plantlets growth and nutritional analysis could be established Phalaenopsis plantlets commercial production of quality criteria to identify and improve Phalaenopsis plantlets quality and stability.

摘要……………………………………………………………………………………i
Abstract……………………………………………………………………………… ii
表目錄…………………………………………………………………………………v
圖目錄……………………………………………………………………………… vii
壹、前言 1
貳、前人研究 3
一、蝴蝶蘭分佈與生育特性 3
二、蝴蝶蘭商業種苗生產流程 3
(一) 培植體 3
(二) 商業生產流程 3
三、蝴蝶蘭礦物營養 4
(一) 氮 4
(二) 磷 6
(三) 鉀 6
(四) 鈣 8
(五) 鎂 8
(六) 鐵 9
(七) 錳 9
(八) 鋅 9
(九) 銅 10
參、材料與方法 11
一、植物材料 11
二、蝴蝶蘭型態調查 11
(一) 出瓶小苗生長調查 11
(二) 合格出瓶小苗進行分級 11
(四) 中苗生長調查 12
三、礦物營養與碳水化合物分析 12
(一) 氮 12
(二) 磷 12
(三) 鉀、鎂 12
(四) 鈣 13
(五) 鐵、錳、鋅、銅 13
(六) 碳水化合物 13
四、數據統計與分析 13
肆、結果 14
一、大輪花品種蝴蝶蘭生長調查與營養分析 14
(一) 生長調查 14
(二) 營養分析 14
(三) 碳水化合物分析 16
二、中輪花品種蝴蝶蘭生長調查與營養分析 16
(一) 生長調查 16
(二) 營養分析 16
(三) 碳水化合物分析 18
三、小輪花品種蝴蝶蘭生長調查與營養分析 18
(一) 生長調查 18
(二) 營養分析 18
(三) 碳水化合物分析 19
四、不同花型花色蝴蝶蘭礦物營養與碳水化合物分析 20
伍、討論 61
一、大輪花蝴蝶蘭出瓶小苗分級與後續生長之影響 61
二、中輪花蝴蝶蘭出瓶小苗分級與後續生長之影響 62
三、小輪花蝴蝶蘭出瓶小苗分級與後續生長之影響 64
四、不同花型花色蝴蝶蘭品種生長調查、營養元素與碳水化合物分析 64
(一) 氮 64
(二) 磷 65
(三) 鉀 65
(四) 鈣、鎂 66
(五) 微量元素鐵、錳、鋅、銅 66
(六) 碳水化合物 67
陸、結論 68
柒、參考文獻 69

王斐能、張耿衡、謝廷芳、鍾仁賜. 2008. 三種不同配方之肥料對臺灣白花蝴蝶蘭營養生長與養分吸收之影響. 臺灣園藝54: 231-246.
王惠正、黃炳文、黃琮琪、林瑞松. 2008. 蝴蝶蘭產業發展關鍵因素與策略之研究.台灣農學會報9(6): 541-554.
李哖、王明吉. 1997. 白花蝴蝶蘭由幼年到成熟相之礦物成分和碳水化合物之變化. 中國園藝43(4): 295-305.
何念祖、孟賜福. 1987. 植物營養原理. 上海科學技術出版社. 上海. 中國.
林瑞松. 1981. 蝴蝶蘭根組識培養之研究. 中華農業研究30(2): 141-145.
林咸嘉. 2007. 蘭花產業之智慧資源規劃. 國立政治大學智慧財產研究所碩士論文. 台北.
吳宣萱、陳福旗. 2008. 植物生長調節劑對蝴蝶蘭與朵麗蝶蘭花梗芽增殖之影響. 臺灣園藝54: 151-159.
吳毓紜. 2014. 蝴蝶蘭Phalenopsis Sogo Yukidan ‘V3’營養芽增殖階段的氮需求與營養動態調查. 國立國立中興大學園藝學系碩士論文. 台中.
涂美智、李哖. 1988. 氮素、蔗糖濃度及光強度對蝴蝶蘭種子發芽及幼苗生長之影響. 中國園藝34(4): 293-302.
張耿衡、王斐能、謝庭芳、鍾仁賜. 2008. 三種不同配方之肥料對蝴蝶蘭小苗營養生長與養分吸收之影響. 臺灣農業化學與食品科學46(2): 57-69.
游富鈴. 2004. 水苔、椰纖混合介質及添加緩效性肥料對蝴蝶蘭生育之影響. 國立臺灣大學園藝研究所碩士論文. 台北.
曹進義、陳威臣、吳明哲、夏奇鈮. 2008. 花梗發育時期、花梗節位及6-benzyladenine濃度對蝴蝶蘭花梗芽微體繁殖芽體誘導之影響. 臺灣園藝 54(3): 199-209.
曹進義、陳威臣、夏奇鈮. 2011. 由花梗培養切取之培植體種類及6-Benzyladenine濃度對蝴蝶蘭芽體分化之影響. 臺灣園藝57: 31-42.
陳瀅如. 2001. 不同肥料處理對蝴蝶蘭生長、葉片黃斑的發生、礦物成分及開花品質之影響. 國立臺灣大學園藝學研究所碩士論文.台北.
陳福旗. 2007. 熱帶蘭花生理學. 睿煜出版社. 屏東. 台灣
陳麗筠. 2007. 蝴蝶蘭栽培之養分管理. p. 35-40. 刊於:沈再木、徐善德主編. 蝴蝶蘭栽培. 國立嘉義大學. 嘉義.
彭穎君、鍾仁賜、何聖賓、張耀乾. 2010. 銨態與硝酸態氮比例影響大白花蝴蝶蘭營養與生殖生長. 臺灣園藝56: 45-56.
彭穎君. 2008. 大白花蝴蝶蘭‘V3’對氮素之吸收、運移及利用. 國立臺灣大學園藝學系碩士論文. 台北.
楊玉婷. 2010. 全球蘭花發展現況與未來展望. 台灣經濟研究月刊. 33(3): 36-41.
楊光盛、孫華慰、葉德銘、林學正. 1995. 數種高經濟花卉作物肥料之開發應用研究(二)―即溶花卉肥料. 中國園藝41(1): 41-53.
雷欣怡. 2007. 蝴蝶蘭花期礦物元素組成變化與肥料需求. 國立臺灣大學園藝學系碩士論文. 台北.
趙欣燕. 2009. 台灣蝴蝶蘭生產型態之研究-以台南區為例. 國立臺灣師範大學地理學系碩士論文. 台北.
羅聖賢. 2008. 臺灣原生蝴蝶蘭碳代謝及光合特性之研究. 行政院農業委員會臺東區農業改良場研究彙報18: 15-44.
蔣若珊. 2012. 蝴蝶蘭組培苗品質及礦物元素分析. 國立國立中興大學園藝學系碩士論文. 台中.
鍾仁賜、蘇育萩、林鴻淇. 1992. 盆栽水稻評估污泥堆肥之殘餘養分生物有效性. 中國農業化學會誌30: 368-397.
Argo, W. R. and J. A. Biernbaum. 1997. Lime, water sources, and fertilizer nitrogen form affect medium pH and nitrogen accumulation and uptake. HortScience 32: 71-74.
Aybeke, M. 2012. Comparative anatomy of selected rhizomatous and tuberous taxa of subfamilies Orchidoideae and Epidendroideae (Orchidaceae) as an aid to identification. Plant Syst. Evol. 298: 1643-1658.
Armengaud, P., R. Sulpice, A. J. Miller, M. Stitt, A. Amtmann, and Y. Gibon. 2009. Multilevel Analysis of Primary Metabolism Provides New Insights into the Role of Potassium Nutrition for Glycolysis and Nitrogen Assimilation in Arabidopsis Roots. Plant Physiol. 150: 772-785.
Barman, D., K. Rajni, S. K. Naik, and R. C. Upadhyaya. 2008. Production of Cymbidium Soulhunt-6 by manipulating cultural practices under partially modified greenhouse. Indian J. Hort. 65: 69-72.
Bichsel, R. G., T. W. Starman, and Y. T. Wang. 2008. Nitrogen, phosphorus, and potassium requirements for optimizing growth and flowering of the nobile Dendrobium as a potted orchid. HortScience 43: 328-332.
Chin, T. T. 1966. Effect of major nutrient deficiencies in Dendrobium phalaenopsis hybrids. Amer. Orchid Soc. Bul. 35: 549-554.
Chung, R.S. 1992. Influence of aluminum, magnesium, and silicon on the growth and nutrient uptake of tea plant. J. Chinese Agric. Chem. Soc. 30:291-306.
Christenson, E. A. 2001. Phalaenopsis: a monograph. Portland, Oregon, USA.
Chang, Y. C., and W. B. Miller. 2003. Growth and calcium partitioning in Lilium‘Star Gazer’ in relation to leaf calcium deficiency. J. Am. Soc. Hort. Sci. 128(6): 788-796.
Cibes, H. R., N. F. Childers, and A. J. Loustalot. 1946. Influence of mineral deficiencies on growth and composition of vanilla vines. Plant Physiol. 22: 291-299.
Cordones, M. N., M. A. Martı´nez-Cordero., V. Martı´nez, and F. Rubio. 2007. An NH4+-sensitive component dominates high-affinity K+ uptake in tomato plants. Plant Sci. 172: 273-280.
Coskun, D., D. T. Britto., and H. J. Kronzucker. 2016. The nitrogen–potassium intersection: membranes, metabolism, and mechanism. Plant, Cell and Environ. 18: 1-13.
Döbereiner, J. 1966. Manganese toxicity effects on nodulation and nitrogen fixation of beans (Phaseolus vulgaris L.), in acid soils. Plant and Soil 24(1): 153-166.
Epstein, E., and A. J. Bloom. 2005. Mineral nutrition of plants: principles and perspectives. 2nd edition Sinauer Associates, Inc. Sunderland, Mass.
Edgar, R., M. Domrachev, and A. E. Lash. 2002. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30: 207-210.
Findenegg, G. R. 1987. A comparative study of ammonium toxicity at different constant pH of the nutrient solution. Plant Soil 103: 239-243.
Gniazdowska, A., A. Krawczak, M. Mikulska, and A. M. Rychter. 1999. Low phosphate nutrition alters bean plants’ ability to assimilate and translocate nitrate. J. Plant Nutrition 22(3): 551-563.
Garnica, M., F. Houdusse, A. M. Zamarreño, and J. M. Garcia-Mina, 2010. The signal effect of nitrate supply enhances active forms of cytokinins and indole acetic content and reduces abscisic acid in wheat plants grown with ammonium. J. Plant Physiol. 167: 1264-1272.
Hopkins, W. G. 1995. Introduction to plant physiology. John Wiley and Sons, Inc. New York.
Hew, C. J. and J. W. H. Yong. 1996. Photosynthesis, p.38-92. The physiology of tropical orchids in relation to the industry. World Scientific Publishing.
Hermans, C. and N. Verbruggen. 2005. Physiological characterization of Mg deficiency in Arabidopsis thaliana. J. Expt. Bot. Vol. 56: 2153-2161.
Hammond, J. P. and P. J. White. 2011. Sugar signaling in root responses to low phosphorus availability. Plant Physiol. 156: 1033-1040.
Hampp, R., K. Beulich, and H. Ziegler. 1970. Effects of zinc and cadmium on photosynthetic CO2 fixation and Hill activity of isolated spinach chloroplasts. Physiologia Plantarum 77: 336-344.
Hew, C. S., L. Y. Lim, and C. M. Low. 1992. Nitrogen uptake by tropical orchids. Environ. Expt. Bot. 33: 273-281.
Harper, J. F., G. Breton, and A. Harmon. 2004. Decoding Ca2+ signals through plant protein kinases. Annu. Rev. Plant Biol. 55: 263-288.
Hermans, C., F. Bourgis, M. Faucher, S. Delrot, R. J. Strasser, and N. Verbruggen. 2005. Magnesium deficiency in sugar beet alters sugar partitioning and phloem loading in young mature leaves. Planta 220: 541-549.
Jones, J. J. B. 1998. Plant Nutrition Manual. CRC Press, New York, USA.Jackson, L. E., M. Burger, and T. R. Cavagnaro. 2008. Roots, Nitrogen Transformations, and Ecosystem Services. Annu. Rev. Plant Biol. 59: 341-63.
Jaime, A., and T. D. Silva. 2013. Ammonium to Nitrate Ratio Affects Protocorm Like Bodies PLB Formation In vitro of Hybrid Cymbidium. J. Ornamental Plants. 3 (3): 155-160.
Kubota, S., K. Yoneda, and Y. Suzuki. 2000. Effects of ammonium to nitrate ratio in culture medium on growth and nutrient absorption of Phalaenopsis seedlings In vitro. Environ. Control Biol. 38(4): 281-284.
Khoddamzadeh, A. A., U. R. Sinniah, M. A. Kadir, S. B. Kadzimin, M. Mahmood, and S. Sreeramanan. 2011. In vitro induction and proliferation of protocorm-like bodies (PLBs) from leaf segments of Phalaenopsis bellina (Rchb.f.) Christenson. Plant Growth Regul. 65: 381-387.
Lei, H. Y. 2007. Changes of mineral composition and fertilizer requirement of Phalaenopsis during reproductive stages. MS thesis, Natl. Taiwan Univ., Taipei, Taiwan [in Chinese with English abstract].
Marschner, H. 1995. Mineral nutrition of higher plants, 2nd edn. London:Academic Press.
Majerowicz, N., and G. B. Kerbauy. 2002. Effects of nitrogen forms on dry matter partitioning and nitrogen metabolism in two contrasting genotypes of Catasetum fimbriatum (Orchidaceae). Environ. Expt. Bot. 47: 249-258.
Majerowicz, N., G. B. Kerbauy, C. C. Nievola, and R. M. Suzuki. 2000. Growth and nitrogen metabolism of Catasetum fimbriatum (orchidaceae) grown with different nitrogen sources. Environ. Expt. Bot. 44(3): 195-206.
Naik, S. K., D. Barman, and R. C. Upadhyaya. 2006. Correlation studies on nutrient content of epiphytic orchids and associated substratum. J. Ornamental Hort. 9(2) : 133-135.
Naik, S. K., D. Barman, and N. Pathak. 2013. Response of graded levels of calcium and magnesium on growth and flowering of Cymbidium hybrid ‘Mint Ice Glacier’. African J. Agr. Research Vol. 8(17): 1767-1778.
Poole, H. A., and T. J. Sheehan. 1974. Chemical composition of plant parts of Phalaenopsis orchid. American Orchid Soc. Bulletin 43(3): 242-247.
Poole, H. A., and J. G. Seeley. 1978. Nitrogen, potassium and magnesium nutrition of three orchid genera. J. Am. Soc. Hort. Sci. 103: 485-488.
Poole, H. A., and T. J. Sheehan. 1982. Mineral nutrition of orchid roots, p.195-212. In: J. Arditti(ed.). Orchid biology: Reviews and Perspectives, Vol II. Cornel University Press. Ithaca. New York.
Peak, K. Y., T. J. Kim, and J. H. Seon. 1998. Effect of potting media on growth and mineral contents in temperate Cymbidium species. J. Kor. Soc. Hort. Sci. 39: 597-604.
Pestana, M., P. J. Correia, T. Saavedra, and A. D. Varennes. 2012. Development and recovery of iron deficiency by iron resupply to roots or leaves of strawberry plants. Plant Physiol. Biochem. 53: 1-27.
Péret, B., T. Desnos, R. Jost, S. Kanno, O. Berkowitz, and L. Nussaume. 2014. Root Architecture Responses: In Search of Phosphate. Plant Physiol. 166: 1713-1723.
Roosta, H. R., and J. K. Schjoerring. 2008. Effects of Nitrate and Potassium on Ammonium Toxicity in Cucumber Plants. J. Plant Nutrition 31: 1270-1283.
Rodrigues, D. T., R. F. Novias, V. H. Alvarez, J. M. M. Dias, and E. M. A. Villani. 2010. Orchid growth and nutrition in response to mineral and organic fertilizers. Revista Brasileira de Ciência do Solo. 34: 1609-1616.
Rufty, T. W., C. T. MacKown, and D. W. Israel. 1990. Phosphorus Stress Effects on Assimilation of Nitrate. Plant Physiol. 94(1): 328-333.
Rufty, T. W., D. W. Israel, R. J. Volk, J. Qiu, and T. Sa. 1993. Phosphate Regulation of Nitrate Assimilation in Soybean. J. Expt. Bot. 44(5): 879-891.
Schj?Rring, J. K. 1986. Nitrate and ammonium absorption by plants growing at a sufficient or insufficient level of phosphorus in nutrient solutions. Plant Soil 91: 313-318.
Susilo, H., and Y. C. Alex Chang. 2014. Nitrogen Source for Inflorescence Development in Phalaenopsis: II. Effect of Reduced Fertilizer Level on Stored Nitrogen Use. J. Amer. Soci. Hort. Sci. 139(1): 76-82.
Susilo, H., Y. C. Peng, S. C. Lee, Y. C. Chen, and Y. C. Alex Chang. 2013. The Uptake and Partitioning of Nitrogen in Phalaenopsis Sogo Yukidian ‘V3’ as Shown by 15N as a Tracer. J. Amer. Soc. Hort. Sci. 138(3): 229-237.
Susilo, H., Y. C. Peng, and Y. C. Alex Chang. 2014. Nitrogen Source for Inflorescence Development in Phalaenopsis: I. Relative Significance of Stored and Newly Absorbed Nitrogen. J. Amer. Soc. Hort. Sci. 139(1): 69-75.
Tamaki, V., and H. Mercier. 2001. Effects of different ammoniacal nitrogen sources on N-metabolism of the atmospheric bromeliad Tillandsia pohliana Mez. Brazilian J. Bot. 24: 407-413.
Tokuhara, K. and M. Mii. 2001. Induction of embryogenic callus and cell suspension culture from shoot tips excised from flower stalk buds of Phalaenopsis (Orchidaceae). In Vitro Cellular & Dept. Biol. - Plant 37(4): 457-461.
Trépanier, M., M. P. Lamy, and B. Dansereau. 2009. Phalaenopsis can absorb urea directly through their roots. Plant and Soil 319(1): 95-100.
Uesato, K. 1973. Effects of different forms of nitrogen sources in the culture media on the growth of Cattleya young seedlings. Sci. Bull. Coll. Agric. Univ. Ryukyus 20: 1-12.
Uesato, K. 1974. Effects of different forms of nitrogen sources in the culture media on the growth of Dendrobium nobile seedling. Sci. Bull. Coll. Agric. Univ. Ryukyus 21: 73-81.
Van A. F., H., Clijsters. 1986. Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc: effect on ribulose-1,5-bisphosphate carboxylase/oxygenase, J. Plant Physiol. 125: 355-360.
Wang, Y. T., and Gregg, L. L. 1994. Medium and fertilizer affect the performance of Phalaenopsis orchids during two flowering cycles. HortScience 29: 269-271.
Wang, Y. T. 1996. Effects of six fertilizers on vegetative growth and flowering of Phalaenopsis orchids. Sci. Hort. 65: 191-197.
Wang, Y. T. 2000. Impact of a high phosphorus fertilizer and timing of termination of fertilization on flowering of a hybrid moth orchid. HortScience. 35: 60-62.
Wang, Y. T. 2007. Potassium Nutrition Affects Phalaenopsis Growth and Flowering. HortScience 42(7): 1563-1567.
Wang, Y. T. 2008. High NO3-N to NH4-N Ratios Promote Growth and Flowering of a Hybrid Phalaenopsis Grown in Two Root Substrates. HortScience 43(2): 350-353.
Wang, Y. T., and E. A. Konow. 2002. Fertilizer Source and Medium Composition Affect Vegetative Growth and Mineral Nutrition of a Hybrid Moth Orchid. J Amer. Soc. Hort. Sci. 127(3): 442-447.
Wang, Y. T., and A. C. J. Tsai. 2006. Effect of Potassium Concentration on a Hybrid Phalaenopsis Grown in a Bark Mix or Sphagnum Moss. HortScience 41(4):980.
Wang, Y., and W. H. Wu. 2013. Potassium Transport and Signaling in Higher Plants. Annu. Rev. Plant Biol. 64: 451-476.
Xu, G., X. Fan, and A. J. Miller. 2012. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 63(1): 153-182.
Xu, G., S. Wolf, and U. Kafkafi. 2006. Ammonium on potassium interaction in sweet pepper. J. of plant nutrition. 25(4): 719-734.
Yen, W. Yi., Y. C. A. Chang, and Y. T. Wang. 2011. The Acidification of Sphagnum Moss Substrate during Phalaenopsis Cultivation. HortScience 46: 1022-1026.
Yin-Tung, W., and E. A. Konow. 2002. Fertilizer source and medium composition affect vegetative growth and mineral nutrition of a hybrid moth orchid. J. Am. Soc. Hort. Sci. 127(3): 442-447.
Yoneda, K., M. Usui, and S. Kubota. 1997. Effect of nutrition deficiency on growth and flowering of Phalaenopsis. J. Jpn. Soc. Hort. Sci. 66: 141-147.
Yoneda, K., N. Suzuki, and I. Hasegawa. 1999. Effects of macroelement concentrations on growth, flowering, and nutrient absorption in an Odontoblossum hybrid. Scientia Hort. 80: 259-265.
Yeha, D. M., L. Lina, and C. J. Wright. 2000. Effects of mineral nutrient deficiencies on leaf development, visual symptoms and shoot ± root ratio of Spathiphyllum. Scientia Hort. 86: 223-233.
Yu, Y. C. 2012. Growth response and gene expression profiling in Phalaenopsis under nitrogen, phosphorus, and potassium deficiency. MS thesis, Natl. Taiwan Univ., Taipei, Taiwan.
Zhao, J. Z., C. L. Zhao, S. X. Guo, L. Zhang, and A. H. Wang. 2001. Effect of media and nutrients levels on growth and flowering of Cymbidium hybridum seedlings. For. Stud. China. 3: 49-53.
Zotz, G., and U. Winkler. 2013. Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia 171: 733-741.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王斐能、張耿衡、謝廷芳、鍾仁賜. 2008. 三種不同配方之肥料對臺灣白花蝴蝶蘭營養生長與養分吸收之影響. 臺灣園藝54: 231-246.
2. 李哖、王明吉. 1997. 白花蝴蝶蘭由幼年到成熟相之礦物成分和碳水化合物之變化. 中國園藝43(4): 295-305.
3. 林瑞松. 1981. 蝴蝶蘭根組識培養之研究. 中華農業研究30(2): 141-145.
4. 吳宣萱、陳福旗. 2008. 植物生長調節劑對蝴蝶蘭與朵麗蝶蘭花梗芽增殖之影響. 臺灣園藝54: 151-159.
5. 涂美智、李哖. 1988. 氮素、蔗糖濃度及光強度對蝴蝶蘭種子發芽及幼苗生長之影響. 中國園藝34(4): 293-302.
6. 張耿衡、王斐能、謝庭芳、鍾仁賜. 2008. 三種不同配方之肥料對蝴蝶蘭小苗營養生長與養分吸收之影響. 臺灣農業化學與食品科學46(2): 57-69.
7. 曹進義、陳威臣、吳明哲、夏奇鈮. 2008. 花梗發育時期、花梗節位及6-benzyladenine濃度對蝴蝶蘭花梗芽微體繁殖芽體誘導之影響. 臺灣園藝 54(3): 199-209.
8. 曹進義、陳威臣、夏奇鈮. 2011. 由花梗培養切取之培植體種類及6-Benzyladenine濃度對蝴蝶蘭芽體分化之影響. 臺灣園藝57: 31-42.
9. 彭穎君、鍾仁賜、何聖賓、張耀乾. 2010. 銨態與硝酸態氮比例影響大白花蝴蝶蘭營養與生殖生長. 臺灣園藝56: 45-56.
10. 楊光盛、孫華慰、葉德銘、林學正. 1995. 數種高經濟花卉作物肥料之開發應用研究(二)―即溶花卉肥料. 中國園藝41(1): 41-53.
11. 羅聖賢. 2008. 臺灣原生蝴蝶蘭碳代謝及光合特性之研究. 行政院農業委員會臺東區農業改良場研究彙報18: 15-44.
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔