跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/13 11:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳翌群
研究生(外文):YIH-CHUN WU
論文名稱:使用情緒分析於社群論壇消費者評論定位品牌個性之研究
論文名稱(外文):A Study on Community Platforms'' Consumer Position the Brand Personality Using Sentiment Analysis
指導教授:曹修源曹修源引用關係
口試委員:林豪鏘陳明怡
口試日期:2016-04-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:行銷學系所
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:62
中文關鍵詞:情緒分析消費者評論大數據品牌個性品牌差異化
外文關鍵詞:Sentiment Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
企業無時無刻面臨激烈的競爭環境,建立出專屬自己的「品牌價值」早已是各行各業有所共識的必然趨勢,亦是競爭手段的核心之一。與其他品牌製造出「差異化」一直是企業打造「品牌」的成功因素,過去研究已提出鮮明之「品牌個性」能使消費者對品牌產生情感及信賴關係,進而區隔自身品牌與競爭品牌的差異性,是企業進行品牌差異化策略的良好指標。然而過去研究亦提出企業欲傳達之品牌個性往往與消費者所感受的知覺態度不一致,是品牌建立失敗的關鍵因素,因此確實了解消費者對於品牌個性的認知態度對於企業是否能成功經營品牌是非常重要的。
在此本研究發現過去傳統在調查消費者認知態度的作法上多採用問卷調查的方式,不僅調查過程費時費力,成本支出高昂,且得到之結果亦容易受到諸多外在因素影響而產生偏誤。而隨著網路資訊的爆炸,龐大的數據資料中有近 80%的資料為非結構性資料,網路上充斥著龐大的數據集,也讓《紐約時報》在 2012年的專欄文章 “The Age of Big Data”中正式宣布了大數據時代的來臨,因此具有及時性、高成本效益的大數據 (Big data)已成為各行業分析的主流。再加上線上論壇、部落格、推特(Twitter)、臉書(Facebook)等網路平台的出現,產生數量龐大且具有影響力的消費者評論,許多學者紛紛使用消費者評論做為研究對象。
綜合上述所言,本研究擬以大數據分析方式,開發品牌個性線上文字探勘衡量行銷量表(Measuring Marketing Scale from Text Mining Online)來取代傳統之問卷市調方法來對消費者評論進行分析,並以情緒分析作為主要分析手段,盼得出別於傳統分析結果更為精準之品牌個性定位外,更能利於日後企業與學術研究以最低成本定位品牌個性,達到有效衡量品牌差異化之效。


誌謝
摘要i
目錄ii
表目錄 iv
圖目錄 v
第一章、緒論 1
第一節、研究背景 1
第二節、研究動機與目的 3
第二章、文獻回顧 6
第一節、品牌 6
第二節、品牌個性 10
第三節、大數據 14
第四節、消費者評論 16
第五節、情緒分析 18
第三章、研究設計 23
第一節、研究問題 23
第二節、研究方法 24
第四章、分析結果 36
第一節、情緒分析結果 36
第二節、信度分析 40
第五章、結論與建議 42
第一節、研究結論與討論 43
第二節、管理意涵 46
第三節、研究限制與未來建議方向 47
參考文獻 49





中文文獻
1.周振鋒( 民88)。論品牌內垂直非價格限制-以美國法為中心。國立政治大學法律學研究所碩士論文。
2.吳克振(2001),品牌管理,臺北:華泰。
3.IDC(2012),IDC(國際數據資訊)研究顯示:2012年第一季台灣手機市場–智慧型手機再下一城,突破七成市佔率。http://www.idc.com.tw/about/399.html。
4.國家實驗研究院科技政策研究與資訊中心(2012a),2012年全球最有價值品牌前三名:蘋果、Google、微軟。http://cdnet.stpi.narl.org.tw/techroom/analysis/2012/pat_12_A002.htm。
5.國家實驗研究院科技政策研究與資訊中心(2012b),2012年BrandZ全球最具價值品牌前三名Apple、IBM、Google。http://cdnet.stpi.narl.org.tw/techroom/analysis/2012/pat_12_A003.htm。
6.國家實驗研究院科技政策研究與資訊中心(2012c),Interbrand公布2012年全球百大品牌及台灣國際品牌排名。http://cdnet.stpi.narl.org.tw/techroom/analysis/2012/pat_12_A004.htm。
7.國家實驗研究院科技政策研究與資訊中心(2013),2012年手機銷售量呈現衰退1.7% 。http://cdnet.stpi.narl.org.tw/techroom/market/eetelecomm_mobile/2013/eetelecomm_mobile_13_010.htm。
8.葉乃嘉, 從社群媒體洞察消費趨勢-談Big Data 情感分析, IEK產業情報網 (2013) 檢索自http://ieknet.iek.org.tw/BookView.do?domain=6&rptidno=129080477
9.江義平、林志穎(2012)。網路品牌個性知覺定位分析探究。Journal of e-Business,14(3),383-410。
10.張育蓉(2012). 使用情緒分析於圖書館使用者滿意度評估之研究.。檢索自http://ir.lib.nchu.edu.tw/bitstream/309270000/154649/1/nchu-101-7097014004-1.pdf




英文文獻
1.Aaker, D. A. (1991). Managing brand equity. New York: The Free Press.
2.Aaker, D. A. (1996). Measuring brand equity across products and markets. California Management Review, 38(3), pp. 102-120.
3.Aaker, J. L. (1997). Dimensions of brand personality. Journal of Marketing Research,34(3), 347-356.
4.Aaker, J. L., & Lee, A. Y. (2006). Understanding regulatory fit. Journal of Marketing Research, 43(1), 15-19.
5.Aaker, J., Fournier, S., & Brasel, S. (2004). When good brands do bad. Journal of Consumer Research, 31(1), 1-16.
6.Aaker, J., Fournier, S., & Brasel, S. A. (2004). When good brands do bad. Journal of Consumer Research, 31(1), 1-16.Advertising, Aaker, D.A. and Biel, A. eds. Hillsdale, NJ: Lawrence Erlbaum Associates.
7.Alt, M.,& Griggs, S. (1988). Can a brand be cheeky? Marketing Intelligence and Planning, 4(6), 9-16 Approaches to Analyzing Weblogs (pp. 159–162). Retrieved from http://www.aaai.org/Papers/Symposia/Spring/2006/SS-06-03/SS06-03-031.pdf.
8.Archak, N., Ghose, A., & Ipeirotis, P. G. (2007). Show me the money!: deriving the pricing power of product features by mining consumer reviews. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 56–65). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1281202.
9.Baccianella, S., Esuli, A., & Sebastiani, F. (2010). SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. In LREC (Vol. 10, pp. 2200–2204). Retrieved from http://www.researchgate.net/profile/Fabrizio_Sebastiani/publication/220746537_SentiWordNet_3.0_An_Enhanced_Lexical_Resource_for_Sentiment_Analysis_and_Opinion_Mining/links/545fbcc40cf27487b450aa21.pdf.
10.Belk, R. W. (1988). Possessions and the extended self. Journal of Consumer Research, 15(2), pp. 139-168.
11.Berger, J., & Milkman, K. L. (2012). What Makes Online Content Viral? Journal of Marketing Research, 49(2), 192–205. doi:10.1509/jmr.10.0353.
12.Bertot, J. C. and Choi, H. (2013), "Big data and e-government: issues, policies, and recommendations", 14th Annual International Conference on Digital Government.
13.Bhargava, R. (2008). Personality not included: Why companies lose their authenticity and how great brands get it back. New York, NY: McGraw-Hill.
14.Bickart, B., & Schindler, R. M. (2001). Internet forums as influential sources of consumer information. Journal of Interactive Marketing, 15(3), 31–40.
15.Bollier, D., & Firestone, C. M. (2010). The promise and peril of big data (p. 56). Washington, DC, USA: Aspen Institute, Communications and Society Program.
16.Boyd, D., & Crawford, K. (2012). Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon.
17.Burkholder, L. (1992) . Philosophy and the Computer. Westview Press. Boulder. San Francisco, and Oxford.
18.Chevalier, J. A., & Mayzlin, D. (2006). The Effect of Word of Mouth on Sales Online book sales. Journal of Marketing Research Vol. XLIII, 345-354.
19.Choi, H., & Varian, H. (2012). Predicting the present with google trends. Economic Record, 88(s1), 2–9.
20.Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., & Welton, C. (2009). MAD skills: new analysis practices for big data. Proceedings of the VLDB Endowment, 2(2), 1481–1492.
21.Collins, C., Hasan, S., & Ukkusuri, S. V. (2013). A Novel Transit Rider Satisfaction Metric: Rider Sentiments Measured from Online Social Media Data.pdf. Journal of Public Transportation, Vol. 16, No. 2.communication & society, 15(5), 662-679. doi:10.1080/1369118X.2012.678878.
22.D’Amuri, F., & Marcucci, J. (2010). “Google it!”Forecasting the US unemployment rate with a Google job search index. Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1594132
23.Denecke, K. (2008). Using sentiwordnet for multilingual sentiment analysis. In Data Engineering Workshop, 2008. ICDEW 2008. IEEE 24th International Conference on (pp. 507–512). IEEE. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4498370.
24.Denecke, K. (2009). Are SentiWordNet scores suited for multi-domain sentiment classification? In Digital Information Management, 2009. ICDIM 2009. Fourth International Conference on (pp. 1–6). IEEE. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5356764.
25.Devitt, A., & Ahmad, K. (2007). Sentiment polarity identification in financial news: A cohesion-based approach. Retrieved from http://edepositireland.ie/handle/2262/25729.
26.Ding, X., Liu, B., & Yu, P. S. (2008). A holistic lexicon-based approach to opinion mining. In Proceedings of the 2008 International Conference on Web Search and Data Mining (pp. 231–240). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1341561.
27.Ding, X., Liu, B., & Yu, P. S. (2008). A holistic lexicon-based approach to opinion mining. In Proceedings of the 2008 International Conference on Web Search and Data Mining (pp. 231–240). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1341561.
28.Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of price, brand, and store information on buyers product evaluations. Journal of Marketing Research, 28(3), 307-319.
29.Doyle, P. (1990). Building successful brands: The strategic options. The Journal of Consumer Marketing, 7(2), 5-20.
30.Farguhar, P. H. (1990). Managing brand equity. Journal of Advertising Research, 30 (4): 7-12.
31.Feldman, R. (2013). Techniques and applications for sentiment analysis. Communications of the ACM, 56(4), 82–89.
32.Fournier, S. (1998). Consumers and their brands: Developing relationship theory in consumer research. Journal of Consumer Research, 24(4), 343-373.
33.Godbole, N., Srinivasaiah, M., & Skiena, S. (2007). Large-Scale Sentiment Analysis for News and Blogs. ICWSM, 7, 21.
34.Guernsey, L. (2000). Suddenly, everybody’s an expert on everything. The New York Times, 3.
35.Gunter, B., Koteyko, N., & Atanasova, D. (2014). Sentiment analysis: A market-relevant and reliable measure of public feeling? International Journal of Market Research, 56(2), 231-247. doi:10.2501/IJMR-2014-014.
36.Hansen, L. K., Arvidsson, A., Nielsen, F. Å., Colleoni, E., & Etter, M. (2011). Good friends, bad news-affect and virality in twitter. In Future information technology (pp. 34-43). Springer Berlin Heidelberg.
37.Hardey, M. (2011). Generation C: content, creation, connections and choice. International Journal of Market Research, 53(6), 749. doi:10.2501/IJMR-53-6-749-770.
38.Hltcoe, J. (2013). SemEval-2013 Task 2: Sentiment Analysis in Twitter. Atlanta, Georgia, USA, 312.http://www.aclweb.org/anthology/S/S13/S13-2.pdf#page=526
39.Hu, N., Bose, I., Koh, N. S., & Liu, L. (2012). Manipulation of online reviews: An analysis of ratings, readability, and sentiments. Decision Support Systems, 52(3), 674–684. doi:10.1016/j.dss.2011.11.002 information on buyers product evaluations. Journal of Marketing Research, 28(3), 307-319.International Journal of Electronic Commerce, 11(4), 125–148. doi:10.2753/JEC1086-4415110405.
40.Jansen, B. J., Zhang, M., Sobel, K., & Chowdury, A. (2009). Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology, 60(11), 2169–2188. doi:10.1002/asi.21149.
41.Keller, K. L. (1993). Conceptualizing, measuring, and managing customer-based brand equity. Journal of Marketing, 57(1), 1-22.
42.Keller, K. L. (2008). Strategic brand management: Building, measuring and managing brand equity (3rded.). NJ: Prentice Hall.
43.Kotler, P. (1999). Marketing Management - An Asian Perspective. Singapore, Prentice Hall, Inc.
44.Kotler, P.andKeller, K.(2012). Marketing management, 14/E, New Jersey: Prentice Hall.
45.Lee, J., Park, D.-H., & Han, I. (2008). The effect of negative online consumer reviews on product attitude: An information processing view. Electronic Commerce Research and Applications, 7(3), 341–352. doi:10.1016/j.elerap.2007.05.004
46.Liu, J., & Seneff, S. (2009). Review sentiment scoring via a parse-and-paraphrase paradigm. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1-Volume 1 (pp. 161–169).
47.Martineau, J., & Finin, T. (2009). Delta TFIDF: An Improved Feature Space for Sentiment Analysis. In ICWSM. Retrieved from http://www.aaai.org/ocs/index.php/ICWSM/09/paper/viewFile/187/504.
48.McAfee, A., & Brynjolfsson, E. (2012). Big data: the management revolution.Harvard business review, (90), 60-6.
49.McGrath, G. M. (2008). Employing’social Network Analysis’ to Influence Tourism Events Decision-Making: A Pilot Study. Information and Communication Technologies in Tourism 2008, 556–567.
50.McWilliam, G. & de Chernatony, L. (1989). Branding terminology: the real debate. Marketing Intelligence & Planning, 7(7/8), pp.29-32.
51.Miguéns, J., Baggio, R., & Costa, C. (2008). Social media and tourism destinations: TripAdvisor case study. Advances in Tourism Research, (Aveiro), 26-28.
52.Moreira, S., Filgueiras, J., Martins, B., Couto, F., & Silva, M. J. (2013). Reaction: A naive machine learning approach for sentiment classification. In Second Joint Conference on Lexical and Computational Semantics (* SEM) (Vol. 2, pp. 490– 494).
53.Mullen, T., & Malouf, R. (2006). A Preliminary Investigation into Sentiment Analysis of Informal Political Discourse. In AAAI Spring Symposium.
54.Nielsen, F. Å. (2011). A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. arXiv preprint arXiv:1103.2903.
55.O’Connor, B., Balasubramanyan, R., Routledge, B. R., & Smith, N. A. (2010). From tweets to polls: Linking text sentiment to public opinion time series. ICWSM, 11, 122–129.
56.O’Hare, N., Davy, M., Bermingham, A., Ferguson, P., Sheridan, P., Gurrin, C., & Smeaton, A. F. (2009). Topic-dependent sentiment analysis of financial blogs. In Proceedings of the 1st international CIKM workshop on Topic-sentiment analysis for mass opinion (pp. 9–16). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=1651464.
57.Pang, B. & Lee, L. (2004). A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts. In Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. Retrieved October 14, 2011, from http://acl.ldc.upenn.edu/acl2004/main/pdf/319_pdf_2-col.pdf.
58.Pang, B. & Lee, L. (2008). Opinion Mining and Sentiment Analysis. Information Retrieval, 2(1-2), 1-135.
59.Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment Classification using Machine Learning Techniques. In Proceedings of 2002 Conference on Empirical Methods in Natural Language Processing, 79-86.
60.Park, D.-H., Lee, J., & Han, I. (2007). The Effect of On-Line Consumer Reviews on Consumer Purchasing Intention: The Moderating Role of Involvement.
61.Philip, R. (2011). Big Data Analytics. TDWI Best Practices Report. Retrieved from http://public.dhe.ibm.com/common/ssi/ecm/en/iml14293usen/IML14293USEN.PDF.
62.Pierre, V.F., Haythem, G., & Dwight, M. (2011). The impact of brand personality and sales Promotions on brand equity. Journal of Business Research, 64(1), 24-28.
63.Plummer, J. T. (1984). How personality makes a difference. Journal of Advertising Research, 24(6), 27-31.
64.Plummer, V. C. (2000). Women and distance education. London: Routledge.Research, 1-10.Retrieved from http://www.uib.es/depart/deeweb/pdi/acm/arxius/intermediacio_tfg/baggio-aveiro2.pdf.
65.Schumaker, R. P., Zhang, Y., Huang, C.-N., & Chen, H. (2012). Evaluating sentiment in financial news articles. Decision Support Systems, 53(3), 458–464.
66.Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing surveys (CSUR), 34(1), 1-47.
67.Smit, E. G., Berge,E. van den andFranzen, G.(2003). Brandsare just like real people! The development of SWOCC’s brand personality Scale. InHansen,F. andChristensen,L. B.(Eds.).Branding and Advertising. Copenhagen: Copenhagen Business SchoolPress, 22-43.
68.Sung, Y.andTinkham, S. F.(2005). Brand personality structures in the United States and Korea: Common and culture-specific factors. Journal of Consumer Psychology, 15(4): 334-350.
69.Traci, H. F., & Lukas, P. F. (2005). An empirical analysis of the brand personality effect. The Journal of Product and Brand Management, 14(7), 404-413. Retrieved from http://search.proquest.com/docview/220602608?accountid=10534.
70.Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting Elections with Twitter: What 140 Characters Reveal about Political Sentiment. ICWSM, 10, 178–185.
71.Wang, H., Can, D., Kazemzadeh, A., Bar, F., & Narayanan, S. (2012). A system for real-time twitter sentiment analysis of 2012 us presidential election cycle. In Proceedings of the ACL 2012 System Demonstrations (pp. 115–120). Association for Computational Linguistics. Retrieved from http://dl.acm.org/citation.cfm?id=2390490
72.Wiebe, J., Wilson, T., & Cardie, C. (2005). Annotating Expressions of Opinions and Emotions in Language. Language Resources and Evaluation, 39(2-3), 165–210. Retrieved from http://doi.org/10.1007/s10579-005-7880-9.
73.Zhang, X., & Dellarocas, C. (2006). The Lord Of The Ratings: Is A Movie’s Fate is Influenced by Reviews? ICIS 2006 Proceedings, 117.
74.Zhu, F., & Zhang, X. (2010). Impact of online consumer reviews on sales: The moderating role of product and consumer characteristics. Journal of Marketing, 74(2), 133–148.
75.Zhu, T. T., Zhang, F. X., & Lan, M. (2013). Ecnucs: A surface information based system description of sentiment analysis in twitter in the semeval-2013 (task 2). Atlanta, Georgia, USA, 408.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊