(3.236.222.124) 您好!臺灣時間:2021/05/11 09:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王潮鴻
研究生(外文):Chao-Hong Wang
論文名稱:以反應曲面法開發牛蒡擠壓休閒食品最適操作條件之研究
論文名稱(外文):Study of the Optimum Operating Conditions for the Development of Burdock Extrudates by Response Surface Methodology
指導教授:彭錦樵彭錦樵引用關係
指導教授(外文):Jin-Chyau Peng
口試委員:林貞信雷偉斌
口試委員(外文):Jen-shinn LinWai-bun Lui
口試日期:2016-05-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物產業機電工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:100
中文關鍵詞:牛蒡玉米粉擠壓技術反應曲面法
外文關鍵詞:burdockcorn gritsextrusion technologyresponse surface methodology
相關次數:
  • 被引用被引用:4
  • 點閱點閱:480
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:74
  • 收藏至我的研究室書目清單書目收藏:0
  牛蒡富含營養價值,為增加其多元化利用,本研究以添加不同比例之牛蒡粉於玉米粉中,利用擠壓技術開發膨發性休閒食品。
  本研究採用反應曲面法三變數三層級之實驗設計,取擠壓機螺軸轉速、進料含水率及牛蒡粉添加比例為操作條件進行擠壓實驗。擠壓機螺軸轉速範圍為250、300及350 rpm,進料含水率範圍為11、14及17%,牛蒡粉添加比例範圍為5、15及25%,中心點採三重複,共計15組處理組。針對各處理組之擠出物進行七項理化性質之測定(徑向膨發率、縱向膨發、假密度、硬度值、最大剪切力、吸水性指標及水溶性指標)。實驗結果顯示如下:
1.增加螺軸轉速,會使擠出物的徑向膨發率、硬度值及最大剪切力逐漸下降,縱向膨發及吸水性指標先降後升,假密度逐漸上升,水溶性指標先升後降。
2.增加進料含水率,會使擠出物的徑向膨發率及水溶性指標先升後降,縱向膨發先降後升,假密度、硬度值、最大剪切力及吸水性指標逐漸上升。
3.增加牛蒡粉添加比例,會使擠出物的徑向膨發率、縱向膨發、最大剪切力、吸水性指標及水溶性指標逐漸下降,假密度及硬度值逐漸上升。
  取其中四項測定(徑向膨發率、假密度、最大剪切力及水溶性指標)為最適化評估指標並選定評估範圍,利用統計軟體將四項評估範圍重疊形成等高線圖,可得出一中心區塊為最適擠壓操作範圍為螺軸轉速252.2~323.3 rpm、進料含水率10.3~14.8%、牛蒡粉添加比例13.8~16.1%。
  從最適操作條件範圍中可得出一最適操作條件驗證點,並經實驗之驗證,證明在此最適操作條件驗證點之實際量測值與各反應性狀迴歸模式之預估值並無統計上之差異,故可實際應用在開發商品上。


Burdock is rich in nutrition. In order to increase the diversity of burdock, different proportion of burdock powder were added into corn grit with extrusion technology which was used to develop a puffed snack foods.
The response surface methodology (RSM) was used to optimize extrusion conditions of the puffing burdock extrudates. The mixing ratio of burdock powder to the corn flour (5: 95, 15: 85, 25: 75), the feed moisture content (11%, 14%, 17%)of the mixing raw material and the extruder screw speed (250, 300, 350rpm) were taken for the extrusion process variables on physical properties (radial expansion, longitudinal expansion, bulk density, hardness, maximum shear force, water solubility index and water absorption index) of the product. The experimental results indicated that:
1.Increasing the screw speed decreased the radial expansion ratio, the hardness and the maximum shear force, but it increased the bulk density. Extrudate’s longitudinal expansion decreased first and then increased gradually, but extrudate’s water solubility index increased first and then decreased.
2.Increasing the feed moisture content increased the bulk density, the hardness, the maximum shear force and the water absorption index. Extrudate’s longitudinal expansion decreased first and then increased gradually, but extrudate’s radial expansion and water solubility index increased first and then decreased.
3.Increasing the burdock powder ratio decreased the radial expansion, the longitudinal expansion, the maximum shear force, the water solubility index and the water absorption index, but it increased the bulk density and the hardness.
Take four determinations (radial expansion ratio, bulk density, maximum shear force and water solubility index) as the optimum assessment index, and select a range of assessments. By overlaying individual contour plots of the different responses. The regions of the optimum operating conditions were identified at the screw speed of 252.2~323.3 rpm, feed moisture content of 10.3~14.8 %, and burdock powder level of 13.8~16.1 %, respectively.
The extruder’s optimum operation conditions were found through the response surface methodology in this research. An experiment was taken to testify the responses of dependent variables under the optimum operation conditions. The results showed that there were no significant differences between the regression and experimental results for the radial expansion ratio, bulk density, maximum shear force and water solubility index. The optimum operation conditions and the regression model developed were useful in this study which can be applied in the development of commercial products.


摘要... i
Abstract... ii
表目錄... vi
圖目錄... vii
1. 緒論... 1
1.1. 前言... 1
1.2. 研究目的... 2
2. 文獻探討... 3
2.1. 擠壓技術簡介... 3
2.1.1. 擠壓技術之優點... 3
2.1.2. 擠壓技術之歷史... 4
2.1.3. 擠壓機簡介... 6
2.1.4. 擠壓操作參數... 8
2.2. 牛蒡... 11
2.2.1. 牛蒡簡介... 11
2.2.2. 牛蒡成份及其應用... 13
2.2.3. 牛蒡之生理活性... 13
2.3. 反應曲面法... 17
3. 材料與方法... 19
3.1. 實驗材料與設備... 19
3.1.1. 實驗材料... 19
3.1.2. 實驗設備... 19
3.2. 實驗設計... 21
3.3. 擠出物量測項目與分析方法... 24
3.3.1. 徑向膨發率... 24
3.3.2. 縱向膨發... 25
3.3.3. 假密度... 25
3.3.4. 硬度值... 25
3.3.5. 最大剪切力... 26
3.3.6. 水溶性指標及吸水性指標... 26
3.4. 統計分析... 26
4. 結果與討論... 28
4.1. 各項反應性狀之結果分析... 28
4.1.1. 徑向膨發率... 28
4.1.2. 縱向膨發... 36
4.1.3. 假密度... 39
4.1.4. 硬度值... 49
4.1.5. 最大剪切力... 52
4.1.6. 吸水性指標... 62
4.1.7. 水溶性指標... 69
4.2. 各反應性狀間之相關性分析... 76
4.3. 最適操作條件之選定與評估... 76
5. 結論... 86
6. 對未來工作之建議... 87
參考文獻... 88

王龍源、王晨靜、袁田道、王美芝、白红斌、袁新道、王春波、韓志武。2011。牛蒡根水提物對高尿酸血症小鼠的保護作用研究。中國藥房22(43):4054-4055。
王艷奇、秦偉。2011。牛蒡根活性植物的研究進展。齊齊哈爾醫學院學報(32):766-768。
李仰修。2007。塑化劑對塑膠原料物理化學及生物分解特性之影響。碩士論文。台中:國立國立中興大學生物產業機電工程學系。
李宗翰。2008。香菇擠壓休閒食品之開發及其抗氧化特性之研究。碩士論文。台中:國立國立中興大學生物產業機電工程學系。
李穎宏、林怡如、陳正敏。2012。牛蒡功能成分及加工利用。高雄區農業專訓(80):5-7。
杜昌鴻。2011。蓮子擠壓休閒產品之開發及其抗氧化特性之研究。碩士論文。臺中:國立國立中興大學生物產業機電工程學系。
呂政義、張曙明、韓建國。1987。以擠壓機成型法製備米食產品加工條件之探討。食品科學14:342-350。
宋國祥。2000。添加綠茶粉於米食膨發食品最適操作條件之研究。碩士論文。臺中:國立國立中興大學農業機械工程學系。
行政院衛生署。2015。食品藥物消費者知識服務網。食品營養成份資料庫。臺北:行政院衛生署食品藥物管理局。網址:https://consumer.fda.gov.tw/FoodAnalysis/ingredients.htm
吳文凱、周惠明、趙浩然、陳建行。2012。探討牛蒡萃取物抑制癌細胞生長之功效。永達學報12(1):1-7。
吳宗沛。1990。米穀擠壓膨發食品之纖維強化及其品質之改進。博士論文。臺北:國立臺灣大學食品科技研究所。
林苑暉。2003。糙米添加芡實之擠壓食品理化特性及其生理活性之探討。博士論文。台中:國立國立中興大學食品科學系。
林培吉。1991。擠壓加工條件對魚粉及黃豆粉蛋白質凝聚程度之影響。碩士論文。基隆:國立海洋大學水產食品科學研究所。
林鈺。2009。屏東市歸來牛蒡。臺灣月刊電子報6月號產業誌。
邱相文。2012。山藥擠出物之開發與其機能性品質特性之研究探討。博士論文。臺中:國立國立中興大學生物產業機電工程學系。
姜少捷。2010。洛神花擠壓休閒食品之開發及其抗氧化特性之研究。碩士論文。台中:國立國立中興大學生物產業機電工程學系。
徐庭鑫、王麗雲、石根勇、呂慧、馬永建。2009。牛蒡皮提取物對高脂血症大鼠血脂及抗氧化作用的研究。中國生化藥物雜誌30 (3):189-191。
唐璽鎧。2011。佳葉龍粉茶擠壓休閒食品之開發及其抗氧化特性之研究。碩士論文。臺中:國立國立中興大學生物產業機電工程學系。
胡喜蘭、許瑞波、姜琴、許杰、劉曉敏。2012。牛蒡根中抗氧化活性和黄酮含量的測定。食品科技37(12):184-188。
馬利華、秦衛東、陳學紅、陳健。2013。擠壓膨化對牛蒡膳食纖維提取及加工特性影響的研究。食品工業科技34(8):240-244。
涂春木。1994。單軸擠壓機加工米穀粉理化特性之研究。碩士論文。台中:國立國立中興大學農業機械工程學系。
許儷瀞。2012。擠壓加工對國產稻米理化性質及益生菌生長效果之影響。碩士論文。國立屏東科技大學食品科學系。
黃山內、陳鴻彬、陳文雄、張煥英、林棟樑、李寶月。2000。牛蒡栽培與利用。台南區農業改良場技術專刊89:2-7。
黃乃芸。2010。牛蒡。健康世界:77-78。
黃少花、黃禮德、劉勝利、郭立強、文全泰、肖林彬、張照平、趙善民、晉玲、黃彥峰。2012。牛蒡子提取物鎮痛抗炎作用的實驗研究。右江民族醫學院學報34(1):7-9。
黃榮丞。2005。添加蕃茄紅素之玉米擠出物開發及其抗氧化活性分析。碩士論文。臺中:國立國立中興大學生物產業機電工程學系。
黃俊嘉。2006。添加芝麻粕擠壓休閒產品之開發及其抗氧化活性分析。碩士論文。台中:國立國立中興大學生物產業機電工程學系。
張明義。2001。模孔孔徑與蕎麥粉添加比例開發蕎麥擠壓食品最適條件之研究。碩士論文。台中:國立國立中興大學農業機械工程學系。
張康榮、李錦楓。1989。利用稻米與花生製造膨發產品之研究。食品科學16(1):45-58。
郭昭吟。2005。擠壓塊狀年糕之物化性質與最適化二次加工條件之探討。碩士論文。國立屏東科技大學食品科學系。
陳淳和。1996。飼料玉米擠出物之理化特性研究。碩士論文。臺中:國立國立中興大學農業機械工程學系。
陳會敏、徐安莉、徐建民、周艷艷、趙敏、黃陳偉。2012。牛蒡子提取物對高脂血症大鼠血脂及脂肪肝形成的影響。杏林中醫藥32(6):615-617。
彭錦樵。1993。擠壓技術專家-米勒先生演講專輯。美國飼料穀物協會。
彭孃慧。2014。紫心甘藷擠壓休閒食品之開發及其抗氧化特性之研究。碩士論文。台中:國立國立中興大學生物產業機電工程學系。
賀菊萍、趙勇、孫曉紅、Vivian Chi-Hua Wu、趙文秀、潘迎捷。2014。牛蒡皮抑菌性能及其抑菌組分研究。食品工業35(5):178-181。
賀菊萍、潘迎捷、趙勇。2014。牛蒡提取物對四氯化碳誘導肝損傷小鼠的保護作用。現代食品科技30(11):6-11。雷偉斌。2005。生物可分解擠壓緩衝產品之最適操作條件及黏彈模式之建立。博士論文。台中:國立國立中興大學生物產業機電工程學系。
鄔文盛、陳輝煌、龔鳴盛、孫寶年。1989。米之雙軸擠壓加工─I.水分和油脂添加對米擠出物特性之影響。食品科學16:305-318。
葉安義。1993。玉米食品加工專家-蘇卡拉博士演講專輯。美國飼料穀物協會。
楊淑華。2004。薏仁品種及白米添加比例對擠出物物理化學及抗氧化特性之影響。碩士論文。台中:國立國立中興大學生物產業機電工程學系。
楊琇涵。2011。加熱對牛蒡根化學成份的影響之研究。碩士論文。台南:嘉南藥理科技大學保健營養系。
潘憶萱。1997。胡蘿蔔渣應用於高纖擠出物之研究。碩士論文。台中:國立國立中興大學農業機械工程學系。
鄭國燦、王兵、錢程佳。2011。牛蒡子苷元對肝癌SMMC-7721细胞增殖、凋亡的影響及機制探討。山東醫藥51(14):13-15。
劉珊汝。2009。以反應曲面法研發米-甘藷葉的膨發點心食品。屏東:屏東科技大學食品科學系。
劉琳。2009。牛蒡活性成分的提取與研究。碩士論文。中國:天津科技大學營養與食品衛生學(理)。
魏開舜。2002。原料配方對擠壓緩衝產品理化機械及生物分解特性之影響。碩士論文。台中:國立國立中興大學生物產業機電工程。
Ainsworth, P., J.G. Brennan and A.S. Grandison (Eds.). 2011. Extrusion. Food processing handbook, Wiley-VCH Verlag & Co. KGaA., Germany. 429-453.
Alam, M.S., J. Kaur, H. Khaira, K. Gupta. 2013. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review. Critical Reviews in Food Sci Nutr. http://dx.doi.org/10.1080/10408398.2013.779568
Ali, Y., M.A. Hanna and R. Chinnaswamy. 1996. Expansion characteristics of extruded corn grits. LWT-Food Sci Technol. 29: 702-707.
Anderson, R.A., H.F. Conway, V.F. Pfeifer and E.L. Griffn. 1969. Gelatinization of corn grits by roll and extrusion cooking. Cereal Sci Today.14: 4-12.
Awale, S., J. Lu and S.K. Kalauni. 2006 . Identification of arctigenin asan antitumor agent having the ability to eliminate the tolerance of cancer cells to nutrient starvation. Cancer Res. 66: 1751-1757.
Berk, Z.. 2008. Food Process Engineering and Technology.In: Berk Z,editor.1st edition. Elsevier B.V.,Academic Press Amsterdam, Netherlands.
Bellisle, F.. 2014. Meals and snacking, diet quality and energy balance. Physiol Behav. 134: 38-43.
Bhatnagar, S. and M. A. Hanna. 1995. Physical, mechanical, and thermal properties of starch-based plastic foams. Trans. Of ASAE. 38(2) : 567-571.
Box, G. E. P. and K. B. Wilson. 1951. On the experimental attainment of optimum conditions. J. Roy. Statist. Soc. Ser. B Metho. 13: 1-45.
Chakraborty, S.K., D.S. Singh, B.K. Kumbhar and S. Chakraborty. 2011. Millet legume blended extrudates characteristics and process optimization using RSM. Food Bioprod Process. 89: 492-499.
Chalermchaiwat, P., K. Jangchud , A. Jangchud, C. Charunuch and W. Prinyawiwatkul. 2015. Antioxidant activity, free gamma-aminobutyric acid content, selected physical properties and consumer acceptance of germinated brown rice extrudates as affected by extrusion process. LWT-Food Sci Technol. 64(1): 490-496.
Chen, Y.D., J. Peng and W.B. Lui. 2009. Composition optimization of poly(vinyl alcohol)-cornstarch-blended biodegradable composite using response surface methodology. J. Appl. Polym. Sci. 113(1): 258-264.
Cheng, W.Y., J. Peng and W.B. Lui. 2011. Effects of α-amylase and glycerol levels on the composition optimization of poly(β-hydroxybutyrate-co-valerate)/starch blended biodegradable resin analyzed with response surface methodology. J. Appl. Polym. Sci. 120(5): 2571-2578.
Chiu, H.W., J.C. Peng, S.J. Tsai, J.R. Tsay and W.B. Lui. 2013. Process Optimization by response surface methodology and characteristics investigation of corn extrudate fortified with Yam (Dioscorea alata L.). Food Bioprocess Tech. 6: 1494-15040.
Cochran, W.G. and G.M. Cox. 1957. Experimental Designs. John Wiley & Sons, Inc., New York.
Danbaba, N, I. Nkama, M. H. Badau. 2015. Application of Response Surface Methodology (RSM) and Central Composite Design (CCD) to Optimize Minerals Composition of Rice-Cowpea Composite Blends during Extrusion Cooking. Int J Food Sci Nutr Eng. 5(1): 40-52.
da Silva, L.M., A. Allemand, D.A. Mendes, A.C. Dos Santos, E. Andre and L.M. de Souza. 2013. Ethanolic extract of roots from Arctium lappa L. accelerates the healing of acetic acid-induced gastric ulcer in rats: Involvement of the antioxidant system. Food Chem Toxicol. 51: 179-187.
Dautant, F.J., K. Simancas, A.J. Sandoval and A.J. Müller. 2007. Effect of temperature, moisture and lipid content on the rheological properties of rice flour. J Food Eng. 78 (4): 1159-1166.
Davidson, V.J., D. Pation, L.L. Diosady and G. Larocque. 1984. Degradation of wheat starch in a single screw extruder: charcteristics of extruded starch polymers. J Food Sci. 49: 453-458.
Derringer, G. and R. Suich. 1980. Simultaneous optimization of several response variables. J Qual Technol. 12: 214-219.
Ding, Q.B., P. Ainsworth, G. Tucker and H. Marson. 2005. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-expanded snacks. J Food Eng. 66: 283-289.
Ding, Q.B., P. Ainsworth, A. Plunkett, G. Tucker and H. Marson. 2006. The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. J Food Eng. 73: 142-148.
Dziezak, J. D. 1990. Taking the gamble out of produce development. Food Tech. 44: 110-117.
El-Kott, A.F. and M.M. Bin-Meferij. 2015. Use of Arctiumlappa ExtractAgainstAcetaminophen-Induced HepatotoxicityinRats. Curr Ther Res. 77: 73-78.
Erdemoglu, N., N.N. Turan, E.K. Akkol, B. Sener and N. Abacioglu. 2009. Estimation of anti-inflammatory, antinociceptive and antioxidant activities on Arctium minus (Hill) Bernh. ssp. minus. J. Ethnopharmacol. 121: 318-323.
Fallahi, P., K. Muthukumarappan1, K.A. Rosentrater and M.L. Brown. 2012. Twin-screw extrusion processing of vegetable-based protein feeds for yellow perch (Perca flavescens) containing distillers dried grains, soy protein concentrate, and fermented high protein soybean meal. J Food Res. 1: 230-246.
Faubion, J.M. and R.C. Hoseney. 1982. High-temperature short-time extrusion cooking of wheat starch and flour. I. Effect of moisture and flour type on extrudate properties. Cereal Chem. 59: 529-533.
Figuerola, F., M.L. Hurtado, A.M. Estevez, I. Chiffelle and F. Asenjo. 2005. Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 91: 395-401.
Fletcher, S.I., P. Richmond, A.C. Smith. 1985. An experimental study of twin-screw extrusion cooking of maize grits. J Food Eng. 4: 291-312.
Garg, S.K. and D.S. Sigh. 2010. Optimization of extrusion conditions for defatted soy-rice blend extrudetes. J Food Sci Technol. 47: 606-612.
Giovanni, M. 1983. Response surface methodology and product optimization. Food Technol. 37(11): 41-45,83.
Hagenimana, A., X. Ding and T. Fang. 2006. Evaluation of rice flour modified by extrusion cooking. J Cereal Sci. 43: 38-46.
Harper, J.M. 1981. Extrusion of Foods, Vol.ⅠandⅡ. CRC Press, Boca Raton, FL.
He, J.P., Y. Zhao, X.H. Sun, O.H. Wu and Y.J. Pan. 2012. Antibacterial Effects of Burdock ( Arctium Lappa L.)Concentrate on Vibrio parahemolyticus. Nat Prod Res Dev. 24: 381-384.
Hong, F.L., J. Peng and W.B. Lui. 2011. Optimization of the Process Variables for the Synthesis of Starch-Based Biodegradable Resin Using Response Surface Methodology. J. Appl. Polym. Sci. 119(3): 1797-1804.
Hsieh, C.J., P.L. Kuo, Y.C. Hsu, Y.F. Huang, E.M. Tsai, Y.L. Hsu. 2014. Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation. Free Radical Bio Med. 67: 159-170.
Hsieh, F., H.E. Huff, S. Lue and L. Stringer. 1991. Twin-screw extrusion of sugar beet fibre and corn meal. LWT-Food Sci Technol. 24: 495-500.
Huang, Y.L. and Y.S. Ma. 2016. The effect of extrusion processing on the physiochemical properties of extruded orange pomace. Food Chem. 192: 363-369.
Jin, Z., F. Hsieh and H.E. Huff. 1995. Effects of soy fiber, salt, sugar and screw speed on physical properties and microstructure of corn meal extrudate. Journal Cereal Sci. 22: 185-194.
Kirby, A.R., A.L. Ollett, R. Parker and A.C. Smith. 1988. An experimental study of screw configuration effects in the twin-screw extrusion-cooking of maize grits. J Food Eng. 8: 247-272.
Kou, X., S. Qi, W. Dai, L. Luo, Z. Yin. 2011. Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway. Int Immunopharmacol. 11: 1095-1102.
Lawton, B.T. and B.A. Handerson. 1972. The effects of extruder variables on the gelatinization of corn starch. Can J Chem Eng. 50: 168-172.
Lee, Y. J., D. H. Choi, G. H. Cho, J. S. Kim, D. G. Kang and H. S. Lee. 2012. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets. BMC Complem Altern M. 12: 116.
Lin, X.C., C.Y. Liu and K.S. Chen. 2004. Extraction and contentcomparison of chlorogenic acid in Arctium lappa L. leaves collected from different terrain and its restraining bacteria test. Nat Prod Res Dev. 16: 328-330.
Liu , W., J. Wang, Z. Zhang, J. Xu, Z. Xie, M. Slavin and X. Gao. 2014. In vitro and in vivo antioxidant activity of a fructan from the roots of Arctium lappa L. Int J Biol Macromol. 65 : 446-453.
Lobato, L.P., D. Anibal, M.M. Lazaretti and M.V.E. Grossmann. 2011. Extruded puffed functional ingredient with oat bran and soy flour. LWT-Food Sci Technol. 44: 933-939.
Lue, S., F. Hsieh, I.C. Peng and H.E. Huff. 1990. Expansion of corn extrudates containing dietary fibre: a microstructure study. LWT-Food Sci Technol. 23 : 165-173.
Ma, H., Z. Pan, B. Li, G.G. Atungulu, D.A. Olson and M.M. Wall. 2012. Properties of extruded expandable breadfruit products. LWT–Food Sci Technol. 46: 326-334.
Mendonça, S., M.V.E. Grossmann and R. Verhé. 2000. Corn bran as a fibre source in expanded snacks. LWT-Food Sci Technol. 33 (1): 2-8.
Menegassi, B., A.M.R. Pilosof and J.A.G. Arêas. 2011. Comparison of properties of native and extruded amaranth (Amaranthus cruentus L. – BRS Alegria) flour. LWT–Food Sci Technol. 44: 1915-1921.
Miller, N. J., R. E. Catherine, M. J. Davies, V. Gopinathan and A. Iller. 1993. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Sci. 84: 407-412.
Moraru, C.I. and J.L. Kokini. 2003. Nucleation and expansion during extrusion and microwave heating of cereal foods. Compr Rev Food Sci F. 2: 147-165.
Oke, M.O., S.O. Awonorin, L.O. Sanni, R. Asiedu and P.O. Aiyedun. 2012. Effect of extrusion variables on extrudates properties of water yam flour – a response surface analysis. J Food Process Pres. http://dx.doi.org/10.1111/j. 1745-4549.2011.00661.x
Owusuansah, J., F.R. Vandevoort and D.W. Stanley. 1983. Physicochemical changes in cornstarch as a function of extrusion variables. Cereal Chem. 60 (4): 319-324.
Peng, J., H. E. Huff and F. Hsieh. 1994. An RTD determination method for extrusion cooking. J. Food Proc and Pres. 18: 263-277.
Pereira, J.V., D.C. Bergamo and J.O. Pereira. 2005. Anti-microbial activity of Arctium lappa constituents against microorganisms commonly found in endodontic infections. Braz Dent J. 16: 192-196.
Rathod, R.P. and U.S. Annapure. 2016. Effect of extrusion process on antinutritional factors and protein and starch digestibility of lentil splits. LWT - Food Sci Technol. 66: 114-123.
Rodriguez-Miranda, J., I.I. Ruiz-Lopez, E. Herman-Lara, C.E. Martinez-Sanchez, E. Delgado-Licon and M.A. Vivar-Vera. 2011. Development of extruded snacks using taro (colocasia esculenta) and nixtamalized maize (zea mays) flour blends. LWT — Food Sci Technol. 44 (3): 673-680.
Sarawong, C., R. Schoenlechner, K. Sekiguchi, E. Berghofer and P.K.W. Ng. 2014. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chem. 143: 33-39.
Seth, D., L.S. Badwaik and V. Ganapathy. 2013. Effect of feed composition, moisture content and extrusion temperature on extrudate characteristics of yam-corn-rice based snack food. J Food Sci Technol. http://dx.doi.org/10.1007/s13197-013-1181-x
Siddiq, M., S. Kelkar, J.B. Harte, K.D. Dolan and G. Nyombaire. 2013. Functional properties of flour from low-temperature extruded navy and pinto beans (Phaseolus vulgaris L.). LWT–Food Sci Technol. 50: 215-219.
Silva, L.M., A. Allemand, D.A.G.B. Mendes, A.C. Santos, E. André, L.M. Souza, T.R. Cipriani, N. Dartora, M.C.A. Marques, C.H. Baggio and M.F. Werner. 2013. Ethanolic extract of roots from Arctium lappa L. accelerates the healing of acetic acid-induced gastric ulcer in rats: Involvement of the antioxidant system. Food Chem. Toxicol. 51: 179-187.
Singh, B., K.S. Sekhon and N. Singh. 2007. Effects of moisture, temperature and level of pea grits on extrusion behaviour and product characteristics of rice. Food Chem. 100: 198-202.
Singh, J., A. Dartois and L. Kaur. 2010. Starch digestibility in food matrix: a review. Trends in Food Science and Technology. Int J Pharmacol. 21:168-180.
Soison, B., K. Jangchud, A. Jangchud, T. Harnsilawat, K. Piyachomkwan and C. Charunuch. 2014. Physico-functional and antioxidant properties of purple-flesh sweet potato flours as affected by extrusion and drum-drying treatments. Int J Food Sci Technol. 49: 2067-2075.
Stojceska, V., P. Ainsworth, A. Plunkett and Ş. Ibanoglu. 2009. The effect of extrusion cooking using different water feed rates on the quality of ready-to-eat snacks made from food products. Food Chem. 114: 226-232.
Sun, Y. and K. Muthukumarappan. 2002. Changes in functionality of soy-based extrudates during single-screw extrusion processing. Int J Food Prop. 5 (2): 379-389.
Sobukola, O.P., J.M. Babajide and O. Ogunsade. 2012. Effect of brewer spent grain addition and extrusion parameters on some properties of extruded yam starch-based pasta. J Food Process Pres. http://dx.doi.org/10.1111/j.1745-4549.2012.00711.x
Takasugi, M., S. Kawashima and N. Katsui. 1987. Studies on stress metabolites .5. 2 Polyacetylenic phytoalexins from Arctium-lappa. Phytochem. 26: 2957-2958.
Thachil, M.T., M.K. Chouksey and V. Gudipati. 2014. Amylose–lipid complex formation during extrusion cooking: effect of added lipid type and amylose level on corn-based puffed snacks. Int J Food Sci Technol. 49: 309-316.
Wang, H. Y. and Y. P. Chen. 2004. Research of Fructus Arctii and its extracts on the renal pathological of STZ-induced diabetic rats. Chin Tradit Pat Med. 26(9): 745-749.
Wang, T., F. He and G. Chen. 2014. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. J Func Foods. 7: 101-111.
Wang, Y.Y. and G.H. Ryu. 2013. Physical properties of extruded corn grits with corn fiber by CO2 injection extrusion. J Food Eng. 116: 14-20.
Wang, Y.Y. and G.H. Ryu. 2013. Physicochemical and antioxidant properties of extruded corn grits with corn fiber by CO2 injection extrusion process. J Cereal Sci. 58 (1): 110-116.
Waramboi, J.G., M.J. Gidley, P.A. Sopade. 2014. Influence of extrusion on expansion, functional and digestibility properties of whole sweetpotato flour. LWT - Food Sci Technol. 59 (2) (1): 1136-1145.
Wei, L., W. Jiajia, Z. Zhenzhen, Xu. Jinnan , Xie. Zhuohong , S. Margaret and G. Xiangdong. 2014. In vitro and in vivo antioxidant activity of a fructan from the roots of Arctium lappa L. Int J Biol Macromol. 65: 446-453.
Wynn, S.G. and B.J. Fougere. 2007. Veterinary herbal medicine. In: Wynn, S.G. and B.J. Fougere, editor. 1st edition. Elsevier B.V., Academic Press London, England.
Xu, Z.H. ,C.C. Gu, K. Wangb,J.X. Ju, H.Y. Wang, K.F. Ruan, and Y.Feng. 2015. Arctigenic acid, the key substance responsible for the hypoglycemic activity of Fructus Arctii. Phytomedicine. 22: 128-137.
Xu, Z.H., X.Y. Wang, M.M. Zhou, L.P. Ma, Y. Deng, H.J. Zhang, A.H. Zhao, Y.Y. Zhang and W. Jia. 2008. The antidiabetic activity of total lignan from Fructus Arctii against alloxan-induced diabetes in mice and rats. Phytother. Res. 22: 97-101.
Yagcı, S. and F. Gogus. 2008. Response surface methodology for evaluation of physical and functional properties of extruded snack foods developed from food-by-products. J Food Eng. 86:122-132.
Yanniotis, S., A. Petraki and E. Soumpasi. 2007. Effect of pectin and wheat fibers on quality attributes of extruded cornstarch. J Food Eng. 80: 594-599.
Yaqoub, A.G., A. Yaqoub, A. M. Mohammed and A.A. Asma. 2008. Effect of soaking, sprouting and cooking on chemical composition, Bioavailability of minerals, Vitamins and protein Digestibility of Roselle (Hibiscus Sabdariffa L.) Seed. Pakistan J. Nutr. 7(1): 50-56.
Yu, L., H.S. Ramaswamy and J. Boye. 2009. Twin-screw extrusion of corn flour and soy protein isolate (SPI) blends: a response surface analysis. Food Bioprocess Technol. http://dx.doi.org/10.1007/s11947-009-0294-8
Yu, L., H.S. Ramaswamy and J. Boye. 2012. Twin-screw extrusion of corn flour and soy protein isolate (SPI) blends: a response surface analysis. Food Bioprocess Tech. 5: 485-497.
Yu, L., H.S. Ramaswamy and J. Boye. 2013. Protein rich extruded products prepared from soy protein isolate-corn flour blends. LWT - Food Sci Technol. 50 (1): 279-289.
Zhu, L.J., R. Shukri, N.J. de Mesa-Stonestreet, H. Dogan, Y.C. Shi and S. Alavi. 2010. Mechanical and microstructural properties of soy protein – high amylose corn starch extrudates in relation to physiochemical changes of starch during extrusion. J.Food Eng. 100: 232-238.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關點閱論文
 
系統版面圖檔 系統版面圖檔