|
[1] A. Mathiesen, The State of the world fisheries and aquaculture 2012, FAO, Roma 2012. [2] T. Watanabe, C. Kitajima, S. Fujita, Nutritional values of live organisms used in Japan for mass propagation of fish: A review, Aquaculture, 34 (1983) 115-143. [3] P. Spolaore, C. Joannis-Cassan, E. Duran, A. Isambert, Commercial applications of microalgae, Journal of Bioscience and Bioengineering, 101 (2006) 87-96. [4] W.P. Breese, R.E. Malouf, Hatchery manual for the Pacific oyster, Corvallis, Ore.: Oregon State University, 1975. [5] S.E. Shumway, A review of the effects of algal blooms on shellfish and aquaculture, Journal of the World Aquaculture Society, 21 (1990) 65-104. [6] P. Coutteau, P. Sorgeloos, Substitute diets for live algae in the intensive rearing of bivalve mollusks—a state of the art report, World Aquaculture, 24 (1993) 45-52. [7] K.I. Reitan, J.R. Rainuzzo, G. Øie, Y. Olsen, A review of the nutritional effects of algae in marine fish larvae, Aquaculture, 155 (1997) 207-221. [8] R. Alonso-Rodrıguez, F. Páez-Osuna, Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California, Aquaculture, 219 (2003) 317-336. [9] S.M. Renaud, L.-V. Thinh, G. Lambrinidis, D.L. Parry, Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures, Aquaculture, 211 (2002) 195-214. [10] I.R. Davison, Environmental effects on algal photosynthesis: temperature, Journal of phycology, 27 (1991) 2-8. [11] R.J. Geider, Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton, New Phytologist, 106 (1987) 1-34. [12] H.C. Matthijs, H. Balke, U.M. Van Hes, B. Kroon, L.R. Mur, R.A. Binot, Application of light‐emitting diodes in bioreactors: Flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa), Biotechnology and Bioengineering, 50 (1996) 98-107. [13] C. Yeesang, B. Cheirsilp, Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand, Bioresource Technology, 102 (2011) 3034-3040. [14] C. Herrero, A. Cid, J. Fábregas, J. Abalde, Yields in biomass and chemical constituents of four commercially important marine microalgae with different culture media, Aquacultural engineering, 10 (1991) 99-110. [15] H.G. Peterson, F.P. Healey, R. Wagemann, Metal toxicity to algae: a highly pH dependent phenomenon, Canadian Journal of Fisheries and Aquatic Sciences, 41 (1984) 974-979. [16] C. Yoo, S.-Y. Jun, J.-Y. Lee, C.-Y. Ahn, H.-M. Oh, Selection of microalgae for lipid production under high levels carbon dioxide, Bioresource technology, 101 (2010) S71-S74. [17] E.B. Sydney, W. Sturm, J.C. de Carvalho, V. Thomaz-Soccol, C. Larroche, A. Pandey, C.R. Soccol, Potential carbon dioxide fixation by industrially important microalgae, Bioresource Technology, 101 (2010) 5892-5896. [18] I. Havlik, P. Lindner, T. Scheper, K.F. Reardon, On-line monitoring of large cultivations of microalgae and cyanobacteria, Trends in Biotechnology, 31 (2013) 406-414. [19] M.H. Sarrafzadeh, H.-J. La, S.-H. Seo, H. Asgharnejad, H.-M. Oh, Evaluation of various techniques for microalgal biomass quantification, Journal of biotechnology, 216 (2015) 90-97. [20] Y.-K. Lee, Microalgal mass culture systems and methods: their limitation and potential, Journal of applied phycology, 13 (2001) 307-315. [21] Y.-A. Ma, H.-F. Huang, C.-C. Yu, The optimization of operating parameters on microalgae upscaling process planning, Bioprocess Biosyst Eng, 39 (2016) 521-532. [22] M.A. Borowitzka, Commercial production of microalgae: ponds, tanks, tubes and fermenters, Journal of biotechnology, 70 (1999) 313-321. [23] T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel production and other applications: A review, Renewable and Sustainable Energy Reviews, 14 (2010) 217-232. [24] P.F. Stanbury, A. Whitaker, S.J. Hall, Principles of fermentation technology, Elsevier, 2013. [25] J. Meyrath, G. Suchanek, Chapter III Inoculation Techniques—Effects due to quality and quantity of inoculum, Methods in microbiology, 7 (1972) 159-209. [26] C. Boulton, Developments in brewery fermentation, Biotechnology and Genetic Engineering Reviews, 9 (1991) 127-181. [27] G. Reed, T.W. Nagodawithana, Baker’s yeast production, Yeast technology, Springer Netherlands, 1991, pp. 261-314. [28] V. Galvanauskas, R. Simutis, N. Volk, A. Lübbert, Model based design of a biochemical cultivation process, Bioprocess Engineering, 18 (1998) 227-234. [29] R. Simutis, R. Oliveira, M. Manikowski, S.F. de Azevedo, A. Lübbert, How to increase the performance of models for process optimization and control, Journal of biotechnology, 59 (1997) 73-89. [30] C.-S. Lee, C.S. Tamaru, Live larval food production at the Oceanic Institute, Hawaii, Crustacean Aquaculture. CRC Handbook of Mariculture, 1 (1993) 15-28. [31] M.M. Helm, N. Bourne, A. Lovatelli, Hatchery culture of bivalves: a practical manual, Food and agriculture organization of the United Nations, 2004. [32] L. Creswell, Phytoplankton culture for aquaculture feed, Southern Regional Aquaculture Center, 2010. [33] L.M. Brown, I. Gargantini, D.J. Brown, H.J. Atkinson, J. Govindarajan, G.C. Vanlerberghe, Computer-based image analysis for the automated counting and morphological description of microalgae in culture, Journal of applied phycology, 1 (1989) 211-225. [34] H. Hillebrand, C.D. Dürselen, D. Kirschtel, U. Pollingher, T. Zohary, Biovolume calculation for pelagic and benthic microalgae, Journal of phycology, 35 (1999) 403-424. [35] C. Rehbock, D. Riechers, T. Höpfner, A. Bluma, P. Lindner, B. Hitzmann, S. Beutel, T. Scheper, Development of a flow-through microscopic multitesting system for parallel monitoring of cell samples in biotechnological cultivation processes, Journal of biotechnology, 150 (2010) 87-93. [36] A. Bluma, T. Höpfner, P. Lindner, C. Rehbock, S. Beutel, D. Riechers, B. Hitzmann, T. Scheper, In-situ imaging sensors for bioprocess monitoring: state of the art, Analytical and bioanalytical chemistry, 398 (2010) 2429-2438. [37] T. Höpfner, A. Bluma, G. Rudolph, P. Lindner, T. Scheper, A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring, Bioprocess Biosyst Eng, 33 (2010) 247-256. [38] I. Havlik, K.F. Reardon, M. Ünal, P. Lindner, A. Prediger, A. Babitzky, S. Beutel, T. Scheper, Monitoring of microalgal cultivations with on-line, flow-through microscopy, Algal Research, 2 (2013) 253-257. [39] L. McKay, D. Kamykowski, E. Milligan, B. Schaeffer, G. Sinclair, Comparison of swimming speed and photophysiological responses to different external conditions among three Karenia brevis strains, Harmful Algae, 5 (2006) 623-636. [40] H. Guterman, S. Ben-Yaakov, A. Vonshak, Automatic on-line growth estimation method for outdoor algal biomass production, Biotechnology and Bioengineering, 34 (1989) 143-152. [41] S.W. Wright, S. Jeffrey, Pigment markers for phytoplankton production, Marine organic matter: biomarkers, isotopes and DNA, Springer Berlin Heidelberg, 2006, pp. 71-104. [42] O. Skipnes, I. Eide, A. Jensen, Cage culture turbidostat: a device for rapid determination of algal growth rate, Appl. Environ. Microbiol., 40 (1980) 318-325. [43] A.A. Gitelson, Y.A. Grits, D. Etzion, Z. Ning, A. Richmond, Optical properties of Nannochloropsis sp and their application to remote estimation of cell mass, Biotechnology and Bioengineering, 69 (2000) 516-525. [44] L.A. Meireles, J.L. Azevedo, J.P. Cunha, F.X. Malcata, On-Line determination of biomass in a microalga bioreactor using a novel computerized flow injection analysis system, Biotechnology Progress, 18 (2002) 1387-1391. [45] D. Briassoulis, P. Panagakis, M. Chionidis, D. Tzenos, A. Lalos, C. Tsinos, K. Berberidis, A. Jacobsen, An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp., Bioresource Technology, 101 (2010) 6768-6777. [46] M.J. Griffiths, C. Garcin, R.P. van Hille, S.T.L. Harrison, Interference by pigment in the estimation of microalgal biomass concentration by optical density, Journal of Microbiological Methods, 85 (2011) 119-123. [47] J. Sandnes, T. Ringstad, D. Wenner, P. Heyerdahl, T. Källqvist, H. Gisler?d, Real-time monitoring and automatic density control of large-scale microalgal cultures using near infrared (NIR) optical density sensors, Journal of biotechnology, 122 (2006) 209-215. [48] J.P. Fidalgo, A. Cid, E. Torres, A. Sukenik, C. Herrero, Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana, Aquaculture, 166 (1998) 105-116. [49] C.-H. Su, C.-C. Fu, Y.-C. Chang, G.R. Nair, J.-L. Ye, I.M. Chu, W.-T. Wu, Simultaneous estimation of chlorophyll a and lipid contents in microalgae by three-color analysis, Biotechnology and Bioengineering, 99 (2008) 1034-1039. [50] R. Kandilian, J. Pruvost, J. Legrand, L. Pilon, Influence of light absorption rate by Nannochloropsis oculata on triglyceride production during nitrogen starvation, Bioresource Technology, 163 (2014) 308-319. [51] L.A. Meireles, A.C. Guedes, C.R. Barbosa, J.L. Azevedo, J.P. Cunha, F.X. Malcata, On-line control of light intensity in a microalgal bioreactor using a novel automatic system, Enzyme and Microbial Technology, 42 (2008) 554-559. [52] K. Marxen, K.H. Vanselow, S. Lippemeier, R. Hintze, A. Ruser, U.-P. Hansen, A photobioreactor system for computer controlled cultivation of microalgae, Journal of applied phycology, 17 (2005) 535-549. [53] M. Benavides, J. Mailier, A.-L. Hantson, G. Muñoz, A. Vargas, J. Van Impe, A. Vande Wouwer, Design and test of a low-cost rgb sensor for online measurement of microalgae concentration within a photo-bioreactor, Sensors, 15 (2015) 4766-4780. [54] R. Kandilian, T.-C. Tsao, L. Pilon, Control of incident irradiance on a batch operated flat-plate photobioreactor, Chemical Engineering Science, 119 (2014) 99-108. [55] M.R. Melnicki, G.E. Pinchuk, E.A. Hill, L.A. Kucek, S.M. Stolyar, J.K. Fredrickson, A.E. Konopka, A.S. Beliaev, Feedback-controlled LED photobioreactor for photophysiological studies of cyanobacteria, Bioresource technology, 134 (2013) 127-133. [56] P.H. Raven, Johnson and G. B., Biology, McGraw-Hill, 2002. [57] G. Jee, Sixty-Three Years Since Kautsky: Chlorophylla Fluorescence, Aust. J. Plant Physiol, 22 (1995) 131-160. [58] D.J. Suggett, O. Prášil, M.A. Borowitzka, Chlorophyll a fluorescence in aquatic sciences: methods and applications, Ed. M. A. Borowitzka. Dordrecht, The Netherlands: Springer, 2010. [59] G.C. Papageorgiou, M. Tsimilli-Michael, K. Stamatakis, The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint, Photosynthesis Research, 94 (2007) 275-290. [60] U. Schreiber, T. Endo, H. Mi, K. Asada, Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria, Plant and Cell Physiology, 36 (1995) 873-882. [61] G. Agati, P. Mazzinghi, F. Fusi, I. Ambrosini, The F685/F730 chlorophyll fluorescence ratio as a tool in plant physiology: response to physiological and environmental factors, Journal of Plant Physiology, 145 (1995) 228-238. [62] G. Agati, Z.G. Cerovic, I. Moya, The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in Phaseolus vulgaris and Pisum sativum: The role of the photosystem I contribution to the 735 nm fluorescence band, Photochemistry and Photobiology, 72 (2000) 75-84. [63] A. Trebst, [65] Inhibitors in electron flow: Tools for the functional and structural localization of carriers and energy conservation sites, Methods in enzymology, 69 (1980) 675-715. [64] M. Beutler, K. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.P. Hansen, H. Dau, A fluorometric method for the differentiation of algal populations in vivo and in situ., Photosynthesis Research, 72 (2002) 39-53. [65] S. Lippemeier, R. Hintze, K. Vanselow, P. Hartig, F. Colijn, In-line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis, European Journal of Phycology, 36 (2001) 89-100. [66] M. Kruskopf, K.J. Flynn, Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate, New Phytologist, 169 (2006) 525-536. [67] M. Obata, T. Toda, S. Taguchi, Using chlorophyll fluorescence to monitor yields of microalgal production, Journal of Applied Phycology, 21 (2009) 315-319. [68] T. Leeuw, E. Boss, D. Wright, In situ measurements of phytoplankton fluorescence using low cost electronics, Sensors, 13 (2013) 7872. [69] J.J. Lamb, J.J. Eaton-Rye, M.F. Hohmann-Marriott, An LED-based fluorometer for chlorophyll quantification in the laboratory and in the field, Photosynthesis research, 114 (2012) 59-68. [70] Y.-m. Yang, K.-k. Lou, L.-c. Zhou, S.-m. Ye, Design of a high-sensitivity, low-power instrument for chlorophyll a measurements, 2010 3rd International Conference on Biomedical Engineering and Informatics, IEEE, 2010, pp. 1450-1454. [71] V.V. Povazhnyi, A fluorometer on the basis of powerful light emitting diodes for determination of the chlorophyll “a” concentration, Oceanology, 54 (2014) 387-391. [72] T. Minowa, S.-y. Yokoyama, M. Kishimoto, T. Okakura, Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction, Fuel, 74 (1995) 1735-1738. [73] S. Sawayama, T. Minowa, S.Y. Yokoyama, Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae, Biomass and Bioenergy, 17 (1999) 33-39. [74] K. Tsukahara, T. Kimura, T. Minowa, S. Sawayama, T. Yagishita, S. Inoue, T. Hanaoka, Y. Usui, T. Ogi, Microalgal cultivation in a solution recovered from the low-temperature catalytic gasification of the microalga, Journal of Bioscience and Bioengineering, 91 (2001) 311-313. [75] Y.-A. Ma, Y.-M. Cheng, J.-W. Huang, J.-F. Jen, Y.-S. Huang, C.-C. Yu, Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae, Bioprocess Biosyst Eng, 37 (2014) 1543-1549. [76] Y. Li, M. Horsman, N. Wu, C.Q. Lan, N. Dubois-Calero, Biofuels from Microalgae, Biotechnology Progress, 24 (2008) 815-820. [77] P.S. Lau, N.F.Y. Tam, Y.S. Wong, Effect of algal density on nutrient removal from primary settled wastewater, Environmental Pollution, 89 (1995) 59-66. [78] Z. Zhang, J.P. Sachs, A. Marchetti, Hydrogen isotope fractionation in freshwater and marine algae: II. Temperature and nitrogen limited growth rate effects, Organic Geochemistry, 40 (2009) 428-439. [79] L.E. Schmidt, P.J. Hansen, Allelopathy in the prymnesiophyte Chrysochromulina polylepis: effect of cell concentration, growth phase and pH, Marine Ecology Progress Series, 216 (2001) 67-81. [80] A.R. Rao, C. Dayananda, R. Sarada, T.R. Shamala, G.A. Ravishankar, Effect of salinity on growth of green alga Botryococcus braunii and its constituents, Bioresource Technology, 98 (2007) 560-564. [81] S.-Y. Chiu, C.-Y. Kao, M.-T. Tsai, S.-C. Ong, C.-H. Chen, C.-S. Lin, Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration, Bioresource Technology, 100 (2009) 833-838. [82] J. Fábregas, A. Maseda, A. Domínguez, A. Otero, The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture, World Journal of Microbiology and Biotechnology, 20 (2004) 31-35. [83] P. Lavens, P. Sorgeloos, Manual on the production and use of live food for aquaculture, Food and Agriculture Organization, 1996. [84] T.P. Lane, W.H. DuMouchel, Simultaneous Confidence Intervals in Multiple Regression, The American Statistician, 48 (1994) 315-321. [85] Y. Chisti, Biodiesel from microalgae, Biotechnology Advances, 25 (2007) 294-306. [86] P. Tapie, A. Bernard, Microalgae production: Technical and economic evaluations, Biotechnology and Bioengineering, 32 (1988) 873-885. [87] J.W. Richardson, M.D. Johnson, J.L. Outlaw, Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest, Algal Research, 1 (2012) 93-100. [88] L. Brennan, P. Owende, Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products, Renewable and Sustainable Energy Reviews, 14 (2010) 557-577. [89] K. Suresh Kumar, H.-U. Dahms, J.-S. Lee, H.C. Kim, W.C. Lee, K.-H. Shin, Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence, Ecotoxicology and Environmental Safety, 104 (2014) 51-71. [90] A. Solovchenko, O. Solovchenko, I. Khozin-Goldberg, S. Didi-Cohen, D. Pal, Z. Cohen, S. Boussiba, Probing the effects of high-light stress on pigment and lipid metabolism in nitrogen-starving microalgae by measuring chlorophyll fluorescence transients: Studies with a Δ5 desaturase mutant of Parietochloris incisa (Chlorophyta, Trebouxiophyceae), Algal Research, 2 (2013) 175-182. [91] A.E. Solovchenko, I. Khozin-Goldberg, Z. Cohen, M.N. Merzlyak, Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa, Journal of Applied Phycology, 21 (2009) 361-366. [92] A. Solovchenko, I. Khozin-Goldberg, L. Recht, S. Boussiba, Stress-Induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids, Marine Biotechnology, 13 (2011) 527-535. [93] J. Masojídek, A. Vonshak, G. Torzillo, Chlorophyll fluorescence applications in microalgal mass cultures, in: J.D. Suggett, O. Prášil, A.M. Borowitzka (Eds.) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, Springer Netherlands, Dordrecht, 2010, pp. 277-292. [94] S. White, A. Anandraj, F. Bux, PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids, Bioresource Technology, 102 (2011) 1675-1682. [95] Y. Gonen-Zurgil, Y. Carmeli-Schwartz, A. Sukenik, Selective effect of the herbicide DCMU on unicellular algae — a potential tool to maintain monoalgal mass culture of Nannochloropsis, Journal of Applied Phycology, 8 (1996) 415-419. [96] A.V. Ruban, Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage, Plant Physiology, 170 (2016) 1903-1916. [97] J.R. Malapascua, C.G. Jerez, M. Sergejevová, F.L. Figueroa, J.r. Masojídek, Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques, Aquat Biol, 22 (2014) 123-140. [98] M.E. Farias, E.G. Martinazzo, M.A. Bacarin, Chlorophyll fluorescence in the evaluation of photosynthetic electron transport chain inhibitors in the pea, Revista Ciência Agronômica, 47 (2016) 178-186. [99] S. Boisvert, D. Joly, R. Carpentier, Quantitative analysis of the experimental O–J–I–P chlorophyll fluorescence induction kinetics, FEBS Journal, 273 (2006) 4770-4777.
|