跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 09:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馬聿安
研究生(外文):Yu-An Ma
論文名稱:微藻培養策略與監測系統之研發
論文名稱(外文):Development of the Cultural Strategy and Monitoring System of Microalgae
指導教授:尤瓊琦
口試委員:黃振文艾群洪滉祐林聖泉黃信富簡麗鳳
口試日期:2016-07-26
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物產業機電工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:79
中文關鍵詞:微藻流程最佳化微藻監測系統
外文關鍵詞:MicroalgaeProcess optimumMicroalgae monitoring system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
微藻透過行光合作用進行固氮,並轉化為多種的生化成分,近年來大量被研究與應用。目前大量商業化生產微藻著重考量尋找合適量產之微藻種類與探討其對應之培養環境,然而探討培養操作流程最佳化方法與分析對變動成本之影響,可以提高商業化微藻生產效率,其亦是微藻生產廠在現有設備下,能以較低成本改善生產效益之重要方式。此外,微藻大量生產過程中,微藻生物變量之量測結果可直接作為評估其生長狀況之指標,能提供作為培養環境調整之參考,進一步有助於提高微藻生產效率與品質。
因此,本論文中包括兩個研究主題,主題一是微藻擴大培養模型建立與其最佳化操作參數流程之研究,主要是針對微藻擴大培養時操作參數之最佳化流程規劃,其中包括尋找最低變動成本之流程操作參數與評估在序列批次放大之最終培養階段之細胞密度誤差範圍。研究最終以三個模擬案例表達最佳化操作流程,而其獲致之各項支出在最小變動成本之比例,即是微藻商業化在亞熱帶地區建置時之重要考量。
主題二為建立整合吸收光譜與葉綠素螢光之微藻監測系統。吸收光譜與葉綠素螢光為微藻細胞兩個容易以非破壞性量測之光學特性,微藻監測系統分別以發光二極體、光二極體、微處理器等元件組成量測電路,並裝置於由三維列印機所製作之樣品槽中,以進行微藻溶液之光學特性量測。研究中以除草劑DCMU分別加入兩種微藻溶液中(Isochrysis galbana與 Nannochloropsis oculata),並以此新建置之監測系統觀察微藻光合色素組成與葉綠素螢光反應之變化,進一步評估系統之敏感性與可靠性。微藻監測系統獲致之結果顯示微藻經除草劑DCMU處理後,其光合色素在短時間內並未產生變化,而葉綠素螢光反應之最大螢光強度增加,且葉綠素螢光焠滅量減少。獲致之數據已能清楚顯示微藻細胞受除草劑DCMU之影響,阻斷光合作用電子傳遞之現象。
本論文中,兩研究主題成果,期待能提供亞熱帶地區之微藻生產者穩定的微藻生產技術,加快微藻於相關產業之應用與發展。


Microalgae can convert carbon dioxide into potential nutrients through photosynthesis, which can be extensively researched for practical applications. Suitable species and their cultivation conditions have been considered in most recently commercialized microalgae mass cultures. However, optimizing the operation parameters of the cultivation process influences variable cost. Through the optimization, commercialized microalgae mass cultures could involve employing current equipment to reduce costs and increase productivity. Moreover, during the mass culture process, measurement of biological variables could be directly used as an indicator for estimating the growth status of the cultures. The indicators could then facilitate the adjustment of the cultivation process as a reference, leading to an increase in productivity and quality of microalgae cultivation.
Therefore, this thesis involves two topics for considering these issues. Topic 1 of this thesis is “Model-based planning and optimization of the microalgae upscaling process.” In this study, the operating parameters of the upscaling process were planned, the minimum variable cost of the upscaling process was determined, and the error range of cell density in the final stage was evaluated. Three simulation case studies of the upscaling process were conducted to present the proposed process planning method. Each expenditure in the minimum variable cost was then obtained. This thesis addresses critical considerations of commercializing microalgae cultivation in subtropical regions.
Topic 2 of this thesis is “Development of integrated absorption spectra and chlorophyll fluorescence for a microalgae monitoring system.” Two easy and nondestructive measured optical properties, absorption spectra and chlorophyll fluorescence, were primarily used in this study. A light-emitting diode, photodiode, and microprocessor were integrated into the measuring circuit for the microalgae monitoring system. Additionally, the measuring circuit was installed in the sample chamber, which was constructed using a 3D printer for optical measuring. In this study, the herbicide DCMU was added to two microalgae suspensions (Isochrysis galbanaa and Nannochloropsis oculata). The composition of photosynthesis pigments and chlorophyll fluorescence responses were then measured using the new monitoring system to estimate their sensitivity and reliability. The result obtained from the microalgae monitoring system showed that microalgae suspensions treated using the DCMU did not alter the photosynthesis pigment, but led an increase in the maximum fluorescence intensity and a decrease in the amount of chlorophyll fluorescence quenching. The obtained data demonstrated the effect of microalgae treated with DCMU, which blocked electron transfer during photosynthesis.
The two topics in this thesis showed the high potential of an engineering method for microalgae mass cultivation. Furthermore, the stability of microalgae production technology may help producers in subtropical regions and may facilitate industrial microalgae mass production.


Acknowledgements i
Abstract ii
摘要 iv
Contents v
List of figures viii
List of Tables x
List of Symbols xi
Chapter 1 Introduction of microalgae cultivation 1
Chapter 2 Short review 4
Inoculum development programmer for microalgae industrial cultivation 4
Optical sensor in microalgae cultivation 6
Absorption 7
Chlorophyll Fluorescence 11
Chapter 3 Model-based planning and optimization of microalgae upscaling process 15
Introduction 15
Base model experiments for upscaling process 16
Materials and methods 17
Experimental results for base model 18
Optimization of upscaling process planning 20
Variable cost evaluation 20
Process planning 24
Base model process experiment and process planning 27
Results and Discussion 29
Case 1: Intermediate-scale culture under low light intensity 29
Case 2: Intermediate-scale culture under high light intensity 34
Case 3: Intermediate-scale culture under high light intensity with number of culture days expressed as integers 39
Conclusions 42
Chapter 4 Development of integrated absorption spectra and chlorophyll fluorescence for microalgae monitoring systems 43
Introduction 43
Materials and methods 44
Design of the microalgae monitoring system 44
Absorption measuring module of microalgae monitoring system 46
Chlorophyll fluorescence measuring module of microalgae monitoring system 49
Experimental procedures 52
Statistical analyses 53
Results and Discussion 53
Absorption investigation 53
Relative fluorescence intensities of four algae concentrations 56
Diminishment of fluorescence intensity 59
O-J-I-P test 61
Changes of Fluorescence intensity versus algae concentration 63
Pulse amplitude modulate fluorimeter measurement 65
Conclusions 65
Chapter 5 Conclusions 67
Reference 69



[1] A. Mathiesen, The State of the world fisheries and aquaculture 2012, FAO, Roma 2012.
[2] T. Watanabe, C. Kitajima, S. Fujita, Nutritional values of live organisms used in Japan for mass propagation of fish: A review, Aquaculture, 34 (1983) 115-143.
[3] P. Spolaore, C. Joannis-Cassan, E. Duran, A. Isambert, Commercial applications of microalgae, Journal of Bioscience and Bioengineering, 101 (2006) 87-96.
[4] W.P. Breese, R.E. Malouf, Hatchery manual for the Pacific oyster, Corvallis, Ore.: Oregon State University, 1975.
[5] S.E. Shumway, A review of the effects of algal blooms on shellfish and aquaculture, Journal of the World Aquaculture Society, 21 (1990) 65-104.
[6] P. Coutteau, P. Sorgeloos, Substitute diets for live algae in the intensive rearing of bivalve mollusks—a state of the art report, World Aquaculture, 24 (1993) 45-52.
[7] K.I. Reitan, J.R. Rainuzzo, G. Øie, Y. Olsen, A review of the nutritional effects of algae in marine fish larvae, Aquaculture, 155 (1997) 207-221.
[8] R. Alonso-Rodrıguez, F. Páez-Osuna, Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California, Aquaculture, 219 (2003) 317-336.
[9] S.M. Renaud, L.-V. Thinh, G. Lambrinidis, D.L. Parry, Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures, Aquaculture, 211 (2002) 195-214.
[10] I.R. Davison, Environmental effects on algal photosynthesis: temperature, Journal of phycology, 27 (1991) 2-8.
[11] R.J. Geider, Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton, New Phytologist, 106 (1987) 1-34.
[12] H.C. Matthijs, H. Balke, U.M. Van Hes, B. Kroon, L.R. Mur, R.A. Binot, Application of light‐emitting diodes in bioreactors: Flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa), Biotechnology and Bioengineering, 50 (1996) 98-107.
[13] C. Yeesang, B. Cheirsilp, Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand, Bioresource Technology, 102 (2011) 3034-3040.
[14] C. Herrero, A. Cid, J. Fábregas, J. Abalde, Yields in biomass and chemical constituents of four commercially important marine microalgae with different culture media, Aquacultural engineering, 10 (1991) 99-110.
[15] H.G. Peterson, F.P. Healey, R. Wagemann, Metal toxicity to algae: a highly pH dependent phenomenon, Canadian Journal of Fisheries and Aquatic Sciences, 41 (1984) 974-979.
[16] C. Yoo, S.-Y. Jun, J.-Y. Lee, C.-Y. Ahn, H.-M. Oh, Selection of microalgae for lipid production under high levels carbon dioxide, Bioresource technology, 101 (2010) S71-S74.
[17] E.B. Sydney, W. Sturm, J.C. de Carvalho, V. Thomaz-Soccol, C. Larroche, A. Pandey, C.R. Soccol, Potential carbon dioxide fixation by industrially important microalgae, Bioresource Technology, 101 (2010) 5892-5896.
[18] I. Havlik, P. Lindner, T. Scheper, K.F. Reardon, On-line monitoring of large cultivations of microalgae and cyanobacteria, Trends in Biotechnology, 31 (2013) 406-414.
[19] M.H. Sarrafzadeh, H.-J. La, S.-H. Seo, H. Asgharnejad, H.-M. Oh, Evaluation of various techniques for microalgal biomass quantification, Journal of biotechnology, 216 (2015) 90-97.
[20] Y.-K. Lee, Microalgal mass culture systems and methods: their limitation and potential, Journal of applied phycology, 13 (2001) 307-315.
[21] Y.-A. Ma, H.-F. Huang, C.-C. Yu, The optimization of operating parameters on microalgae upscaling process planning, Bioprocess Biosyst Eng, 39 (2016) 521-532.
[22] M.A. Borowitzka, Commercial production of microalgae: ponds, tanks, tubes and fermenters, Journal of biotechnology, 70 (1999) 313-321.
[23] T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel production and other applications: A review, Renewable and Sustainable Energy Reviews, 14 (2010) 217-232.
[24] P.F. Stanbury, A. Whitaker, S.J. Hall, Principles of fermentation technology, Elsevier, 2013.
[25] J. Meyrath, G. Suchanek, Chapter III Inoculation Techniques—Effects due to quality and quantity of inoculum, Methods in microbiology, 7 (1972) 159-209.
[26] C. Boulton, Developments in brewery fermentation, Biotechnology and Genetic Engineering Reviews, 9 (1991) 127-181.
[27] G. Reed, T.W. Nagodawithana, Baker’s yeast production, Yeast technology, Springer Netherlands, 1991, pp. 261-314.
[28] V. Galvanauskas, R. Simutis, N. Volk, A. Lübbert, Model based design of a biochemical cultivation process, Bioprocess Engineering, 18 (1998) 227-234.
[29] R. Simutis, R. Oliveira, M. Manikowski, S.F. de Azevedo, A. Lübbert, How to increase the performance of models for process optimization and control, Journal of biotechnology, 59 (1997) 73-89.
[30] C.-S. Lee, C.S. Tamaru, Live larval food production at the Oceanic Institute, Hawaii, Crustacean Aquaculture. CRC Handbook of Mariculture, 1 (1993) 15-28.
[31] M.M. Helm, N. Bourne, A. Lovatelli, Hatchery culture of bivalves: a practical manual, Food and agriculture organization of the United Nations, 2004.
[32] L. Creswell, Phytoplankton culture for aquaculture feed, Southern Regional Aquaculture Center, 2010.
[33] L.M. Brown, I. Gargantini, D.J. Brown, H.J. Atkinson, J. Govindarajan, G.C. Vanlerberghe, Computer-based image analysis for the automated counting and morphological description of microalgae in culture, Journal of applied phycology, 1 (1989) 211-225.
[34] H. Hillebrand, C.D. Dürselen, D. Kirschtel, U. Pollingher, T. Zohary, Biovolume calculation for pelagic and benthic microalgae, Journal of phycology, 35 (1999) 403-424.
[35] C. Rehbock, D. Riechers, T. Höpfner, A. Bluma, P. Lindner, B. Hitzmann, S. Beutel, T. Scheper, Development of a flow-through microscopic multitesting system for parallel monitoring of cell samples in biotechnological cultivation processes, Journal of biotechnology, 150 (2010) 87-93.
[36] A. Bluma, T. Höpfner, P. Lindner, C. Rehbock, S. Beutel, D. Riechers, B. Hitzmann, T. Scheper, In-situ imaging sensors for bioprocess monitoring: state of the art, Analytical and bioanalytical chemistry, 398 (2010) 2429-2438.
[37] T. Höpfner, A. Bluma, G. Rudolph, P. Lindner, T. Scheper, A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring, Bioprocess Biosyst Eng, 33 (2010) 247-256.
[38] I. Havlik, K.F. Reardon, M. Ünal, P. Lindner, A. Prediger, A. Babitzky, S. Beutel, T. Scheper, Monitoring of microalgal cultivations with on-line, flow-through microscopy, Algal Research, 2 (2013) 253-257.
[39] L. McKay, D. Kamykowski, E. Milligan, B. Schaeffer, G. Sinclair, Comparison of swimming speed and photophysiological responses to different external conditions among three Karenia brevis strains, Harmful Algae, 5 (2006) 623-636.
[40] H. Guterman, S. Ben-Yaakov, A. Vonshak, Automatic on-line growth estimation method for outdoor algal biomass production, Biotechnology and Bioengineering, 34 (1989) 143-152.
[41] S.W. Wright, S. Jeffrey, Pigment markers for phytoplankton production, Marine organic matter: biomarkers, isotopes and DNA, Springer Berlin Heidelberg, 2006, pp. 71-104.
[42] O. Skipnes, I. Eide, A. Jensen, Cage culture turbidostat: a device for rapid determination of algal growth rate, Appl. Environ. Microbiol., 40 (1980) 318-325.
[43] A.A. Gitelson, Y.A. Grits, D. Etzion, Z. Ning, A. Richmond, Optical properties of Nannochloropsis sp and their application to remote estimation of cell mass, Biotechnology and Bioengineering, 69 (2000) 516-525.
[44] L.A. Meireles, J.L. Azevedo, J.P. Cunha, F.X. Malcata, On-Line determination of biomass in a microalga bioreactor using a novel computerized flow injection analysis system, Biotechnology Progress, 18 (2002) 1387-1391.
[45] D. Briassoulis, P. Panagakis, M. Chionidis, D. Tzenos, A. Lalos, C. Tsinos, K. Berberidis, A. Jacobsen, An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp., Bioresource Technology, 101 (2010) 6768-6777.
[46] M.J. Griffiths, C. Garcin, R.P. van Hille, S.T.L. Harrison, Interference by pigment in the estimation of microalgal biomass concentration by optical density, Journal of Microbiological Methods, 85 (2011) 119-123.
[47] J. Sandnes, T. Ringstad, D. Wenner, P. Heyerdahl, T. Källqvist, H. Gisler?d, Real-time monitoring and automatic density control of large-scale microalgal cultures using near infrared (NIR) optical density sensors, Journal of biotechnology, 122 (2006) 209-215.
[48] J.P. Fidalgo, A. Cid, E. Torres, A. Sukenik, C. Herrero, Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana, Aquaculture, 166 (1998) 105-116.
[49] C.-H. Su, C.-C. Fu, Y.-C. Chang, G.R. Nair, J.-L. Ye, I.M. Chu, W.-T. Wu, Simultaneous estimation of chlorophyll a and lipid contents in microalgae by three-color analysis, Biotechnology and Bioengineering, 99 (2008) 1034-1039.
[50] R. Kandilian, J. Pruvost, J. Legrand, L. Pilon, Influence of light absorption rate by Nannochloropsis oculata on triglyceride production during nitrogen starvation, Bioresource Technology, 163 (2014) 308-319.
[51] L.A. Meireles, A.C. Guedes, C.R. Barbosa, J.L. Azevedo, J.P. Cunha, F.X. Malcata, On-line control of light intensity in a microalgal bioreactor using a novel automatic system, Enzyme and Microbial Technology, 42 (2008) 554-559.
[52] K. Marxen, K.H. Vanselow, S. Lippemeier, R. Hintze, A. Ruser, U.-P. Hansen, A photobioreactor system for computer controlled cultivation of microalgae, Journal of applied phycology, 17 (2005) 535-549.
[53] M. Benavides, J. Mailier, A.-L. Hantson, G. Muñoz, A. Vargas, J. Van Impe, A. Vande Wouwer, Design and test of a low-cost rgb sensor for online measurement of microalgae concentration within a photo-bioreactor, Sensors, 15 (2015) 4766-4780.
[54] R. Kandilian, T.-C. Tsao, L. Pilon, Control of incident irradiance on a batch operated flat-plate photobioreactor, Chemical Engineering Science, 119 (2014) 99-108.
[55] M.R. Melnicki, G.E. Pinchuk, E.A. Hill, L.A. Kucek, S.M. Stolyar, J.K. Fredrickson, A.E. Konopka, A.S. Beliaev, Feedback-controlled LED photobioreactor for photophysiological studies of cyanobacteria, Bioresource technology, 134 (2013) 127-133.
[56] P.H. Raven, Johnson and G. B., Biology, McGraw-Hill, 2002.
[57] G. Jee, Sixty-Three Years Since Kautsky: Chlorophylla Fluorescence, Aust. J. Plant Physiol, 22 (1995) 131-160.
[58] D.J. Suggett, O. Prášil, M.A. Borowitzka, Chlorophyll a fluorescence in aquatic sciences: methods and applications, Ed. M. A. Borowitzka. Dordrecht, The Netherlands: Springer, 2010.
[59] G.C. Papageorgiou, M. Tsimilli-Michael, K. Stamatakis, The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint, Photosynthesis Research, 94 (2007) 275-290.
[60] U. Schreiber, T. Endo, H. Mi, K. Asada, Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria, Plant and Cell Physiology, 36 (1995) 873-882.
[61] G. Agati, P. Mazzinghi, F. Fusi, I. Ambrosini, The F685/F730 chlorophyll fluorescence ratio as a tool in plant physiology: response to physiological and environmental factors, Journal of Plant Physiology, 145 (1995) 228-238.
[62] G. Agati, Z.G. Cerovic, I. Moya, The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in Phaseolus vulgaris and Pisum sativum: The role of the photosystem I contribution to the 735 nm fluorescence band, Photochemistry and Photobiology, 72 (2000) 75-84.
[63] A. Trebst, [65] Inhibitors in electron flow: Tools for the functional and structural localization of carriers and energy conservation sites, Methods in enzymology, 69 (1980) 675-715.
[64] M. Beutler, K. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.P. Hansen, H. Dau, A fluorometric method for the differentiation of algal populations in vivo and in situ., Photosynthesis Research, 72 (2002) 39-53.
[65] S. Lippemeier, R. Hintze, K. Vanselow, P. Hartig, F. Colijn, In-line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis, European Journal of Phycology, 36 (2001) 89-100.
[66] M. Kruskopf, K.J. Flynn, Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate, New Phytologist, 169 (2006) 525-536.
[67] M. Obata, T. Toda, S. Taguchi, Using chlorophyll fluorescence to monitor yields of microalgal production, Journal of Applied Phycology, 21 (2009) 315-319.
[68] T. Leeuw, E. Boss, D. Wright, In situ measurements of phytoplankton fluorescence using low cost electronics, Sensors, 13 (2013) 7872.
[69] J.J. Lamb, J.J. Eaton-Rye, M.F. Hohmann-Marriott, An LED-based fluorometer for chlorophyll quantification in the laboratory and in the field, Photosynthesis research, 114 (2012) 59-68.
[70] Y.-m. Yang, K.-k. Lou, L.-c. Zhou, S.-m. Ye, Design of a high-sensitivity, low-power instrument for chlorophyll a measurements, 2010 3rd International Conference on Biomedical Engineering and Informatics, IEEE, 2010, pp. 1450-1454.
[71] V.V. Povazhnyi, A fluorometer on the basis of powerful light emitting diodes for determination of the chlorophyll “a” concentration, Oceanology, 54 (2014) 387-391.
[72] T. Minowa, S.-y. Yokoyama, M. Kishimoto, T. Okakura, Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction, Fuel, 74 (1995) 1735-1738.
[73] S. Sawayama, T. Minowa, S.Y. Yokoyama, Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae, Biomass and Bioenergy, 17 (1999) 33-39.
[74] K. Tsukahara, T. Kimura, T. Minowa, S. Sawayama, T. Yagishita, S. Inoue, T. Hanaoka, Y. Usui, T. Ogi, Microalgal cultivation in a solution recovered from the low-temperature catalytic gasification of the microalga, Journal of Bioscience and Bioengineering, 91 (2001) 311-313.
[75] Y.-A. Ma, Y.-M. Cheng, J.-W. Huang, J.-F. Jen, Y.-S. Huang, C.-C. Yu, Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae, Bioprocess Biosyst Eng, 37 (2014) 1543-1549.
[76] Y. Li, M. Horsman, N. Wu, C.Q. Lan, N. Dubois-Calero, Biofuels from Microalgae, Biotechnology Progress, 24 (2008) 815-820.
[77] P.S. Lau, N.F.Y. Tam, Y.S. Wong, Effect of algal density on nutrient removal from primary settled wastewater, Environmental Pollution, 89 (1995) 59-66.
[78] Z. Zhang, J.P. Sachs, A. Marchetti, Hydrogen isotope fractionation in freshwater and marine algae: II. Temperature and nitrogen limited growth rate effects, Organic Geochemistry, 40 (2009) 428-439.
[79] L.E. Schmidt, P.J. Hansen, Allelopathy in the prymnesiophyte Chrysochromulina polylepis: effect of cell concentration, growth phase and pH, Marine Ecology Progress Series, 216 (2001) 67-81.
[80] A.R. Rao, C. Dayananda, R. Sarada, T.R. Shamala, G.A. Ravishankar, Effect of salinity on growth of green alga Botryococcus braunii and its constituents, Bioresource Technology, 98 (2007) 560-564.
[81] S.-Y. Chiu, C.-Y. Kao, M.-T. Tsai, S.-C. Ong, C.-H. Chen, C.-S. Lin, Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration, Bioresource Technology, 100 (2009) 833-838.
[82] J. Fábregas, A. Maseda, A. Domínguez, A. Otero, The cell composition of Nannochloropsis sp. changes under different irradiances in semicontinuous culture, World Journal of Microbiology and Biotechnology, 20 (2004) 31-35.
[83] P. Lavens, P. Sorgeloos, Manual on the production and use of live food for aquaculture, Food and Agriculture Organization, 1996.
[84] T.P. Lane, W.H. DuMouchel, Simultaneous Confidence Intervals in Multiple Regression, The American Statistician, 48 (1994) 315-321.
[85] Y. Chisti, Biodiesel from microalgae, Biotechnology Advances, 25 (2007) 294-306.
[86] P. Tapie, A. Bernard, Microalgae production: Technical and economic evaluations, Biotechnology and Bioengineering, 32 (1988) 873-885.
[87] J.W. Richardson, M.D. Johnson, J.L. Outlaw, Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest, Algal Research, 1 (2012) 93-100.
[88] L. Brennan, P. Owende, Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products, Renewable and Sustainable Energy Reviews, 14 (2010) 557-577.
[89] K. Suresh Kumar, H.-U. Dahms, J.-S. Lee, H.C. Kim, W.C. Lee, K.-H. Shin, Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence, Ecotoxicology and Environmental Safety, 104 (2014) 51-71.
[90] A. Solovchenko, O. Solovchenko, I. Khozin-Goldberg, S. Didi-Cohen, D. Pal, Z. Cohen, S. Boussiba, Probing the effects of high-light stress on pigment and lipid metabolism in nitrogen-starving microalgae by measuring chlorophyll fluorescence transients: Studies with a Δ5 desaturase mutant of Parietochloris incisa (Chlorophyta, Trebouxiophyceae), Algal Research, 2 (2013) 175-182.
[91] A.E. Solovchenko, I. Khozin-Goldberg, Z. Cohen, M.N. Merzlyak, Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa, Journal of Applied Phycology, 21 (2009) 361-366.
[92] A. Solovchenko, I. Khozin-Goldberg, L. Recht, S. Boussiba, Stress-Induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids, Marine Biotechnology, 13 (2011) 527-535.
[93] J. Masojídek, A. Vonshak, G. Torzillo, Chlorophyll fluorescence applications in microalgal mass cultures, in: J.D. Suggett, O. Prášil, A.M. Borowitzka (Eds.) Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, Springer Netherlands, Dordrecht, 2010, pp. 277-292.
[94] S. White, A. Anandraj, F. Bux, PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids, Bioresource Technology, 102 (2011) 1675-1682.
[95] Y. Gonen-Zurgil, Y. Carmeli-Schwartz, A. Sukenik, Selective effect of the herbicide DCMU on unicellular algae — a potential tool to maintain monoalgal mass culture of Nannochloropsis, Journal of Applied Phycology, 8 (1996) 415-419.
[96] A.V. Ruban, Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage, Plant Physiology, 170 (2016) 1903-1916.
[97] J.R. Malapascua, C.G. Jerez, M. Sergejevová, F.L. Figueroa, J.r. Masojídek, Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques, Aquat Biol, 22 (2014) 123-140.
[98] M.E. Farias, E.G. Martinazzo, M.A. Bacarin, Chlorophyll fluorescence in the evaluation of photosynthetic electron transport chain inhibitors in the pea, Revista Ciência Agronômica, 47 (2016) 178-186.
[99] S. Boisvert, D. Joly, R. Carpentier, Quantitative analysis of the experimental O–J–I–P chlorophyll fluorescence induction kinetics, FEBS Journal, 273 (2006) 4770-4777.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top