(3.236.222.124) 您好!臺灣時間:2021/05/10 17:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:段昉芸
研究生(外文):Fang-Yun Tuan
論文名稱:評估小麥不同品系在臺灣之栽培適期
論文名稱(外文):To evaluate the optimal cultivation period of wheat different lines in Taiwan
指導教授:許奕婷
指導教授(外文):Yi-Ting Hsu
口試委員:葉茂生陳宗禮黃文理黃文達
口試日期:2016-07-01
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:101
中文關鍵詞:小麥播種期熱逆境產量生育期
外文關鍵詞:wheatsowing dateheat stressyielddevelopmental stage
相關次數:
  • 被引用被引用:1
  • 點閱點閱:204
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
小麥 (Triticum aestivum) 為世界三大主要糧食作物之一,隨著全球暖化氣溫升高,選育出耐熱品種之小麥成為一重要課題。在台灣小麥栽培適期為秋冬季,約在十月下旬進行播種,而本研究欲探討不同栽培時期對 20 個小麥品系生長的影響,試驗於 2013 年和 2014 年之 9 月、10 月及 11 月播種,調查其出土率、營養生長與產量構成要素等性狀。結果發現提早播種使小麥生育初期因氣溫較高,造成幼苗出土率下降進而減少單位面積株數,但小麥有效分蘗數卻是增加。此外,當小麥營養生長期遭遇高溫時,會抑制小麥株高、穗長及每穗之小穗列數,顯示單株產量會受影響。9 月播種之小麥抽穗期的時候溫度較溫暖,使穗基部及頂端之小花稔性提升,進而促進每穗稔實率上升,而開花期至成熟期間之氣溫以 9 月播種之小麥較低,較低之溫度延長穀粒充實期,進而提升單株產量。小麥成熟收穫之穀粒中以 9 月與 10 月播種之粗蛋白質含量較高,推測與出土率低造成較低的植株密度有關,減少土壤養分競爭使氮之獲得增加,進而促進穀粒粗蛋白質含量。此外,品系51704-JP、51979-JP 及 PI520076 於9 月播種時仍具較高之出土率、穗長及每穗粒數,使其較其他品系具較高的單株產量,但生育期長達 180 天左右,未來用於稻麥輪作系統之可能性或作為耐熱品系育成之親本,仍需進一步討論。

Wheat (Triticum aestivum) is one of the most important crops in the world. Recently, it became more and more important issue to breed wheat varieties with high temperature tolerance to adapt or adopt global warming. In Taiwan, wheat is usually sowed in lately October and cultivated in autumn or winter. We would like to identify the effect of different sowing dates on the agronomic traits of 20 wheat lines. The seeds was sowed in September, October and November in 2013 and 2014 and investigated the emergence rate, vegetative traits and yield components, respectively. It showed that, because of the higher temperature in early developmental stage, early sowing date will decrease the emergence rate, and that decrease the wheat number per unit of area but increase the number of active tillers. In addition, the plant height, length of the panicles and number of spikelet will decrease and is due to the high temperature during the vegetative growth. It is indicated that high temperature will influence the yield of single wheat. On the other hand, because of the warm temperature during booting stage, sowing date in September increases the fertility of the florets at both ends of the spike and increase the grain number per spike. And because the temperature during flowering and maturing stage is the lowest in September, it extends the grain filling period and increases the yield of single wheat. On quality traits, sowing in September and October will increase the protein content of grains. We speculated that lower emergence rate result in lower plant density, decreasing the nutrition competition and lead to more protein accumulated in grains. After our estimation, lines 51704-JP, 51979-JP and PI520076 have higher emergence rate, panicle length and grains number per spike. Although these lines have higher yield, they take 180 days to harvest. So we need more investigation to know the utility in rice-wheat rotate cropping system or being the parents to breed the variety with heat tolerance.

中文摘要--------------------------------------------------------------------------
英文摘要--------------------------------------------------------------------------
目錄--------------------------------------------------------------------------------
圖表目錄--------------------------------------------------------------------------
壹、 前言------------------------------------------------------------------------ 1
一、 小麥生產之世界概況---------------------------------------------1
二、 小麥栽培之環境---------------------------------------------------1
三、 小麥品質與用途---------------------------------------------------2
四、高溫對小麥之影響--------------------------------------------------4
(一) 高溫對小麥產量之影響------------------------------------4
(二) 高溫對小麥光合作用之影響------------------------------5
(三) 高溫對小麥營養生長之影響------------------------------6
(四) 高溫對小麥生殖生長之影響------------------------------8
貳、材料方法--------------------------------------------------------------------12
一、田間之試驗設計-----------------------------------------------------12
二、栽培方式--------------------------------------------------------------12
(一) 種子之預處理-------------------------------------------------12
(二) 田間管理-------------------------------------------------------14
三、農藝性狀調查--------------------------------------------------------16
四、試驗統計分析--------------------------------------------------------20
五、氣候條件--------------------------------------------------------------20
參、結果--------------------------------------------------------------------------21
一、不同栽培時期對小麥營養生長之影響--------------------------21
(一) 種苗出土率----------------------------------------------------21
(二) 小麥株高-------------------------------------------------------21
(三) 劍葉長度-------------------------------------------------------27
二、不同栽培時期對小麥生殖生長與產量之影響-----------------30
(一) 有效分蘗數----------------------------------------------------30
(二) 穗長-------------------------------------------------------------35
(三) 小穗數----------------------------------------------------------35
(四) 每穗穀粒數----------------------------------------------------38
(五) 單株產量-------------------------------------------------------41
(六) 穗基部不稔實小穗數----------------------------------------41
(七) 穗頂稔實率----------------------------------------------------46
三、不同栽培時期對小麥穀粒蛋白質之影響-----------------------49
四、不同栽培時期對小麥生育日數與積溫之影響-----------------49
(一) 播種至抽穗期所需日數與積溫----------------------------49
(二) 播種至開花期所需日數與積溫----------------------------55
(三) 播種至成熟期所需日數與積溫----------------------------59
肆、問題與討論-----------------------------------------------------------------67
一、不同栽培時期對小麥營養生長之影響--------------------------67
(一) 種苗出土率----------------------------------------------------67
(二) 小麥株高-------------------------------------------------------68
(三) 劍葉長度-------------------------------------------------------70
二、不同栽培時期對小麥產量之影響-------------------------------71
(一) 有效分蘗數----------------------------------------------------71
(二) 穗之發育-------------------------------------------------------72
(三) 溫度對小花稔性之影響-------------------------------------74
(四) 溫度影響穀粒之充實----------------------------------------77
三、不同栽培時期對小麥穀粒品質之影響---------------------------80
四、不同栽培時期對小麥生育日數與積溫之影響------------------81
伍、未來展望---------------------------------------------------------------------85
陸、參考文獻---------------------------------------------------------------------86
柒、附表---------------------------------------------------------------------------98
捌、附圖--------------------------------------------------------------------------100


李存東,曹衛星。1996。小麥階段發育的生理生態特徵評述。南京農業大學學報 20: 17 – 21。
吳姝,張樹源,沈允鋼。晝夜溫差對小麥光合特性的影響。西北植物學報18: 103 – 109。
林訓仕,郭建志,陳鐶斌。2013。活化休耕地—小麥。臺中區農業專訊 80: 7 – 10。
姜麗娜,趙艷嶺,邵雲,余海波,賀遠,李春喜。2011。播期播量對豫中小麥生長發育及產量的影響。河南農業科學 40: 42 – 46。
徐如強,孫其信,張樹棒。1998。小麥耐熱性研究現狀與展望 (綜述)。中國農業大學學報3: 33 – 40。
高翔,寧錕,杜聯盟,宋哲民。1994。小麥幼穗分化發育特徵研究進展。國內農學–麥類作物 (麥類作物學報) 3: 34 – 36.
許為鋼,胡琳,蓋鈞鎰。1999。小麥耐熱性研究。華北農學報14: 1 – 5。
劉豔陽。2009。不同播期對小麥產量和品質的影響。安徽農業科學 37: 17425 – 17428。
潘瑞熾。2006。植物生理學。初版。藝軒圖書出版社。pp. 257-285。
盧英權。1994。作物學。初版。台北:國立編譯館。pp. 176-244。
蕭素碧。1984。小麥臺中選二號與小麥臺中31號穀粒充實之比較。臺中區農業改良場研究彙報 08: 15 – 20。
魏金連,潘曉華。2009。不同生育階段夜溫升高對雙季水稻物質生產與養分吸收的影響。生態學雜誌 89: 2521 – 2525。
Acevedo, E., P. Silva, H. Silva. 2002. Wheat growth and physiology. In: Curtis, B.C. (Ed.), Bread Wheat: Improvement and Production, FAO Plant Production and Protection Series No. 30. Rome, Italy, p. 567. Available from: : <http://www.fao.org/docrep/006/y4011e/ y4011e00.htm> (last access 17.07.12)
Alfonso, M., I. Yruela, S. Almarcegui, E. Torrado, M. A. Perez and R. Picorel. 2001. Unusual tolerance to high temperatures in a new herbicide-resistant D1 mutant from Glycine max (L.) Merr. Cell cultutres deficient in fatty acid desaturation. Planta 212: 573 – 582.
Al-Khatib, K. and G. M. Paulsen. 1984. Mode of high temperature injury to wheat during grain development. Physiol. Plant. 61: 363 – 368.
Altenbach, S. B., F. M. DuPont, K. M. Kothari, R. Chan, E. L. Johnson and D. Lieu. 2003. Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. J. Cereal Sci. 37: 9 – 20.
Asseng, S., I. Fosterw and N. C. Turnerz. 2011. The impact of temperature variability on wheat yields. Glob. Change Biol. 17: 997 – 1012.
Aya, K., M. Ueguchi-Tanaka, M. Kondo, K. Hamada, K. Yano, M. Nishimura and M. Matsuoka. 2009. Gibberellin modulates anther development in rice via the ranscriptional regulation of GAMYB. The Plant Cell 21: 1453-1472.
Ayeneh, A., M. V. Ginkel, M. P. Reynolds and K. Ammar. 2002. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress. Field Crop. Res. 79: 173 – 184.
Barnabas, B., K. Jager and A. Feher. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31: 11–38.
Begum, I., S. Ahmad and B. R. Khan. 1994. Bread wheat selection for abiotic and biotic stress in highland Balochistan. Rachis 13: 11 – 13.
Beltrano, J. M. G. Ronco and E. R. Montaldi. 1999. Drought stress syndrome in wheat is provoked by ethylene evolution imbalance and reversed by rewatering, aminoethoxyvinylglycine and sodium benzoate. J. Plant Growth Regul. 18: 59 – 64.
Bhullar, S. S. and C.F. Jenner. 1985. Differential responses to high temperatures of starch and nitrogen accumulation in the grain of four cultivars of wheat. Aust. J. Plant Physiol. 12: 363 – 375.
Blumenthal, C., F. Bekes, P. W. Gras, E. W. R. Barlow, and C. W. Wrigley. 1995. Identification of wheat genotypes tolerant to the effects of heat stress on grain quality. Cereal Chem. 72: 539 – 544.
Bos, H. J. and J. H. Neuteboom. 1998. Growth of individual leaves of spring wheat (Triticum aestivum L.) as influenced by temperature and light intensity. Annals of Botany 81: 141–149.
Buriro, M., F. C. Oad, M. I. Keerio, S. Tunio, A. W. Gandahi, S. W. U. Hassan and S. M. Oad. 2011. Wheat seed germination under the influence of temperature regimes. Sarhad J. Agric. 27: 539 – 543.
Cao, W. and D. N. Moss. 1989. Temperature effect on leaf emergence and phyllochron in wheat and barley. Crop Sci. 29: 1018-1021.
Cao, W. and D. N. Moss. 1991. Phyllochron change in winter wheat with planting date and environmental changes. Agron. J. 83: 396-401.
Cassman, K. G., D. C. Bryant, A. E. Fulton and L. F. Jackson. 1992. Nitrogen supply effects on partitioning of dry matter and nitrogen to grain of irrigated wheat. Crop Sci. 32: 1251 – 1258.
Chakrabarti, B., S. D. Singh, S. Nagarajan and P. K. Aggarwal. 2011. Impact of temperature on phenology and pollen sterility of wheat varieties. Aust. J. Biol. Sci. 5: 1039 – 1043.
Clements, F.E. and W. Goldsmith, 1924. The phytometer method in
ecology. Carnegie Instit. Wash. Publ. 356. 106 pp.
Corbineau, L. O. and D. Come. 1995. Control of seed germination and dormancy by the gaseous environment. In J. Kigel and A. Galili, Seed development and germination (pp. 397-424). New York: Marcel Dekker.
Cossani, C. M. and M. P. Reynolds. 2012. Physiological traits for improving heat tolerance in wheat. Plant Physio. 160: 1710 – 1718.
da Silva, A. R. 1991. Trend, major problems and potential of wheat production in Brazil. in: Saunders, D.A. (Ed.), Wheat for Non-Traditional Warmer Areas. Mexico, D. F.: CIMMYT, pp. 70 – 83.
Dat, J. F., C. H. Foyer and I. M. Scott. 1998. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol. 118: 1455 – 1461.
Dias, A. S., A. S. Bagulho and F. C. Lidon. 2008. Ultrastructue and biochemical traits of bread and durum wheat grains under heat stress. Brazz. J. Plant Physiol. 20: 323–333.
Dias, A. S. and F. C. Lidon. 2009. Evaluation of grain filling rate and duration in bread and durum wheat, under heat stress after anthesis. J. Agron. Crop Sci. 195: 137–147.
Dupont, F. M, W.J. Hurkmana, W. H. Vense, C. Tanaka, K. M. Kothari, O. K. Chung and S. Altenbach. 2006. Protein accumulation and composition in wheat grains: Effects of mineral nutrients and high temperature. Europ. J. Agronomy 25: 96 – 107.
Dziki, D. and J. Laskowski. 2005. Wheat kernel physical properties and milling process. Acta Agrophysica 6: 59 – 71.
Entz, M. H. and D. B. Fowler. 1988. Critical stress periods affecting productivity of no-till winter wheat in western Canada. Agron. J. 80: 987-992.
Evans, L.T. and I. F. Wardlaw. 1976. Aspects of the comparative physiology of grain yield in cereals. Adv. Agron. 28: 301-359.
FAOSTAT. 2014. http://faostat3.fao.org/browse/Q/QC/E
Farooq M., H. Bramley, J. A. Palta and K. H. M. Siddique. 2011. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci. 30: 491 – 507.
Fischer, R.A. and O. Maurer. 1976. Crop temperature modification and yield potential in a dwarf spring wheat. Crop Sci. 16: 855-859.
Fischer, R. A., 1985. Number of kernels in wheat crops and the influence of solar radiation and temperature. J Agric Sci. 105: 447 – 461.
Fu, J. M., I. Momcˇilovic´, T. E. Clemente, N. Nersesian, H. N. Trick and Z. Ristic. 2008. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress. Plant Mol. Biol. 68: 277 – 288.
Gallagher, J. N., P. V. Biseoe and J. S. Wallace. 1979. Field studies of cereal leaf growth. IV. Winter wheat leaf extension in relation to temperature and leaf water status. J. Exp. Bot. 30: 657 – 668.
Goldringer, I., C. Prouin, M. Rousset, Nathalie Galic and I. Bonnin. 2006. Rapid differentiation of experimental populations of wheat for heading time in response to local climatic conditions. Annals of Botany 98: 805 – 817.
Gooding, M. J., R. H. Ellis, P. R. Shewry and J. D. Schofield. 2003. Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. J. Cereal Sci. 37: 295 – 309.
Graybosch, R. A., C. J. Peterson, P. S. Baenzigerl and D. R. Shelton. 1995. Environmental modification of hard red winter wheat flour protein composition. J. Cereal Sci. 22: 45 – 51.
Gudkova, T. I. 1980. Physiological and cytological studies of the reasons for pollen sterility in spring wheat under low temperature. Nauch. tr. Leningr. s.-kh. in-ta. 394: 103 – 110.
Gupta, N. K., S. Agarwal, V. P. Agarwal, N. S. Nathawat, S. Gupta and G. Singh. 2013. Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta. Physiol. Plant. 35: 1837 – 1842.
Hanson, A. D. and J.V. Jacobsen. 1984. Control of lactate dehydrogenase,
lactate glycolysis, and alpha-amylase by oxygen deficit in barley
aleurone layers. Plant Physiol. 75: 566-572.
Hays, D. B., J. H. Do, R. E. Mason, G. Morgan and S. A. Finlayson. 2007. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Sci. 172: 1113 – 1123.
He, Z. H. and S. Rajaram. 1994. Differential responses of bread wheat characters to high temperature. Euphytica 72: 197 – 203.
Hedhly, A., J. I. Hormaza and M. Herrero. 2009. Global warming and sexual plant reproduction. Trends Plant Sci. 14: 30 – 36.
Hoshikawa, K. 1961. Studies on the reopen floret in wheat. Proc Crop Sci. Soc. Jpn. 29: 103 – 106.
Hossain, A. and Jaime A. Teixeira da Silva. 2012. Phenology, growth and yield of three wheat (Triticum aestivum L.) varieties as affected by high temperature stress. Not. Sci. Biol. 4: 97 – 109.
Hossain, A., M. A. Z. Sarker, M. Saifuzzaman, J. A. Teixeira da Silva, M. V. Lozovskayac and M. M. Akhtera. 2013. Evaluation of growth, yield, relative performance and heat susceptibility of eight wheat (Triticum aestivum L.) genotypes grown under heat stress. Intl. J. Agron. Plant. Prod. 7: 615 – 636.
Huang, B. R., S. Rachmilevitch and J. C. Xu. 2012. Root carbon and protein metabolism associated with heat tolerance. J. Exp. Bot. 63: 3455 – 3465.
IPCC (Intergovernmental Panel on Climate Change). 2007. Intergovernmental Panel on Climate Change fourth assessment report: Climate change 2007. Synthesis Report. World Meteorological Organization, Geneva, Switzerland.
Ishag, H. M. and M. B. Taha. 1974. Production and survival of tillers of wheat and their contribution to yield. J. Agric. Sci. Camb., 83:117 – 124.
Ishag, H. M and B. A. Mohamed. 1996. Phasic development of spring wheat and stability of yield and its components in hot environments. Field Crop. Res. 46: 169 – 176.
Ishag, H. M., B. A. Mohamed and K. H. M. Ishag. 1998. Leaf development of spring wheat cultivars in an irrigated heat-stressed environment. Field Crop. Res. 58: 167 – 175.
Jaime, L., L. Antonio, F. Javier, E. Sergi and S. Joan. 2001. Soil fertility: Bread-making wheat and soil nitrate as affected by nitrogen fertilization in irrigated mediterranean conditions. Agron. J. 93: 1183 – 1190.
Jenner, C. F. 1991. Effect of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars. Ⅱ. Carry-over effects. Aust. J. Plant Physiol. 18: 179-190.
Ji, X., B. Shiran, J Wan, D. C. Lewis, C. L. D. Jenkins, A. G. Condon, R. A. Richards and R. Dolferus. 2010. Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant Cell Environ. 33: 926 – 942.
Johnson, R. C. and E. T. Kanemasu. 1983. Yield and development of winter wheat at elevated temperatures. Agron. J. 75: 561-565.
Kampinga, H. H., J. F. Brunsting, G. J. Stege, P. W. Burgman and A. W. Konings. 1995. Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals: role of heat shock proteins. Exp. Cell Res. 219: 536–546.
Kanno, K., T. Mae and A. Makino. 2009. High night temperature stimulates photosynthesis, biomass production and growth during the vegetative stage of rice plants. Soil Sci. Plant Nutr. 55: 124 – 131.
Karrer, E. E. and R. L. Rodriguez. 1992. Metabolic regulation of rice a-amylase and sucrose synthase genes in planta. Plant J. 2: 517 – 523.
Keskitalo J., G. Bergquist, P. Gardeström and S. Jansson. 2005. A cellular timetable of autumn senescence. Plant Physiol. 139: 1635 – 1648.
Kovacsa, M. I. P., B. X. Fu, S. M. Woods and K. Khan. 2004. Thermal stability of wheat gluten protein: its effect on dough properties and noodle texture. J. Cereal Sci. 39: 9 –19.
Kumar, R. R., S. Goswami, S. K. Sharma, K. Singh, K. A. Gadpayle, N. Kumar, G. K. Rai, M. Singh and Raj. D. Rai1. 2012. Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. Int. J. Plant Physiol. Biochem. 4: 83 – 91.
Lanning, S. P., K. Kephart, G. R. Carlson, J. E. Eckhoff, R. N. Stougaard, D. M. Wichman, J. M. Martin, and L. E. Talbert. Climatic change and agronomic performance of hard red spring wheat from 1950 to 2007. Crop Sci. 50: 835 – 841.
Macdowell, F. D. H. 1973. Growth kinetics of marquis wheat. 5. Morphogenic dependence. Can. J. Bot. 51: 1259–1265.
Marshall, D. R., D. J. Mares, H. J. Moss and F. W. Ellison. 1986. Effect of grain shape and size on milling yields in wheat. Ⅱ. Aust. J. Agr. Res. 37: 331-342.
Martin, J. H. and W. H. Leonard. 1968. Principles of field crop production. The Macmillan Company, New York.
Marutani, Y., Y. Yamauchi, A. Miyoshi, K. Inoue, K. Ikeda, M. Mizutani and Y. Sugimoto. 2014. Regulation of photochemical energy transfer accompanied by structural changes in thylakoid membranes of heat-stressed wheat. Int. J. Mol. Sci. 15: 23042 – 23058.
McMaster, G. S., B. Klepper, R. W. Rickman, W. W. Wilhelm and W. O. Willis. 1991. Simulation of shoot vegetative development and growth of unstressed winter wheat. Ecol. Modell. 53: 189 – 204.
McMaster, G. S., W. W. Wilhelm, D. B. Palic, J. R. Porter and P. D. Jamieson. 2003. Spring wheat leaf appearance and temperature: extending the paradigm. Annals of Botany 91: 697 – 705.
McMaster, G. S., J. W. White, L. A. Hunt, P. D. Jamieson, S. S. Dhillon and J. I. Ortiz-Monasterio. 2008. Simulating the influence of vernalization, photoperiod and optimum temperature on wheat developmental rates. Annals of Botany 102: 561 – 569.
Miglietta, F. 1989. Effect of photoperiod and temperature on leaf initiation rate in wheat (Triticum spp.) Field Crop. Res. 21: 121 – 130.
Mohammadi, M. 2012. Effects of kernel weight and source-limitation on wheat grain yield under heat stress. Afr. J .Biotechnol. 11: 2931 – 2937.
Nicolas, M. E., R. M. Gleadow, and M. J. Dalling. 1984. Effects of
drought and high temperature on grain growth in wheat. Aust. J.
Plant Physiol. 11: 553–566.
Nielsen, K. F. and E. C. Humphries. 1966. Effect of temperature on plant growth. Soils Fert. 29: 1-7.
Ortiz-Monasterio, J. I., S. S. Dhillon and R. A. Fischer, 1994. Date of sowing effects on grain yield and yield components of irrigated spring wheat cultivars and relationship with radiation and temperature in Ludhiana, India. Field Crops Res. 37: 169 – 184.
Ottman, M. J., B. A. Kimball, J. W. White, and G. W. Wall. 2012. Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating. Agron. J. Agronomy Journal 104: 7 – 16.
Plaut, Z., B. J. Butow, C. S. Blumenthal and C. W. Wrigley. 2004. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crop. Res. 86: 185 – 198.
Prasad, P. V. V., K. J. Boote, L. H. Allen Jr., J. E. Sheehy and J. M. G. Thomas. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crop. Res. 95:398 – 411.
Prasad, P. V. V., S. A. Staggenborg, and Ristic, Z. 2008. Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants. In: Response of crops to limited water: Understanding and modeling water stress effects on plant growth processes, Advances in Agricultural Systems Modeling Series 1. ASA, CSSA, SSSA, Madison, WI, USA. 301 – 355.
Prasad, P. V. V., S. R. Pisipati, Z. Ristic, U. Bukovnik, and A. K. Fritz. 2008. Impact of nighttime temperature on physiology and growth of spring wheat. Crop Sci. 48: 2372 – 2380.
Porter, J. R. and M. Gawith. 1999. Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10: 23–36.
Prakash, P., P. S. Natu and M. C. Ghildiya. 2004. Effect of different temperature on starch synthase activity in excised grains of wheat cultivars. Indian J. Exp. Biol. 42: 227-230.
Qian, C. M., C. F. Zhou, S. S. Xia and Z. Z. Ma. 1986. Studies on some developmental characteristics during the late growth of early maturing wheat cultivars: I. Effect of low temperature pollen development. Acta Agron. Sinica 12: 187 – 193.
Randall, P. J. and H. J. Moss. 1990. Some effects of temperature regime during grain filling on wheat quality. Aust. J. Agric. Res. 41: 603 – 617.
Rawson, H. M. and A. K. Bagga. 1979. Influence of temperature between floral initiation and flag leaf emergence on grain number in wheat. Funct. Plant Biol. 6: 391 – 400.
Rawson, H. M., J. H. Hindmarsh, R. A. Fischer and Y. M. Stockman. 1983. Changes in leaf photosynthesis with plant ontogeny and relationships with yield per ear in wheat cultivars and 120 progeny. Aust. J. Plant Physiol. 10: 503-514.
Rawson, H. M. 1986. High-temperature-tolerant wheat: A description of variation and a search for some limitations to productivity. Field Crops Res. 14: 197-212.
Reynolds, M.P. and E. Acevedo. 1991. Problems of wheat cultivation at high temperature: A research perspective. In: D.G. Tanner and W. Mwangi (editors). Proceedings of the seventh regional wheat workshop for eastern, central and southern Africa. USAID/CIMMYT. Nakuru. Kenya. pp. 345-352.
Reynolds, M. P., R. P. Singh, A. Ibrahim, O. A. A. Ageeb, A. L. Saavedra and J. S. Quick. 1998. Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica 100: 85 – 94.
Ristic, Z., I. Momcˇilovic`, J. M. Fu, E. Callegari and B. P. DeRidder. 2007. Chloroplast protein synthesis elongation factor, EF-Tu, reduces thermal aggregation of rubisco activase. J. Plant Physiol. 164: 1564 – 1571.
Ristic, Z., I. Momcˇ ilovic´, U. Bukovnik, P. V. V. Prasad, J. M. Fu, B. P. DeRidder, T. E. Elthon and N. Mladenov. J. Exp. Bot. 60: 4003 – 4014.
Ristic, Z., U. Bukovnik, and P.V. V. Prasad. 2007. Correlation between heat stability of thylakoid membranes and loss of chlorophyll in winter wheat under heat stress. Crop Sci. 47: 2067 – 2073.
Ristic, Z., U. Bukovnik, I. Momcˇilovic`, J. M. Fu, P. V. V. Prasad. 2008. Heat-induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. J. Plant Physiol. 165: 192 – 202.
Russell, G. and G. W. Wilson. 1994. An agri-pedo-climatological knowledge-base of wheat in Europe. Joint Research Centre, European Commission, Luxembourg, pp.158.
Saini, H. S. and D. Aspinall. 1982. Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperature. Ann. Bot. 49: 835–846.
Sangwan, V., B. I. Orvar, J. Beyerly, H. Hirt and R. S. Dhindsa. 2002. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct MAO kinase pathways. Plant J. 31: 629 – 638.
Seefeldt, S. S., K. K. Kidwell, J. E. Waller. 2002. Base growth temperatures, germination rates and growth response of contemporary spring wheat (Triticum aestivum L.) cultivars from the US Pacific Northwest. Field Crop. Res. 75: 47 – 52.
Shpiler, L. and A. Blum. 1986. Differential reaction of wheat cultivars to hot environments. Euphytica 35: 483 – 492.
Shpiler, L. and A. Blum. 1991. Heat tolerance for yield and its components in different wheat cultivars. Euphytica 51: 257 – 263.
Sial, M. A., M. A. Arain, S. Khanzada, M. H. Naqvi, M. U. Dahot and Ni. A. Nizamani. 2005. Yield and quality parameters of wheat genotypes as affected by sowing dates and high temperature stress. Pak. J. Bot. 37: 575 – 584.
Singh, K., S. N. Sharma and Y. Sharma. 2011. Effect of high temperature on yield attributing traits in bread wheat. Bangladesh J. Agril. Res. 36: 415 – 426.
Slafer, G. A., and H. M. Rawson. 1994. Sensitivity of wheat phasic development to major environmental factors: a re-examination of some assumptions made by physiologists and modellers. Aust. J. Plant Physiol. 21: 393 – 426.
Slafer, G. A. and H. M. Rawson. 1995. Rates and cardinal temperatures for processes of development in wheat: Effects of temperature and thermal Amplitude. Aust. J. Plant Physiol. 22: 913 – 926.
Slafer, G. A. and E. H. Satorre. 1999. Wheat: Ecology and physiology of yield determination. New York:Haworth Press Technology and Industrial.
Sofield, I., L. T. Evans and I. F. Wardlaw. 1974. The effects of temperature and light on grain filling in wheat. R. Soc. N.Z. Bull. 12: 909 – 915.
Sofield, K., L. T. Evans, M. G. Cook and I. F. Wardlaw. 1977. Factors influencing the rate and duration of grain filling in wheat. Aust. J. Plant Physiol. 4: 785-797.
Sosulski, F. W., E, A. Poul and W. L. Hutcheon. 1962. The influence of soil moisture, nitrogen fertilization, and temperature on quality and amino acid composition of thatcher wheat. Can. J. Soil Sci. 43: 219 – 228.
Spiertz, J. H. J., R. J. Hamer, H. Xua, C. P. Martin, C. Don and P. E. L. V. D. Putten. 2006. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits. Europ. J. Agronomy 25: 89 – 95.
Sticher, L., A. K. Biswas, D. S. Bush, and R. L. Jones. 1990. Heat shock inhibits α-amylase synthesis in barley aleurone without inhibiting the activity of endoplasmic reticulum marker enzymes. Plant Physiol. 92: 506 – 513.
Stone, P. J. and M. E. Nicolas. 1995. Effect of timing of heat stress during grain-filling on two wheat varieties differing in heat tolerance. Aust. J. Plant Physiol. 22: 927-934.
Stratonovitch, P. and M. A. Semenov. 2015. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change. J. Exp. Bot. 66: 3599 – 3609.
Streck, N. A. 2005. Climate change and agroecosystems: the effect of elevated 1215 atmospheric CO2 and temperature on crop growth, development and yield. Cienc. Rural 35: 730 – 740.
Subedi, K. D., C. N. Floyd and C. B. Budhathoki. 1998. Cool temperature-induced sterility in spring wheat (Triticum aestivum L.) at high altitudes in Nepal: variation among cultivars in response to sowing date. Field Crop. Res. 55: 141 – 151.
Sung, S. and R. M. Amasino. 2005. Remembering winter: towards a molecular understanding of vernalization. Annu. Rev. Plant Biol. 56: 491– 508.
Sutton, K. H., R. L. Hay and C. H. Mouat. 1992. The effect of kernel weight on the assessment of backing performance of wheats by RP-HPLC of glutenin subunits from single grain. J. Cereal Sci. 15: 253-265.
Tahir, I. S. A. and N. Nakata. 2005. Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling. J. Agron. Crop Sci. 191: 106 – 115.
Tahir, I. S. A., N. Nakata, T. Yamaguchi, J. Nakano and A. M. Ali. 2008. Influence of high shoot and root-zone temperatures on growth of three wheat genotypes during early vegetative stages. J. Agron. Crop Sci. 194: 141 – 151.
Tang, R., J. Zheng, Z. Jin, D. Zhang, Y. Huang and L. Chen. 2008.
Possible correlation between high temperature-induced floret
sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza
sativa L.). Plant Growth Regul. 54: 37-43.
Thakur, P., S. Kumar, J. A. Malik, J. D. Berger and H. Nayyar. 2010. Cold
stress effects on reproductive development in grain crops: An
overview. Environ. Exp. Bot. 67: 429-443.
Thorne, G. N. and D. W. Wood. 1987. Effects of radiation and
temperature on tiller survival, grain number and grain yield in winter
wheat. Ann. Bot-London 59: 413-426.
Tranquilli, G. and J. Dubcovsky. 2000. Epistatic interaction between
vernalization genesVrn-Am1 and Vrn-Am2 in diploid wheat. J.
Hered. 91:304–306.
Triboi, E., A. Abad, A. Michelena, J. Lloveras, J. L. Ollier and C. Daniel. 2000. Environmental effects on the quality of two wheat genotypes: 1. quantitative and qualitative variation of storage proteins. Eur. J. Agron. 13: 47 – 64.
Triboi, E., P. Martre and A. M. T. Blonde. 2003. Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content. J. Exp. Bot. 54:1731 – 1742.
Udagawa, Y., T. Ito, and K. Gomi. 1991. Effects of root temperature
on the absorption of water and mineral nutrients by strawberry plants
‘Reiko’ grown hydroponically. J. Japan Soc. Hortic. Sci. 59: 711–
717.
Upadhayay, Y. M. and K. N. Ruwali. 1984. Breeding wheat for heat and drought tolerance in central India. in: Villareal, R.L., Klatt, A.R. (Eds.), Wheat for More Tropical Environments. A Proceedings of the International Symposium. September 24 - 28, 1984. Mexico, D. F.: CIMMYT, pp. 107 – 110.
Vierling. 1991. The roles of heat shock proteins in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 579 – 620.
Viswanathan, C. and R. K. Chopra. 2001. Effect of heat stress on grain growth, starch synthesis and protein synthesis in grains of wheat (Triticum aestivum L.) varieties differing in grain weight stability. J Agric Sci. 186: 1 – 7.
Wang, G. P., F. Li, J. Zhang, M. R. Zhao, Z. Hui and W. Wang. 2010. Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. Photosynthetica 48: 30 – 41.
Wang, G. P., F. Li, J. Zhang, M. R. Zhao, Z. Hui and W. Wang. 2010. Overaccumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica 48: 117 – 126.
Wang, G. P., Z. Hui, F. Li, M. R. Zhao, J. Zhang and W. Wang. 2010. Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnol. Rep. 4: 213 – 222.
Wang, X., J. Cai, D. Jiang, F. L. Liu, T. B. Dai and W. X. Cao. 2011. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. J. Plant Physiol. 168: 585–593.
Wang G. P., F. X. Tian, M. Zhang and W. Wang. 2014. The overaccumulation of glycinebetaine alleviated damages to PSII of wheat flag leaves under drought and high temperature stress combination. Acta Physiol. Plant. 36: 2743 – 2753.
Wang, Y. X., S. C. Liu, H. L. Zhang, Y. D. Zhao H. J. Zhao and H. H. Liu. 2014. Glycine betaine application in grain filling wheat plants alleviates heat and high light-induced photoinhibition by enhancing the psbA transcription and stomatal conductance. Acta Physiol. Plant. 36: 2195 – 2202.
Wardlaw, I. F., I. Sofield and P. M. Cartwright. 1980. Factors limiting the
rate of dry matter accumulation in the grain of wheat grown at high
temperature. Aust. J. Plant Physiol. 7: 387–400.
Wardlaw, I. E., I. A. Dawson, P. Munibi and R. Fewster. 1989. The tolerance of wheat to high temperatures during reproductive growth. I. Survey procedures and general response patterns. Aust. J. Agric. Res. 40: 1-15.
Wardlaw, I. F. and C. W. Wrigley. 1994. Heat tolerance in temperate cereals: an overview. Aust. J. Plant Physiol. 21: 695 – 703.
Warrington, I. J., R. L. Dunstone and L. M. Green. 1997. Temperature effects at three development stages on the yield of the wheat ear. Aust. J. Agric. Res. 28: 11 – 27.
Wheeler, T. R., G. R. Batts, R. H. Ellis, P. Hadley and J. I. L. Morison. 1996. Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. J. Agr. Sci. 127: 37–48.
Wollenweber, B., J. R. Porter and J. Schellberg. 2003. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J. Agron. Crop Sci. 189: 142 – 150.
Yan, L., A. Loukoianov, A. Blechl, G. Tranquilli and W. Ramakrishna.
2004. The wheat VRN2 gene is a flowering repressor down-regulated
by vernalization. Science 303:1640–1644.
Yang, J., R. G. Sears, B. S. Gill and G. M. Paulsen. 2002. Genotypic
differences in utilization of assimilate sources during maturation of
wheat under chronic heat and heat shock stresses. Euphytica 125:
179–188.
Yin, X., W. Guo and J. H. Spiertz. 2009. A quantitative approach to characterize sink–source relationships during grain filling in contrasting wheat genotypes. Field Crops Res. 114: 119–126.
Zhou, C. F. 1984. Production constraints and research priorities in southern winter wheat region in China. in: Villareal, R.L., Klatt, A.R. (Eds.), Wheat for More Tropical Environments. A Proceedings of the International Symposium. September 24- 28, 1984. Mexico, D. F.: CIMMYT, pp. 72 – 76.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔