(3.236.231.61) 您好!臺灣時間:2021/05/11 21:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:余哲賢
研究生(外文):Che-Hsien Yu
論文名稱:刺角瓜Cm4與Cm9基因菸草轉殖株之建立與功能性分析
論文名稱(外文):Functional analysis of horned melon Cm4 and Cm9 transgenic tobacco (Nicotiana benthamiana)
指導教授:古新梅
口試委員:王仕賢許奕婷
口試日期:2016-07-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:97
中文關鍵詞:刺角瓜木瓜輪點病毒Cm9Cm4DEAD-box RNA解旋酶抗病性非生物逆境耐受性活化氧族
外文關鍵詞:Cucumis metuliferusPRSVCm9Cm4DEAD-box RNA helicaseresistanceabiotic stressROS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:78
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
前人自刺角瓜 (Cucumis metuliferus) 選殖出可能與抗木瓜輪點病毒 (Papaya ringspot virus, PRSV) 相關的Cm9與Cm4基因片段,並解出全長後構築以自身啟動子表現Cm9基因體全長與過表現Cm4 cDNA之載體,而Cm9基因的預測功能為DEAD-box RNA解旋酶家族之基因。本篇利用前人構築的Cm9基因體全長載體進行圓葉菸草 (Nicotiana benthamiana) 的轉殖,為瞭解轉殖Cm9基因體全長是否對轉殖株外表型態造成影響,因此觀察轉殖株與野生型在生長發育上的差異,結果發現轉殖株與野生型在外表型態上並無明顯差異。以南方墨點法及聚合酶連鎖反應篩選其同質體進行抗病性檢測,將4個不同T0世代所產生的T1子代各30株分別接種馬鈴薯Y病毒 (Potato virus Y, PVY)、番椒葉脈斑駁病毒 (Pepper veinal mottle virus, PVMV)、辣椒葉脈斑駁病毒 (Chilli veinal mottle virus, ChiVMV)、蕪菁嵌紋病毒 (Turnip mosaic virus, TuMV),結果顯示所有轉殖株皆產生與感性的WT相同的病徵,表示轉殖Cm9基因無法提升轉殖株抗病性。為瞭解Cm9基因對非生物逆境耐受性之影響,進一步篩選同質之T2世代轉殖株並檢測其非生物逆境耐受性,採集轉殖株之切離葉圓片分別進行鹽分、乾旱、重金屬及低溫逆境處理,結果顯示轉殖株在鹽分、乾旱、重金屬及低溫逆境下雖然有較野生型低的葉綠素及總蛋白含量,但同時轉殖株在逆境下也有顯著低於野生型的過氧化氫含量,表示Cm9基因可能具有在逆境下調控活化氧族 (reactive oxygen species) 之功能。為瞭解過表現Cm4基因是否影響轉殖株之抗病性,因此進行過表現Cm4 cDNA轉殖株的同質體篩選,並選出T2的同質體植株將其接種與上述相同的四種病毒,每種病毒接種30株轉殖株,結果顯示過表現Cm4 cDNA轉殖株在接種後產生與野生型相同之病徵,表示Cm4基因亦無法提升菸草對此些病毒的抗病性。精確的Cm9及Cm4基因調控植株生長發育功能與對抗病性調控須待日後檢測Cm9及Cm4基因靜默刺角瓜才可真正確認。

Previous studies was performed to cloned partial Cm9 and Cm4 gene form Papaya ringspot virus (PRSV) infected Cucumis metuliferus. Previous researcher cloned full length Cm9 and Cm4 by genome block walking and rapid amplification of cDNA end (RACE). Cm9 gene function was predicted as DEAD-box RNA helicase. In this studies, Nicotiana benthamiana transgenic plant that carried Cm9 genome full length was generated. Cm9 transgenic plant shown same phenotype with wild-type tobacco, confirmed that Cm9 gene may not conferred function of plant growth and development. To further understand that Cm9 conferred virus resistance or not, the virus inoculation experiment was performed. Southern blot and polymerase chain reaction was performed to select homozygote one copy Cm9 and Cm4 transgenic tobacco. Virus inoculation experiment result showed that all Cm9 and Cm4 transgenic tobacco was susceptible to Potato virus Y (PVY), Pepper veinal mottle virus (PVMV), Chilli veinal mottle virus (ChiVMV) and Turnip mosaic virus (TuMV). This result suggested that Cm9 and Cm4 gene does not conferred virus resistance to transgenic tobacco. To understand Cm9 gene conferred abiotic stress resistance or not, the transgenic tobacco leaf discs was treated with salt, drought, heavy metal and cold stress. The result showed that transgenic tobacco harboring Cm9 gene show significant less total protein and chlorophyll that wild-type tobacco, but transgenic plant also showed significant less hydrogen peroxide than wild-type plant, suggest that Cm9 gene may conferred reactive oxygen species (ROS) scavenging function. This research suggested that Cm9 and Cm4 gene didn’t conferred virus resistance function to various virus above, but may conferred ROS scavenging mechanism. However, its exact role of Cm9 and Cm4 in against to virus need to be further confirm by Cm9 and Cm4 gene silencing Cucumis metuliferus in the future.

中文摘要 i
英文摘要 ii
目錄 iii
表目錄 v
圖目錄 vi
壹、前人研究 1
一、 生物逆境與非生物逆境之影響及植物耐性反應 1
二、 Cm4與Cm9基因選殖 7
三、 DEAD-box RNA helicase家族介紹 8
四、 DEAD-box RNA helicase對生物逆境與非生物逆境之調控作用 13
五、 鈣離子訊號調控鈣依賴蛋白與逆境反應 15
六、 候選基因Cm4與蛋白激酶家族之關聯 17
七、 總結 19
貳、材料與方法 21
一、 試驗材料 21
二、 農桿菌培養 21
三、 菸草基因轉殖 21
四、 植物DNA萃取 22
五、 植物RNA萃取 22
六、 聚合酶連鎖反應 23
七、 反轉錄聚合酶連鎖反應 23
八、 即時定量聚合酶連鎖反應 23
九、 膠體電泳分析 24
十、 探針製備 24
十一、 南方墨點法分析 25
十二、 菸草病毒接種與性狀分析 25
十三、 酵素連結免疫吸附分析法 26
十四、 葉圓片非生物逆境處理 26
十五、 植株性狀分析 27
(一) 總蛋白測定 27
(二) 葉綠素測定 27
(三) 脂質過氧化程度測定 28
(四) 過氧化氫測定 28
十六、 統計分析 28
參、結果 29
一、Cm9基因體全長序列比對 29
二、圓葉菸草轉殖Cm9基因 29
三、轉pGA-Cm9FL之圓葉菸草轉基因及套數檢測 29
四、轉殖株基因表現量檢測 31
五、pGA-Cm9FL轉殖株外表型態與抗病性分析 31
六、Cm4基因套數檢測 42
七、Cm4轉殖株外表型態與抗病性分析 44
肆、討論 46
一、轉殖株基因表現量分析 46
二、Cm9基因參與植物病毒抗性相關反應 46
三、Cm9基因調控轉殖株非生物逆境耐受性 47
四、 丙二醛及過氧化氫含量 48
伍、參考文獻 50





表目錄
Table 1. Primers used in this study. 57
Table 2. Nucleotide BLAST analysis of Cm9 58
Table 3. Generation of transgenic plants. 59
Table 4. ELISA of Cm9 transgenic T1 plant inoculated with PVY. 60
Table 5. ELISA of Cm9 transgenic T1 plant inoculated with PVMV. 61
Table 6. ELISA of Cm9 transgenic T1 plant inoculated with ChiVMV. 62
Table 7. ELISA of Cm9 transgenic T1 plant inoculated with TuMV. 63
Table 8. ELISA of Cm4 transgenic T2 inculated with potyviridae. 64






圖目錄
Figure 1. The detection of Cm9 transgene in Cm9 genomic DNA full length T0 transgenic tobacco. 66
Figure 2. The detection of Cm9 transgene in T1 of Cm9 genomic DNA full length transgenic tobacco lines. PCR analysis T1 of transgenic tobacco line Cm9-31FL-1~30. 67
Figure 3. Southern blot analysis of Cm9 genome gene copy numbers on T1 of pGA-Cm9FL tobacco transgenic lines. 68
Figure 4. The detection of Cm9 transgene in Cm9 genomic DNA full length T2 transgenic tobacco. PCR analysis of transgenic tobacco line Cm9-39FL-2-1~30 69
Figure 5. Cm9 gene expression in T2 transgenic tobacco line, Cm9-39FL-2-1~30. 70
Figure 6. Phenotype of transgenic tobacco transferring pGA-Cm9FL T1. 71
Figure 7. T1 of transgenic tobacco inoculated with Potato Virus Y. 72
Figure 8. T1 of transgenic tobacco inoculated with Potato Virus Y. 73
Figure 9. T1 of transgenic tobacco inoculated with Pepper veinal mottle virus. 74
Figure 10. T1 of transgenic tobacco inoculated with Pepper veinal mottle virus. 75
Figure 11. T1 of transgenic tobacco inoculated with Chilli veinal mottle virus. 76
Figure 12. T1 of transgenic tobacco inoculated with Chilli veinal mottle virus. 77
Figure 13. T1 of transgenic tobacco inoculated with Turnip mottle virus. 78
Figure 14. T1 of transgenic tobacco inoculated with Turnip mottle virus. 79
Figure 15. The effect of salt stress treatment on leaf discs phenotypes of N. benthamiana (WT) and T2 pGA-Cm9FL transgenic lines. 80
Figure 16. The effect of 100 mM and 200 mM NaCl treatment on T2 of pGA-Cm9FL transgenic tobacco and WT. 81
Figure 17. The effect of drought stress treatment on leaf discs phenotypes of N. benthamiana (WT) and T2 pGA-Cm9FL transgenic lines. 82
Figure 18. The effect of 29% PEG treatment on T2 of pGA-Cm9FL transgenic tobacco and WT. 83
Figure 19. The effect of heavy metal stress treatment on leaf discs phenotypes of N. benthamiana (WT) and T2 pGA-Cm9FL transgenic lines. 84
Figure 20. The effect of 1 mM ZnCl2 and 0.05 mM CdCl2 treatment on T2 of pGA-Cm9FL transgenic tobacco and WT. 85
Figure 21. The effect of cold stress treatment on leaf discs phenotypes of N. benthamiana (WT) and T2 pGA-Cm9FL transgenic lines. 86
Figure 22. The effect of 4°C treatment on T2 of pGA-Cm9FL transgenic tobacco and WT. 87
Figure 23. The detection of Cm4 transgene in T1 of Cm4 overexpressing transgenic tobacco lines. 88
Figure 24. Southern blot analysis of Cm4 gene copy numbers on T1 of tobacco pGA-Cm4OE transgenic lines. 89
Figure 25. The detection of Cm4 transgene in T2 of Cm4 overexpressing transgenic tobacco lines. 90
Figure 26. The detection of Cm4 transgene in T2 of Cm4 overexpressing transgenic tobacco lines. 91
Figure 27. Southern blot analysis of Cm4 gene copy numbers on T2 of tobacco pGA-Cm4OE transgenic lines. 92
Figure 28. T2 of transgenic tobacco transferring pGA-Cm4OE. 93
Figure 29. T2 of Cm4-5OE-7 transgenic tobacco inoculated with Potato Virus Y. 94
Figure 30. T2 of Cm4-5OE-7 transgenic tobacco inoculated with Pepper veinal mottle virus. 95
Figure 31. T2 of Cm4-5OE-7 transgenic tobacco inoculated with Chilli veinal mottle virus. 96
Figure 32. T2 of Cm4-5OE-7 transgenic tobacco inoculated with Turnip mosaic virus. 97



王彥筑. 2015. 刺角瓜 Cm4 基因之選殖與其菸草表現轉殖株之建立與分析.
Asano, T., N. Hayashi, M. Kobayashi, N. Aoki, A. Miyao, I. Mitsuhara, et al. 2012. A rice calcium‐dependent protein kinase OsCPK12 oppositely modulates salt‐stress tolerance and blast disease resistance. The Plant Journal 69: 26-36
Astier, S., J. Albouy, Y. Maury and H. Lecoq. 2001. Principles of plant virology: genome, pathogenicity, virus ecology. Institut National de la Recherche Agronomique.
Bendahmane, A., K. Kanyuka and D.C. Baulcombe. 1999. The Rx gene from potato controls separate virus resistance and cell death responses. The Plant Cell 11: 781-791.
Blume, B., T. Nürnberger, N. Nass and D. Scheel. 2000. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. The Plant Cell 12: 1425-1440.
Bouché, N., A. Scharlat, W. Snedden, D. Bouchez and H. Fromm. 2002. A novel family of calmodulin-binding transcription activators in multicellular organisms. Journal of Biological Chemistry 277: 21851-21861.
Bray, E.A. 1993. Molecular responses to water deficit. Plant physiology 103: 1035.
Bredt, D.S. and S.H. Snyder. 1990. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proceedings of the National Academy of Sciences 87: 682-685.
Cabiscol, E., J. Tamarit and J. Ros. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 3(1):3-8.
Campo, S., P. Baldrich, J. Messeguer, E. Lalanne, M. Coca and B. San Segundo. 2014. Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant physiology 165: 688-704.
Carrera, P., O. Johnstone, A. Nakamura, J. Casanova, H. Jäckle and P. Lasko. 2000. VASA mediates translation through interaction with a Drosophila yIF2 homolog. Molecular cell 5: 181-187.
Cheng, S.-H., M.R. Willmann, H.-C. Chen and J. Sheen. 2002. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiology 129: 469-485.
Chinnusamy, V., J. Zhu and J.-K. Zhu. 2007. Cold stress regulation of gene expression in plants. Trends in plant science 12: 444-451.
Coca, M. and B. San Segundo. 2010. AtCPK1 calcium‐dependent protein kinase mediates pathogen resistance in Arabidopsis. The Plant Journal 63: 526-540.
Cruz de Carvalho, M.H. 2008. Drought stress and reactive oxygen species: production, scavenging and signaling. Plant signaling & behavior 3: 156-165.
Dalmay, T., R. Horsefield, T.H. Braunstein and D.C. Baulcombe. 2001. SDE3 encodes an RNA helicase required for post‐transcriptional gene silencing in Arabidopsis. The EMBO Journal 20: 2069-2077.
Darwish, T., T. Atallah, M. El Moujabber and N. Khatib. 2005. Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon. Agricultural Water Management 78: 152-164.
Das, R. and G.K. Pandey. 2010. Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Current genomics 11: 2-13.
Draper, H. H. and M. Hadey. 1990. Malondialdehyde dtermination as index of
Lipid Peroxidation. Methods Enzymol. 186:421-431.
Epstein, E., J.D. Norlyn, D.W. Rush, R.W. Kingsbury, D.B. Kelley, G.A. Cunningham, et al. 1980. Saline culture of crops: a genetic approach. Science 210: 399-404.
Friedrich, L., K. Lawton, W. Ruess, P. Masner, N. Specker, M.G. Rella, et al. 1996. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. The Plant Journal 10: 61-70.
Fu, L., X. Yu and C. An. 2013. Overexpression of constitutively active OsCPK10 increases Arabidopsis resistance against Pseudomonas syringae pv. tomato and rice resistance against Magnaporthe grisea. Plant physiology and biochemistry 73: 202-210.
Fu, Z.Q. and X. Dong. 2013. Systemic acquired resistance: turning local infection into global defense. Annual review of plant biology 64: 839-863.
Gaffney, T., L. Friedrich, B. Vernooij, D. Negrotto, G. Nye, S. Uknes, et al. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. SCIENCE-NEW YORK THEN WASHINGTON- 261: 754-754.
Garcia-Brugger, A., O. Lamotte, E. Vandelle, S. Bourque, D. Lecourieux, B. Poinssot, et al. 2006. Early signaling events induced by elicitors of plant defenses. Molecular Plant-Microbe Interactions 19: 711-724.
Gilmour, S.J., A.M. Sebolt, M.P. Salazar, J.D. Everard and M.F. Thomashow. 2000. Overexpression of the Arabidopsis CBF3transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant physiology 124: 1854-1865.
Gong, Z., C.-H. Dong, H. Lee, J. Zhu, L. Xiong, D. Gong, et al. 2005. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. The Plant Cell 17: 256-267.
Grant, M., I. Brown, S. Adams, M. Knight, A. Ainslie and J. Mansfield. 2000. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. The Plant Journal 23: 441-450.
Griffiths, H. and M. Parry. 2002. Plant responses to water stress. Annals of Botany 89: 801-802.
Guan, Q., J. Wu, Y. Zhang, C. Jiang, R. Liu, C. Chai, et al. 2013. A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. The Plant Cell 25: 342-356.
Harmon, A.C. 2007. Calcium-regulated protein kinases of plants. Gravitational and Space Research 16.
Huang, C.-K., Y.-L. Shen, L.-F. Huang, S.-J. Wu, C.-H. Yeh and C.-A. Lu. 2016. The DEAD-box RNA helicase AtRH7/PRH75 participates in pre-rRNA processing, plant development and cold tolerance in Arabidopsis. Plant and Cell Physiology 57: 174-191.
Klimecka, M. and G. Muszynska. 2007. Structure and functions of plant calcium-dependent protein kinases. ACTA BIOCHIMICA POLONICA-ENGLISH EDITION- 54: 219.
Koca, H., M. Bor, F. Özdemir and I. Türkan. 2007. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environmental and Experimental Botany 60: 344-351.
Koornneef, M., K.M. Léon-Kloosterziel, S.H. Schwartz and J.A. Zeevaart. 1998. The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis. Plant Physiology and Biochemistry 36: 83-89.
Koster, K.L. and D.V. Lynch. 1992. Solute accumulation and compartmentation during the cold acclimation of Puma rye. Plant Physiology 98: 108-113.
Lecourieux, D., R. Ranjeva and A. Pugin. 2006. Calcium in plant defence‐signalling pathways. New Phytologist 171: 249-269.
Li, D., H. Liu, H. Zhang, X. Wang and F. Song. 2008. OsBIRH1, a DEAD-box RNA helicase with functions in modulating defence responses against pathogen infection and oxidative stress. Journal of experimental botany 59: 2133-2146.
Lin, Y.-T., F.-J. Jan, C.-W. Lin, C.-H. Chung, J.-C. Chen, S.-D. Yeh, et al. 2013. Differential gene expression in response to Papaya ringspot virus infection in Cucumis metuliferus using cDNA-amplified fragment length polymorphism analysis. PloS one 8: e68749.
Linder, P. 2006. Dead-box proteins: a family affair—active and passive players in RNP-remodeling. Nucleic acids research 34: 4168-4180.
Manjulatha, M., R. Sreevathsa, A.M. Kumar, C. Sudhakar, T. Prasad, N. Tuteja, et al. 2014. Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress. Molecular biotechnology 56: 111-125.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in plant science 7: 405-410.
Montero-Lomelı́, M., B.L. Morais, D.L. Figueiredo, D.C. Neto, J.R. Martins and C.A. Masuda. 2002. The initiation factor eIF4A is involved in the response to lithium stress in Saccharomyces cerevisiae. Journal of Biological Chemistry 277: 21542-21548.
Mori, I.C., Y. Murata, Y. Yang, S. Munemasa, Y.-F. Wang, S. Andreoli, et al. 2006. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca 2+-permeable channels and stomatal closure. PLoS Biol 4: e327.
Munns, R., R.A. James, B. Xu, A. Athman, S.J. Conn, C. Jordans, et al. 2012. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature biotechnology 30: 360-364.
Murillo, I., E. Jaeck, M.J. Cordero and B. San Segundo. 2001. Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection. Plant Molecular Biology 45: 145-158.
Neill, S.O., K.S. Gould, P.A. Kilmartin, K.A. Mitchell and K.R. Markham. 2002. Antioxidant capacities of green and cyanic leaves in the sun species, Quintinia serrata. Functional Plant Biology 29: 1437-1443.
Okanami, M., T. Meshi and M. Iwabuchi. 1998. Characterization of a DEAD box ATPase/RNA helicase protein of Arabidopsis thaliana. Nucleic acids research 26: 2638-2643.
Pham, X.H., M.K. Reddy, N.Z. Ehtesham, B. Matta and N. Tuteja. 2000. A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates topoisomerase I activity. The Plant Journal 24: 219-229.
Reddy, A.S. 2001. Calcium: silver bullet in signaling. Plant Science 160: 381-404.
Romeis, T., A.A. Ludwig, R. Martin and J.D. Jones. 2001. Calcium‐dependent protein kinases play an essential role in a plant defence response. The EMBO journal 20: 5556-5567.
Ross, A.F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340-358.
Saijo, Y., S. Hata, J. Kyozuka, K. Shimamoto and K. Izui. 2000. Over‐expression of a single Ca2+‐dependent protein kinase confers both cold and salt/drought tolerance on rice plants. The Plant Journal 23: 319-327.
Sanan-Mishra, N., X.H. Pham, S.K. Sopory and N. Tuteja. 2005. Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proceedings of the National Academy of Sciences of the United States of America 102: 509-514.
Shangguan, L., X. Wang, X. Leng, D. Liu, G. Ren, R. Tao, et al. 2014. Identification and bioinformatic analysis of signal responsive/calmodulin-binding transcription activators gene models in Vitis vinifera. Molecular biology reports 41: 2937-2949.
Song, J.T., H. Lu, J.M. McDowell and J.T. Greenberg. 2004. A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. The Plant Journal 40: 200-212.
Spoel, S.H. and X. Dong. 2012. How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology 12: 89-100.
Stonebloom, S., T. Burch-Smith, I. Kim, D. Meinke, M. Mindrinos and P. Zambryski. 2009. Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. Proceedings of the National Academy of Sciences 106: 17229-17234.
Sun, C., Y. Shao, K. Vahabi, J. Lu, S. Bhattacharya, S. Dong, et al. 2014. The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae infection by downregulation plant defense responses. BMC plant biology 14: 268.
Van Loon, L. and A. Van Kammen. 1970. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var.‘Samsun’and ‘Samsun NN’: II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40: 199-211.
Vashisht, A.A. and N. Tuteja. 2006. Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance. Journal of Photochemistry and Photobiology B: Biology 84: 150-160.
Wang, Y., G. Duby, B. Purnelle and M. Boutry. 2000. Tobacco VDL gene encodes a plastid DEAD box RNA helicase and is involved in chloroplast differentiation and plant morphogenesis. The Plant Cell 12: 2129-2142.
White, R. 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99: 410-412.
Wildermuth, M.C., J. Dewdney, G. Wu and F.M. Ausubel. 2001. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562-565.
Wojtaszek, P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochemical Journal 322: 681-692.
Xiong, L., M. Ishitani, H. Lee and J.-K. Zhu. 2001. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress–and osmotic stress–responsive gene expression. The Plant Cell 13: 2063-2083.
Xu, D., X. Duan, B. Wang, B. Hong, T.-H.D. Ho and R. Wu. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant physiology 110: 249-257.
Xu, J., Y.-S. Tian, R.-H. Peng, A.-S. Xiong, B. Zhu, X.-F. Jin, et al. 2010. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231: 1251-1260.
Yamaguchi-Shinozaki, K. and K. Shinozaki. 2005. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends in plant science 10: 88-94.
Yoneyama, M., M. Kikuchi, T. Natsukawa, N. Shinobu, T. Imaizumi, M. Miyagishi, et al. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature immunology 5: 730-737.
Yoon, G.M., H.S. Cho, H.J. Ha, J.R. Liu and H.-s.P. Lee. 1999. Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant molecular biology 39: 991-1001.
Zhang, X.-m., X.-q. Zhao, C.-x. Feng, N. Liu, H. Feng, X.-j. Wang, et al. 2014. The cloning and characterization of a DEAD-Box RNA helicase from stress-responsive wheat. Physiological and Molecular Plant Pathology 88: 36-42.
Zhang, X. and Z. Mou. 2012. Expression of the human NAD (P)-metabolizing ectoenzyme CD38 compromises systemic acquired resistance in Arabidopsis. Molecular Plant-Microbe Interactions 25: 1209-1218.
Zhu, J.-K. 2003. Regulation of ion homeostasis under salt stress. Current opinion in plant biology 6: 441-445.
Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53: 247-273. doi:10.1146/annurev.arplant.53.091401.143329.
Zipfel, C. 2008. Pattern-recognition receptors in plant innate immunity. Current opinion in immunology 20: 10-16.
Zipfel, C. 2009. Early molecular events in PAMP-triggered immunity. Current opinion in plant biology 12: 414-420.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔