跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯舜文
研究生(外文):Shun-Wun Ke
論文名稱:乙烯對茶苗次級代謝物之影響及茶樹中絲胺酸羧肽酶轉殖菸草之功能探討
論文名稱(外文):Effects of ethylene on the secondary metabolites in tea (Camellia sinensis L.) seedlings and characterization of CsSCPL in transgenic tobacco
指導教授:楊靜瑩
指導教授(外文):Chin-Ying Yang
口試委員:楊俊逸林淑怡
口試委員(外文):Jun-Yi YangShu-I Lin
口試日期:2016-07-11
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:57
中文關鍵詞:乙烯兒茶素絲胺酸羧肽酶次級代謝物
外文關鍵詞:teaethylenecatechinsCsSCPLsecondary metabolites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:349
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
茶葉 (Camellia sinensis L.)為世界上最大宗之飲料作物之一,含有對人體重要且具保健功效之兒茶素、花青素與原花青素化合物等,皆透過類黃酮生合成途徑而得。本研究利用外施乙烯前驅物1-氨基環丙烷-1-羧酸 (1-aminocyclopropane-1-carboxylic acid, ACC)於青心烏龍茶苗中,進一步瞭解乙烯訊號對其次級代謝物含量組成與變化。另一方面,利用過表現茶樹絲胺酸羧肽酶 (serine carboxypeptidase-like acyltransferase, SCPL)基因之菸草轉殖株,初步探討CsSCPL於植體內所扮演之功能。試驗結果顯示,外施ACC處理組不僅能提升茶苗內總兒茶素含量,且於類黃酮生合成途徑中傾向累積較多酯型兒茶素,特別是表兒茶素沒食子酸酯((-)-epicatechin gallate, ECG)含量。於ACC處理組亦累積較多花青素類、類黃酮類與總多酚類化合物之含量。抗氧化酵素活性分析結果表示,於ACC處理組除了抗壞血酸過氧化酶活性呈現上升外,其餘超氧化物歧化酶、過氧化氫酶及過氧化酶三者
酵素活性皆下降。2, 2’-二苯基-1-苦味胼基 (2, 2-diphenyl-1-picrylhydr-
azyl, DPPH)自由基清除能力與氧自由基吸收能力 (oxygen radical absorbance capacity, ORAC)試驗結果亦顯示,茶苗於ACC處理組具有較佳之自由基清除能力。綜合以上結果,顯示乙烯訊號除了參與類黃酮生合成途徑外,亦影響茶苗抗氧化防禦系統。將茶樹中絲胺酸羧肽酶過表現於菸草轉殖株之試驗結果顯示,SCPL-OE-C61與SCPL-OE-
C73兩過表現轉殖株之根長較野生型長。於高鹽逆境下,兩轉殖株葉圓片之電解質滲漏比率皆較野生型低,顯示過表現CsSCPL基因可能有助於提升菸草植株對鹽害之耐受性。透過本試驗可初步了解CsSCPL蛋白之功能,未來可針對菸草植株內次級代謝物含量組成
進行分析,深入探討CsSCPL蛋白之功能。


Tea (Camellia sinensis L.) is one of the famous drinks in the world, which contains natural healthy chemicals such as catechins, anthocyandins and proanthocyanidins. Those are synthesized via the flavonoids biosynthesis pathway. The seedlings of Chin-Shin oolong was dropped with 1-aminocyclopropane-1-carboxylic acid (ACC), which is ethylene precursor, and plucked its one-tip two-leaf as materials to investigate the contents of secondary metabolites. Additionally, the role of CsSCPL (serine carboxypeptidase-like acyltransferase, SCPL) will be identified in the two tobacco (Nicotiana benthamiana) overexpression lines. The result showed that ACC treatment raised not only the contents of total catechins, but also tended to accumulate gallate-type catechins, when compared with control. We also detected the contents of phenolic compounds, including anthocynins, flavonoids and total phenol, which were all significant higher in ACC treatment than those in control. The antioxidant enzymes activity assay result revealed that the superoxide dismutase (SOD), catalase (CAT) and total peroxidase (POX) were decreased after treated with ACC, except the ascorbate peroxidase (APX), in contrast to control. The results of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and the oxygen radical absorbance capacity (ORAC) also indicated that the ACC treatment had better ability to scavenge free radicals than the control did. As described above, our results demonstrated that the ethylene signaling might participate in the flavonoids biosynthesis pathway, and influence the antioxidant defense system in tea seedlings. Analysis of overexpression CsSCPL transgenic tobacco pointed out that the roots lengths in SCPL-OE-C61 and SCPL-OE-C73 lines were longer than wild type (WT). Under salt stress, both SCPL-OE-C61 and SCPL-OE-C73 lines had lower percentage of electrolyte leakage than wild type. Our results may provide a preliminary study in function of CsSCPL. Furthermore, the contents of secondary metabolite in CsSCPL overexpression lines will be investigated.

中文摘要 i
英文摘要 ii
目錄 iii
壹、前言 1
一、乙烯對植物之影響 1
二、SCPL醯基轉移酶之介紹 7
貳、材料與方法 11
一、試驗材料及處理方法 11
二、高效液相層析儀 (high performance liquid chromatography, HPLC)分析 12
三、花青素與類黃酮含量之測定 13
四、總多酚化合物含量之測定 14
五、抗氧化酵素之測定 14
六、2, 2’-二苯基-1-苦味胼基 (2, 2-diphenyl-1picrylhydrazyl, DPPH)自由基清除能力之分析 17
七、氧自由基吸收能力 (Oxygen radical absorbance capacity, ORAC)之分析 17
八、過量表現CsSCPL基因之菸草轉殖株總RNA萃取 18
九、DNase處理 19
十、第一股cDNA之合成 (reverse transcription, RT) 19
十一、菸草幼苗根長之測量 19
十二、電解質滲漏率之測定 20
十三、二氨基聯苯胺 (3, 3’-diaminobenzidine, DAB)染色 20
參、結果 21
一、乙烯訊號下青心烏龍茶苗中兒茶素之含量與組成 21
二、乙烯訊號下青心烏龍茶苗內次級代謝物之累積 22
三、乙烯訊號下青心烏龍茶苗內抗氧化酵素活性之改變 22
四、乙烯訊號下青心烏龍茶苗之自由基清除比率探討 23
五、CsSCPL菸草轉植株之基因表現量及幼苗外觀形態 24
六、過表現CsSCPL之菸草轉殖株於高鹽逆境下之離子滲漏率測定 25

肆、討論 26
一、乙烯訊號參與茶苗之類黃酮生合成途徑 26
二、乙烯訊號提高茶苗之抗氧化能力 26
三、過表現CsSCPL基因之菸草轉殖株促進幼苗之根長 28
四、過表現CsSCPL之菸草轉殖株提高對高鹽逆境之耐受性 28
伍、參考文獻 30
陸、圖表 43
柒、附錄 52



邱致豪。2015。茶樹中CsSCPL基因之分子鑑定及在非生物逆境下表現之特性探討。碩士論文。臺中:國立國立中興大學生物科技學研究所。
Abeynayake, S. W., S. Panter, R. Chapman, T. Webster, S. Rochfort, A. Mouradov, and G. Spangenberg. 2012. Biosynthesis of proanthocyanidins in white clover flowers: cross talk within the flavonoid pathway. Plant Physiol. 158: 666–678.
Ashihara, H., W. W. Deng, W. Mullen, and A. Crozier. 2010. Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochem. 71: 559–566.
Ali, A., S. M. A. Basra, S. Hussain, J. Iqbal, A. A. H. Bukhsh, and M. Sarwar. 2012. Salt stress alleviation in field crops through nutritional supplementation of silicon. Pak. J. Nutr. 11: 637–655.
Amjad, M., J. Akhtar, M. Anwar-ul-Haq, A. H. Yang, S. S. Akhtarb, and S. E. Jacobsen. 2014. Integrating role of ethylene and ABA in tomato plants adaptation to salt stress. Sci. Hortic. 172: 109–116.
Arora, A., R. K. Sairam, and G. C. Srivastava. 2002. Oxidative stress and antioxidative system in plants. Curr. Sci. 82: 1227–1238.
Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 601–639.
Ayako, I., E. Sai , K. Akira, I. Kentaro, and Y. Keizo. 2007. Identification of genes involved in proanthocyanidin biosynthesis of persimmon (Diospyros kaki) fruit. Plant Sci. 172: 1037–1047.
Bellincontro, A., A. Fardelli, D. Santis, R. Botondi, and F. Mencarelli. 2006. Postharvest ethylene and 1-MCP treatments both affect phenols, anthocyanins, and aromatic quality of Aleatico grapes and wine. Aust. J. Grape Wine Res. 12: 141–149.
Bleecker, A. B., M. A. Estelle, C. Somerville, and H. Kende. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241: 1086–1089.
Bohnert, H. J. and R. G. Jesnsen. 1996. Metabolic engineering for increased salt tolerance. The next step. Aust. J. Plant Physiol. 23: 661–667.
Bontpart, T., V. Cheynier, A. Ageorges, and N. Terrier. 2015. BAHD or SCPL acyltransferase? What a dilemma for acylation in the world of plant phenolic compounds. New Phytol. 3: 695−707.
Bosch, M., S. Berger, A. Schaller, and A. Stintzi. 2014. Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta. BMC Plant Biol. 14: 257.
Brown, D. E., A. M. Rashotte, A. S. Murphy, J. Normanly, B. W. Tague, W. A. Peer, L. Taiz, and G. K. Muday. 2001. Flavonoid act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 126: 524−535.
Brunetti, C., L. Guidi, F. Sebastiani, and M. Tattini. 2015. Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress. Environ. Exp. Bot. 119: 54−62.
Brunetti, C., M. D. Ferdinando, A. Fini, S. Pollastri, and M. Tattini. 2013. Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans. Int. J. Mol. Sci. 14: 3540−3555.
Buer, C., F. Kordbacheh, T. Truong, C. Hocart, and M. Djordjevic. 2013. Alteration of flavonoid accumulation patterns in transparent testa mutants disturbs auxin transport, gravity responses, and imparts long-term effects on root and shoot architecture. Planta 238:171–189.
Buer, C., N. Imin, and M. Djordjevic. 2010. Flavonoids: new roles for old molecules. J. Interg. Plant Biol. 52: 89–111.
Chanwitheesuk, A., A. Teerawutgulrag, and N. Rakariyatham. 2005. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem. 92: 491–497.
Chen, G. H., C. Y. Yang, S. J. Lee, C. C. Wu, and J. T. C. Tzen. 2014. Catechin content and the degree of its galloylation in oolong tea were inversely correlated with cultivation altitude. J. Food Drug Anal. 22: 303–309.
Chen, T. H. and N. Murata. 2008. Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci. 13: 499−505.
Chiu, C. H., G. H. Chen, J. T. C. Tzen, and C. Y. Yang. 2015. Molecular identification and characterization of a serine carboxypeptidase-like gene associated with abiotic stress in tea plant, Camellia sinensis (L.). Plant Growth Regul. 79: 345–353.
Clegg, M. and M. Durbin. 2000. Flower color variation: A model for the experimental study of evolution. PNAS 97: 7016–7023.
Cui, M., Y. C. Lin, Y. G. Zu, T. Efferth, D. W. Li, and Z. H. Tang. 2015. Ethylene increases accumulation of compatible solutes and decreases oxidative stress to improve plant tolerance to water stress in Arabidopsis. J. Plant Biol. 58: 193−201.
Daävalos, A., C. Goämez-cordoves, and B. Bartolome. 2004. Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J. Agric. Food Chem. 52: 48−54.
Diaz-Vivancos, P., M. Rubio, V. Mesonero, P. M. Periago, A. R. Barcelo´, P. Martı´nez-Go´mez, and J. A. Herna´ndez. 2006. The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection. J. Exp. Bot. 57: 3813–3824.
del Río, L. ROS and RNS in plant physiology: an overview. J. Exp. Bot. 66: 2827–2837.
El-Kereamy, A., C. Chervin, J. P. Roustan, V. Cheynier, J. M. Souquet, M. Moutounet, J. Raynal, C. Ford, A. Latché, J. C. Pech, and M. Bouzayen. 2003. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol. Plant. 119: 175–182.
Es-Safi, N. E., S. Ghidouche, and P. Ducrot. 2007. Flavonoids: hemisynthesis, reactivity, characterization and free radical scavenging activity. Mol. 12: 2228−2258.
Fukao, T., K. Xu, P. Ronald, and J. Bailey-Serresa. 2006. A variable cluster of ethylene response factor–like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18: 2021–2034.
Halliwell, B. 2006. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 141: 312–322.
Heredia, B. and L. Cisneros-Zevallos. 2009. The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chem. 115: 1500–1508.
Hua, J. and E. Meyerowitz. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261−271.
Isabelle, M., B. L. Lee, M. T. Lim, W. P. Koh, D. Huang, and C. N. Ong. 2010. Antioxidant activity and profiles of common vegetables in Singapore. Food Chem. 120: 993–1003.
Kato, M. and S. Shimizu. 1985. Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant Cell Physiol. 26: 1291–1301.
Ke, D. and M. E. Saltveit. 1988. Plant hormone interaction and phenolic metabolism in the regulation of russet spotting in iceberg lettuce. Plant Physiol. 88: 1136–1140.
Khan, M. I. R. and N. A. Khan. 2014. Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251: 1007–1019.
Kieber, J. J., M. Rothenberg, G. Roman, K. A. Feldmann, and J. R. Ecker. 1993. CTR1, a negative regulator of the ethylene response pathway in arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427–441.
Knight, L. I., R. C. Rose, and W. Crocker. 1910. Effects of various gases and vapors upon etiolated seedlings of the sweet pea. Science 31: 635–636.
Kojima, H. and I. Uritani. 1972. Elucidation of the structure of a possible intermediate in chlorogenic acid biosynthesis in sweet potato root tissue. Plant Cell Physiol. 18: 1075–1084.
Koyama, T. 2014. The roles of ethylene and transcription factors in the regulation of on set of leaf senescence. Fron. Plant Sci. 5: 650.
Kubo, A., M. Aono, N. Nakajima, H. Saji, K. Tanaka, and N. Kondo. 1999. Differential responses in activity of antioxidant enzymes to different environmental stresses in Arabidopsis thaliana. J. Plant Res. 112: 279–290.
Kumar, V. and S. K. Yadav. 2013. Overexpression of CsDFR and CsANR enhanced flavonoids accumulation and antioxidant potential of roots in tobacco. Plant Root 7: 65–76.
Kunwar, A. and K. I. Priyadarsini. 2011. Free radicals, oxidative stress and importance of antioxidants in human health. J. Med. Allied Sci. 1: 53–60.
Lafuente, M., J. Sala, and L. Zacarias. 2004. Active oxygen detoxifying enzymes and phenylalanine ammonia-lyase in the ethylene-induced chilling tolerance in citrus fruit. J. Agric. Food Chem. 52: 3606–3611.
Lee, J. M., J. G. Joung, R. McQuinn, M. Y. Chung, Z. J. Fei, D. Tieman, and H. Klee. 2012. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J. 70: 191–204.
Lee, T. M. and C. Chu. 1992. Ethylene-induced polyamine accumulation in rice (Oryza sativa L.) coleoptiles. Plant Physiol. 100: 238–245.
Lewis, D., M. Ramirez, N. Miller, P. Vallabhaneni, K. Ray, R. Helm, B. Winkel, and G. Muday. 2000. Auxin and ethylene induce flavonol accumulation. Plant Physiol. 156: 144–164.
Li, X. and C. Steffens. 2000. An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase-like protein. Proc. Natl. Acad. Sci. U. S. A. 7: 6902–6907.
Lin, C. C. and C. H. Kao. 1999. NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings. Plant and Soil 216: 147–153.
Linden, J. C., J. R. Haigh, N. Mirjalili, and M. Phisaphalong. 2001. Gas concentration effects on secondary metabolite production by plant cell cultures. Adv. Biochem. Eng. Biotechnol. 72 : 36.
Liu, H., X. Wang, H. J. Zhang, Y. Y. Yang, X. C. Ge, and F. M. Song. 2008. A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 420: 57–65.
Liu, Y. J., L. P. Gao, L. Liu, Q. Yang, Z. W. Lu, Z. Y. Nie, Y. S. Wang, and T. Xia. 2012. Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis). J. Biol. Chem. 287: 44406–44417.
MacAdam, J. W., C. J. Nelson, and R. E. Sharp. 1992. Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiol. 99: 872–878.
Mahajan, M. and S. K. Yadav. 2014. Overexpression of a tea flavanone 3‑hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco. Plant Mol. Biol. 85: 551–573.
Makkar, H. P. S., M. Blummel, N. K. Borowy, and K. Becker. 1993. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 61:161–165.
MartinezTellez, M. A. and M. T. Lafuente. 1997. Effect of high temperature conditioning on ethylene, phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase activities in flavedo of chilled (Fortune) mandarin fruit. J. Plant Physiol. 150: 674–678.
Matsumoto, T., H. Matsuzaki, K. Takata, Y. Tsurunaga, H. Takahashi, and T. Kurahashi. 2007. Inhibition of astringency removal in semidried Japanese persimmon fruit by 1-methylcyclopropene treatment. HORTSCIENCE 42:1493–1495.
Mayerhofer, H., S. Panneerselvam, and J. Mueller-Dieckmann. 2012. Protein kinase domain of CTR1 from Arabidopsis thaliana promotes ethylene receptor cross talk. J. Mol. Biol. 415: 768–779.
Merchante, C., J. Alonso, and A. Stepanova. 2013. Ethylene signaling: simple ligand, complex regulation. Curr. Opin. Plant Biol. 16: 554–560.
Mol, J., E. Grotewold, and R. Koes. 1998. How genes paint flowers and seeds. Trends Plant Sci. 3: 212–217.
Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867–880.
Niemetz, R. and G. G. Gross. 2005. Enzymology of gallotannin and ellagitannin biosynthesis. Phytochem. 66: 2001–2011.
Oracz, K., H. El-Maarouf-Bouteau, R. Bogatek, F. Corbineau, and C. Bailly. 2008. Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signaling pathway. J. Exp. Bot. 59: 2241–2251.
Paoletti, F., D. Aldinucci, A. Mocali, and A. Caparrini. 1985. A sensitive spectrophotomertric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154: 536–541.
Papadopoulou, K., R. Melton, M. Leggett, M. J. Daniels, and A. E. Osbourn. 1999. Compromised disease resistance in saponindeficient plants. Proc. Natl. Acad. Sci. USA 96: 12923–12928.
Pirrello, J., F. Jaimes-Miranda, M. T. Sanchez-Ballesta, B. Tournier, Q. Khalil-Ahmad, F. Regad, A. Latché, J. C. Pech, and M. Bouzayen. 2006. Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol. 47: 1195–1205.
Pisoschi, A. M. and A. Pop. 2015. The role of antioxidants in the chemistry of oxidative stress: a review. Eur. J. Med. Chem. 97: 55–74.
Pollastri, S. and M. Tattini. 2011. Flavonols: old compounds for old roles. Ann. Bot. 108: 1225–1233.
Rodrigues, A. S., M. R. Pérez-Gregorio, M. S. García-Falcón, J. Simal-Gándara, and D. Almeida. 2010. Effect of post-harvest practices on flavonoid content of red and white onion cultivars. Food Control 21: 878–884.
Rossetti, D., J. H. H. Bongaerts, E. Wantling, J. R. Stokes, and A. M. Williamson. 2009. Astringency of tea catechins: more than an oral lubrication tactile percept. Food Hydrocolloid 23: 1984–1992.
Sakamoto, A. and N. Murata. 2002. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ. 25: 163−171.
Sanders, I., K. Ishizawa, A. Smith, and M. Hall. 1990. Ethylene binding and action in rice seedlings. Plant Cell Physiol. 31: 1091–1099.
Schaller, E. 2012. Ethylene and the regulation of plant development. BMC Biol. 10: 9.
Sharma, P., A. B. Jha, R. S. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012: 1–26.
Sharpe, E., F. Hua, S. Schuckers, S. Andreescu, and R. Bradley. 2016. Effects of brewing conditions on the antioxidant capacity of twenty-four commercial green tea varieties. Food Chem. 192: 380–387.
Sheahan, J. J. 1996. Sinapate esters provide greter UV-B attenuation than flavonoids in Arabidopsis thaliana (Brassicaceae). Am. J. Bot. 83: 679–686.
Shirley, B. W. 1998. Flavonoids in seeds and grain: physiological function, agronomic importance and the genetics of biosynthesis. Seed Sci. Res. 8: 415–422.
Singleton, V. L. and J. A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144–158.
Sivankalyani, V., O. Feygenberg, S. Diskin, B. Wright, and N. Alkan. 2016. Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance. Postharvest Biol. Technol. 111: 132–139.
Smith, T. J. and C. S. Yang. 1994. Phenolic compounds in food and their effects on health I: fruits and vegetables. A. C. S. 506: 102–117.
Solovchenko, A. and M. Schmitz-Eiberger. 2003. Significance of skin flavonoids for UV-B-protection in apple fruits. J. Exp. Bot. 54: 1977–1984.
Stehle, F., M. T. Stubbs, D. Strack, and C. Milkowski. 2008. Heterologous expression of a serine carboxypeptidase-like acyltransferase and characterization of the kinetic mechanism. FEBS J. 275: 775–787.
Stepanova, A. N. and J. M. Alonso. 2009. Ethylene signaling and response: where different regulatory modules meet. Curr. Opin. Plant Biol. 12: 548–555.
Subbiah, V. and K. J. Reddy. 2010. Interactions between ethylene, abscisisc acid and cytokinin during germination and seedling establishment in Arabidopsis. J. Biosci. 35: 451–458.
Tan, C. K., Z. M. Ali, and Z. Zainal. 2012. Changes in ethylene production, carbohydrase activity and antioxidant status in pepper fruits during ripening. Sci. Hortic. 142: 23–31.
Testa, R., A. R. Bonfigli, S. Genovese, V. Nigris, and A. Ceriello. 2016. The possible role of flavonoids in the prevention of diabetic complications. Nutrients 8: doi: 10.3390/nu8050310.
Thipyapong, P. and J. Steffens. 1997. Tomato polyphenol oxidase (differential response of the polyphenol oxidase F promoter to injuries and wound signals). Plant Physiol. 2: 409–418.
Thordal-Christensen, H., Z. G. Zhang, and Y. D. Wei. 1997. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley—powdery mildew interaction. Plant J. 11: 1187–1194.
Treutter, D. 2005. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol. 7: 581-591.
Vanstraelen, M. and E. Benkov´a. 2012. Hormonal interactions in the regulation of plant development. Annu. Rev. Cell Dev. Biol. 28: 463–487.
Verstraeten, S., C. Fraga, and P. Oteiza. 2015. Interactions of flavan-3-ols and procyanidins with membranes: mechanisms and the physiological relevance. Food Funct. 6: 32–41.
Villa˜no, D., M. S. Fern´andez-Pach´on , M. L. Moy´, A. M. Troncoso, and M. C. Garc´ıa-Parrilla. 2007. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 71: 230–235.
Voesenek, L. A. C. J. and R. Sasidharan. 2013. Ethylene – and oxygen signalling – drive plant survival during flooding. Plant Biol. 15: 426–435.
Wang, H., W. Zhi, H. X. Qu, H. T. Lin, and Y. M. Jiang. 2015. Application of α-aminoisobutyric acid and β-aminoisobutyric acid inhibits pericarp browning of harvested longan fruit. Chem. Cent. J. 9: 54.
Whale, S. and Z. Singh. 2007. Endogenous ethylene and color development in the skin of ‘Pink Lady’ apple. J. Amer. Soc. Hort. Sci. 132: 20–28.
Winkel-Shirley, B. 2002. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 5: 218–223.
Wojcik, M., I. Burzynska-Pedziwiatr, and L. A. Wozniak. 2010. A review of natural and synthetic antioxidants important for health and longevity. Curr. Med. Chem. 17: 3262–3283.
Woolf, A., J. Plummer, and J. Clemens. 1999. Maturity and temperature influence ethylene-promoted organ abscission in Camellia. N. Z. J. Crop Hortic. Sci. 27: 33–41.
Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35: 155–189.
Zhang, J., S. Subramanian, G. Stacey, and O. Yu. 2009. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J. 57: 171–183.
Zhang, Z. K., D. Hubera, and J. P. Rao. 2013. Antioxidant systems of ripening avocado (Persea americana Mill.) fruit following treatment at the preclimacteric stage with aqueous 1-methylcyclopropene. Postharvest Biol. Technol. 76 : 58–64.
Zhu, C. F., G. Sanahuja, D. W. Yuan, G. Farre´, G. Arjo´, J. Berman, U. Zorrilla-Lo´ pez, R. Banakar, C. Bai, E. Pe´ rez-Massot, L. Bassie, T. Capell, and P. Christou. 2013. Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotech. J. 11: 129–141.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊