Bibliography
[1]http://www.wisegeek.com/what-is-green-energy.htm#
[2]http://www.scientificamerican.com/article/coal-ash-is-more-radioactive-than-nuclear-waste/
[3]http://kids.britannica.com/elementary/art-87019/Factories-that-burn-fossil-fuels-help-to-cause-global-warming
[4]http://www.fujitsu.com/global/about/resources/news/press-releases/2010/1209-01.html
[5]Yifeng Qiu, C. Van Liempd, B. Op het Veld, P. G. Blanken, and C. Van Hoof, “5μW-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2011, pp. 118–120.
[6]R. Enne, M. Nikolic, and H. Zimmermann, “A maximum power-point tracker without digital signal processing in 0.35μm CMOS for automotive applications,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2012, pp. 102–104.
[7]Hoonki Kim, Sangjin Kim, Chan-Keun Kwon, Young-Jae Min, Chulwoo Kim, and Soo-Won Kim, “An energy-efficient fast maximum power point tracking circuit in an 800-μw photovoltaic energy harvester,” IEEE Trans. Industrial Electronics, vol. 28, no. 6, pp. 2927-2935, June 2013.
[8]K. W. R. Chew, Zhuochao Sun, H. Tang, and L. Siek, “A 400nW single-inductor dual-input-tri-output DC-DC buck-boost converter with maximum power point tracking for indoor photovoltaic energy harvesting,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2013, pp. 68–69.
[9]Tsung-Heng Tsai and Kai Chen, “A 3.4mW photovoltaic energy-harvesting charger with integrated maximum power point tracking and battery management,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2013, pp. 72–73.
[10]Y. K. Tan and S.K. Panda, “Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes,” IEEE Trans. Industrial Electronics, vol. 58, no. 9, pp. 4424-4435, Sept. 2011.
[11]K. Kadirvel, Y. Ramadass, U. Lyles, J. Carpenter, V. Ivanov, V. McNeil, A. Chandrakasan, and B. Lum-Shue-Chan, “A 330nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2012, pp. 106–107.
[12]S. Bandyopadhyay, and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199–2215, Sept. 2012.
[13]N. Krihely and S. Ben-Yaakov, “Self-contained resonant rectifier for piezoelectric sources under variable mechanical excitation,” IEEE Trans. Power Electronics, vol. 26, no. 2, pp. 612-621, Feb. 2011.
[14]Y. Rao and D. P. Arnold, “An input-powered vibrational energy harvesting interface circuit with zero standby power,” IEEE Trans. Power Electronics, vol. 26, no. 12, pp. 3524-3533, Dec. 2011.
[15]Y. Sun, N. H. Hieu, C.-J. Jeong, and S.-G. Lee, “An integrated high-performance active rectifier for piezoelectric vibration energy harvesting systems,” IEEE Trans. Power Electronics, vol. 27, no. 2, pp. 623-627, Feb. 2012.
[16]T. Paing, E. A. Falkenstein, R. Zance, and Z. Popovic, “Custom IC for ultralow power RF energy scavenging,” IEEE Trans. Power Electronics, vol. 26, no. 6, pp. 1620-1626, Jun. 2011.
[17]Y. K. Tan and S. K. Panda, “Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes,” IEEE Trans. Power Electronics, vol. 26, no. 1, pp. 28-50, Jan. 2011.
[18]A. Meehan, H. Gao, and Z. Lewandowski, “Energy harvesting with microbial fuel cell and power management system,” IEEE Trans. Power Electronics, vol. 26, no. 1, pp. 176-181, Jan. 2011.
[19]E. Carlson, K. Strunz, and B. Otis, “20mV input boost converter for thermoelectric energy harvesting,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 741–750, Apr. 2010.
[20]A. Richelli and Z.M. Kovacs-Vajna, “A DC/DC boosting technique and power management for ultralow-voltage energy harvesting applications,” IEEE Trans. Industrial Electronics, vol. 59, no. 6, pp. 2701-2708, Jun. 2012.
[21]Jungmoon Kim, Minseob Shim, Junwon Jung, Heejun Kim, and Chulwoo Kim, “A DC-DC boost converter with variation tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications, “IEEE Asia and South Pacific Design Automation Conference (ASP-DAC), 2014, pp. 35-36.
[22]Y. K. Ramadass and A. P. Chandrakasan, “A batteryless thermoelectric energy-harvesting interface circuit with 35 mV startup voltage,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 333–341, Jan. 2011.
[23]J.-P. Im, S.-W. Wang, K.-H. Lee, Y.-J. Woo, Y.-S. Yuk, T.-H. Kong, S.-W. Hong, S.-T. Ryu, and G.-H. Cho, “A 40 mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2012, pp. 104–105.
[24]Po-Hung Chen, K. Ishida, K. Ikeuchi, Xin Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “Startup techniques for 95 mV step-up converter by capacitor pass-on scheme and Vth-tuned oscillator with fixed charge programming,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1252-1260, May 2012.
[25]李明勳, “具負電壓控制技術之低電壓直流轉直流升壓轉換器,” 國立中興大學電機工程學系碩士學位論文, July 2013.[26]P.-S. Weng, H.-Y. Tang, P.-C. Ku, L.-H. Lu, “50 mV-input batteryless boost converter for thermal energy harvesting,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1031-1041, April 2013.
[27]I. Doms, P. Merken, R. Mertens, and C. Van Hoof, “Integrated capacitive power-management circuit for thermal harvesters with output power 10 to 1000μW,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 300-301.
[28]E. Torres and G. Rincὀn-Mora, “Energy-harvesting chips and quest for everlasting life,” Jun. 2005, http://www.eetimes.com/.
[29]P. Chen, K. Ishida, X. Zhang, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “0.18-V input charge pump with forward body biasing in startup circuit using 65nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2010, pp.239-242.
[30]G. Palumbo and D. Pappalar, “Charge pump circuits: An overview on design strategies and topologies,” IEEE Circuits and Systems Magazine, vol. 10, no.1, pp. 31-45, First Quarter, 2010.
[31]N. Mohan, T.M. Undeland, and W.P. Robbins, Power Electronics, 3rd edition, Chapter 7, John Wiley & Sons, Inc., 2003.
[32]J. Kimball, T. Flowers, and P. Chapman, “Low-input-voltage, low power boost converter design issues,” IEEE Power Electron, Lett., vol. 2, no. 3, pp. 96-99, Sep. 2004.
[33]J. Damaschke, “Design of a low-input-voltage converter for thermoelectric generator,” IEEE Trans. Industry Applications, vol. 33, no. 5, pp. 1203-1207, Sep. 1997.
[34]P. Spies, M. Pollak, and G. Rohmer, “Energy harvesting for mobile communication devices,” in Proc. Int. Telecommunications Energy Conf., Sep. 2007, pp. 481-488.
[35]T. J. Seebeck. “Magnetische polarization der metalle und erze durch temperature-differenze. abhand deut.” Akad. Wiss. Berlin, pp. 265-373, 1821.
[36]J. Lim, C.-K. Huang, M. Ryan, G. J. Snyder, J. Herman, and J.-P. Fleurial, “MEMS/ECD method for making Bi2-xSbxTe3 thermoelectric devices,” NASA Technology Briefs, vol. 32, no. 7, pp. NPO-30 797, Jul, 2008.
[37]S. Lineykin and S. Ben-Yaakov, “Modeling and analysis of thermoelectric modules,” IEEE Trans. Industry Applications, vol. 43, no. 2, pp. 505-512, Mar. 2007.
[38]Hsien-Wen Ko, “熱電轉換及其應用,” 科技發展政策報導,2007年9月第五期第51-65頁。
[39]林克衞, “熱電材料在汽車廢熱回收的應用,” 車輛研測資訊, pp. 26-27, Sept. 2006.
[40]J. Yang, “Potential applications of thermoelectric waste heat recovery in the automotive industry,” in Proc. Int. Conf. on Thermoelectrics, Jun, 2005, pp. 170-174.
[41]E. Thacher, et al., “Electric energy generation from the exhaust of a light truck,” in Proc. DOE/EPRI High Efficient Thermoelectric Workshop, 2004.
[42]G. L. Bennett, “Space nuclear power: opening the final frontier,” in Proc. 4th Int. Energy Conversion Engineering Conf. and Exhibit (IECEC), Jun. 2006, pp. 26-29.
[43]Y. K. Ramadass, Energy Processing Circuits for Low-Power Applications, Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, Jun. 2009.
[44]H.-P. Le, C.-S. Chae, K.-C. Lee, S.-W. Wang, G.-H. Cho, G.-H. Cho, “A single-inductor switching dc-dc converter with five outputs and ordered power-distributive control,” IEEE J. of Solid-State Circuits, vol. 42, no. 12, pp. 2706-2714, Dec. 2007.
[45]“LT3467/LT3467A.: 1.1A step-up DC/DC converter in thin SOT with integrated soft-start,” 2003, http://www.linear.com.
[46]E. Mendez-Delgado and G. J. Serrano, “A 300mV low-voltage start-up circuit for energy harvesting systems,” in Proc. IEEE Intl. Symp. on Circuits and Systems, May 2011, pp. 829-832.
[47]教育部綠色電子聯盟資訊。
[48]P. Chen, K. Ishida, X. Zhang, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakura, “A 80-mV input, fast startup dual-mode boost converter with charge-pumped pulse generator for energy harvesting,” in Proc. IEEE Asian Solid-State Circuit Conf., Nov. 2011, pp. 33-36.
[49]Y.-C. Hsu, C.-L. Wei, and H.-H. Wu, “Design of a boost DC-DC converter with a low startup voltage,” in Proc. Int. Conf. on Communications, Circuits and Systems (ICCCAS), Nov. 2013, pp. 435-438.
[50]S. Carreon-Bautista, A. Eladawy, A. N. Mohieldin, and E. Sanchez-Sinencio, “Boost converter with multi-array thermoelectric generators,” IEEE Trans. Industrial Electronics, vol. 61, no. 10, pp. 5345-5353, Oct. 2014.
[51]N.-M. Sze, F. Su, Y.-H. Lam, W.-H. Ki, and C.-Y. Tsui, “Integrated single-inductor dual-input dual-output boost converter for energy harvesting applications,” in Proc. IEEE Intl. Symp. on Circuits and Systems, pp. 2218-2221, June, 2008.
[52]F. Zhang, Y. Zhang, J. Silver, Y. Shakhsheer, M. Nagaraju, A. Klinefelter, J. Pandey, J. Boley, E. Carlson, A. Shrivastava, B. Otis, and B. Calhoun, “A batteryless 19μW MICS/ISM-band energy harvesting body area sensor node SoC,” in IEEE Int. Solid-State Conf. Dig. Tech. Papers, 2012, pp. 298-299.
[53]B. Razavi, Design of Analog CMOS Integrated Circuits. New York, NY, USA: McGraw-Hill, 2001.
[54]mm-Wave Silicon Technology: 60GHz and Beyond, A. M. Niknejad and H. Hashemi, Eds. New York, NY, USA: Springer, 2008.
[55]A. D. Berny, A. M. Niknejad, and R. G. Meyer, “A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 909-917, Apr. 2005.
[56]C. P. Basso, Switch-Mode Power Supplies SPICE Simulations and Practical Designs. New York, NY, USA: McGraw-Hill, 2008.
[57]A. B. Carlson, Circuits: Engineering Concepts and Analysis of Linear Electric Circuits. Belmont, CA USA: Brooks/Cole, 2000.
[58]J. Kim, J. Kim, and C. Kim, “ A regulated charge pump with a low-power integrated optimum power point tracking algorithm for indoor solar energy harvesting,” IEEE Trans. Circuits System II, Exp. Breifs, vol. 58, no. 12, pp. 802-806, Dec. 2011.
[59]H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, and M. Rosset, “Efficient power management circuit: From thermal energy harvesting to above-IC microbattery energy storage,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 246-255, Jan. 2008.
[60] “LTC3108: Ultralow voltage step-up converter and power manager,” Linear Technology Corporations, Milpitas, CA, 2010 [Online]. Available: http://www.linear.com.
[61]“G1-1.0-127-1.27: Tellurex Thermoelectric Energy Harvester,” Tellurex, MI, (2007). [Online]. Available: http://www.tellurex.com.
[62]A. Mirocha and P. Dziurdzia, “Improved electrothermal model of thermoelectric generator implemented in SPICE,” in Proc. Int. Conf. Signals Electronics System, Sep. 2008, pp. 317-320.
[63]R. Jacob Baker, CMOS Circuit Design, Layout, and Simulation. New York: IEEE Press, Wiley-Interscience, 2010, pp. 529-530.
[64]F.-F. Ma, W.-Z. Chen, and J.-C. Wu, “A monolithic current-mode buck converter with advanced control and protection circuits,” IEEE Trans. Power Electronics, vol. 22, no. 5, pp. 1836-1846, Sep. 2007.
[65]J. A. A. Qahouq, “Control scheme for sensorless operation and detection converters,” IEEE Trans. Power Electronics, vol. 25, no. 10, pp. 2489-2495, Oct. 2010.
[66]L. Magnellij, F. Crupi, P. Corsonello, C. Pace, and G. Iannaccone, “A 2.6nW, 0.45V temperature-compensated subthreshold CMOS voltage reference,” IEEE J. Solid-Stage Circuits, vol. 46, no. 2, pp. 465-473, Feb. 2011.
[67]“ECT 310 Perpetuum: EnOcean powered by Thermal Energy,” EnOcean, Inc., Oberhaching, Germany, 2010 [Online]. Available: http://www.enocean.com.
[68]R. Y. Kin, and J. S. Lai, “A seamless mode transfer maximum power point tracking controller for thermoelectric generator applications,” IEEE Trans. Power Electronics, vol. 23, no. 5, pp. 2310-2318, Sep. 2008.
[69]S. K. Cho, N. J. Kim, S. S. Park, and S. H. Kim, “A coreless maximum power point tracking circuit of thermoelectric generators for battery charging systems,” IEEE Asian Solid-State Circuits Conf., Nov. 2010.
[70]T. Paing, J. Shin, R. Zane, and Z. Popovic, “Resistor emulation approach to low-power RF energy harvesting,”, IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1494-1501, May, 2008.
[71]“TE-Power PROBE &MPG D751 www.micropelt.com”.
[72]Po-Hung Chen, K. Ishida, Xin Zhang, Y. Okuma, Y. Ryu, M. Takamiya, T. Sakurai, “A 120-mV input, fully integrated dual-mode charge pump in 65-nm CMOS for thermoelectric energy harvester,” Asian Pacific Design Automation Conf. (ASP-DAC), pp. 469-470, 2012.
[73]R. Grezaud and J. Willemin, “A self-starting fully integrated auto-adaptive converter for battery-less thermal energy harvesting,” IEEE New Circuits and Systems Conf. (NEWCAS), pp. 1-4, 2013.
[74]X. Cao, W.-C. Chiang, Y.-C. King, and Y.-K. Lee, “Electromagnetic energy harvesting circuit with feedforward and feedback DC-DC PWM boost converter for vibration power generator system,” IEEE Trans. Power Electronics, vol. 22, no. 2, pp. 679-685, Mar. 2007.
[75]A. Richelli, L. Colalongo, S. Tonoli, and Z. M. Kovacs-Vajna, “A 0.2-1.2V DC/DC boost converter for power harvesting applications,” IEEE Trans. Power Electronics, vol. 24, no. 6, pp. 1541-1546, June, 2009.
[76]M.-M. Sze, W.-H. Ki, and C.-Y. Stui, “Threshold voltage start-up boost converter for sub-mA applications,” in Proc. IEEE Intl. Symp. on Electronic Design, Test and Applications, pp. 338-341, Mar. 2008.
[77]Y.-K. Luo, C.-C. Chiou, C.-H. Wu, K.-H. Chen, and Wei-Chou Hsu, “Transient improvement by window transient enhancement (WTE) and overshoot suppression (OSS) techniques in current mode boost converter,” IEEE Trans. Power Electronics, Feb. 2011.
[78]郭宇傑, “具兩階段與負電壓控制技術之低電壓啟動直流轉直流升壓轉換器,” 國立中興大學電機工程學系碩士學位論文, July, 2015.[79]https://en.wikipedia.org/wiki/Button_cell
[80]http://www.natureinterface.com/e/ni03/P045-049/