跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/27 03:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李姵璿
研究生(外文):Pui-Sun Lei
論文名稱:應用於熱電能源擷取裝置之無電池式直流對直流升壓器
論文名稱(外文):Batteryless DC-DC Boost Converter for Thermoelectric Energy Harvesting Devices
指導教授:張振豪
口試委員:楊清淵劉堂傑林泓均陳厚銘
口試日期:2016-01-25
學位類別:博士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:72
中文關鍵詞:無電池式熱電能源擷取裝置直流對直流升壓器
外文關鍵詞:Batterylessenergy harvest devicesDC-DC converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要提出一個能應用在熱能擷取裝置上之無電池式低電壓啟動的直流對直流升壓轉換器。由於熱能所能擷取的電壓很低,而輸入電壓必須高於臨界電壓才能讓電晶體動作,因此為了讓電路能在低電壓下開始工作,傳統的電路會在啟動電路裡使用低臨界電壓電晶體。可是低臨界電壓的電晶體漏電問題比較嚴重,這可以使用一個負電壓機制去把啟動後的低臨界電壓電晶體關掉,減少損耗,提升電路效率。另外,傳統的電路會使用兩個升壓器去做兩段式升壓,把低電壓一級一級升至所需電壓;但由於被動元件較多的關係,讓晶片面積較大。解決方法可以使用震盪器先把低輸入電壓升至高於一般標準CMOS電晶體的臨界電壓,讓後續電路有足夠電力工作,再用升壓器把電壓升至所需標準電壓;這樣可以減少電感及功率電晶體,省下了不少面積。
一般電路所使用的震盪器大部份以環狀震盪器為主,主要是它比較簡單設計;但為了配合低電壓啟動及低功耗之需求,本論文使用了一個LC震盪器來代替。而由於所使用的升壓器都是以切換式轉換器為主,為了減少切換損耗,本論文提出了一個高工作週期產生器來控制脈衝頻率調變升壓器的切換頻率。量測結果顯示,在輸入200mV,輸出可逹1.1V,而整體效率可達63%。

In this dissertation, a batteryless DC-DC boost converter with a low startup voltage for thermoelectric energy harvesting applications is proposed. The harvested power from thermal energy is very low. In order to work under low voltage situation, the conventional architecture uses low threshold voltage (VTH) transistors in the startup circuit, because transistors will only work when the input voltage is greater than the threshold voltage. However, the leakage current of the low VTH transistor is large. A negative voltage generator can be used to alleviate this problem. It produces a negative voltage to switch off those low VTH transistors to reduce leakage loss and improve the circuit efficiency. Moreover, the conventional architecture uses two stages of boost converter to step-up the output voltage. This leads to a problem of large passive components, which can be solved by using the oscillator to increase the low input voltage higher than the threshold voltage of the standard CMOS transistors, ensuring the operation of the following circuits. Then, the generated voltage is boosted to a desirable level. This can reduce the number of inductors and power MOSs, saving lots of the chip area.
Most of the oscillators being used in the low startup circuits are ring oscillators because they are easier to be designed. However, in order to meet the needs of low startup voltage and low power loss, this dissertation has proposed a LC oscillator instead. Furthermore, the converter used in this dissertation is a switching converter. A high duty cycle generator will be proposed to control the switching frequency of the pulse frequency modulation (PFM) control boost converter so that its switching loss is decreased. The measurement results show that with a 200mV input, the output can be regulated at 1.1V, with 63% peak efficiency.

Contents

誌謝 i
中文摘要 ii
Abstract iii
List of Table vi
List of Figure vii
Chapter 1 Introduction 1
1.1 Common types of energy sources at present 1
1.2 Energy harvesting 3
1.2.1 Solar energy harvesting 5
1.2.2 Vibration energy harvesting 6
1.2.3 Thermoelectric energy harvesting 6
1.3 Motivation 8
1.4 Organization of the dissertation 11
Chapter 2 Literature Review 12
2.1 Conventional two-stage low startup boost converter 12
2.2 A boost converter with external pre-charge startup voltage 13
2.3 A battery-driven thermoelectric energy harvesting system 17
2.4 A thermal harvesting system with a mechanical switch 20
2.4.1 Start block of the thermal harvesting system with a motion activated switch [22] 21
2.5 A thermal energy harvesting system with a transformer startup scheme 23
2.5.1 Self-startup transformer reuse technique 25
2.5.2 Transformer reuse technique 26
2.6 Step-up converter with capacitor pass-on scheme and VTH-tuned oscillator 29
2.6.1 Capacitor passed-on scheme 32
2.7 A step-up converter with negative voltage control technique 34
Chapter 3 Batteryless DC-DC Boost Converter for Thermoelectric Energy Harvesting Devices 36
3.1 The proposed DC-DC boost converter 36
3.2.1 LC oscillator 37
3.2.2 Voltage multiplier 41
3.2.3 Clock generator 43
3.2.4 High duty cycle generator 44
3.2.5 Hysteresis comparator 47
3.2.6 PFM control DC-DC boost converter 48
Chapter 4 Results and Comparisons 51
4.1 Simulation results 51
4.2 Experimental results and comparisons 58
Chapter 5 Conclusion 64
Bibliography 65


Bibliography
[1]http://www.wisegeek.com/what-is-green-energy.htm#
[2]http://www.scientificamerican.com/article/coal-ash-is-more-radioactive-than-nuclear-waste/
[3]http://kids.britannica.com/elementary/art-87019/Factories-that-burn-fossil-fuels-help-to-cause-global-warming
[4]http://www.fujitsu.com/global/about/resources/news/press-releases/2010/1209-01.html
[5]Yifeng Qiu, C. Van Liempd, B. Op het Veld, P. G. Blanken, and C. Van Hoof, “5μW-to-10mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2011, pp. 118–120.
[6]R. Enne, M. Nikolic, and H. Zimmermann, “A maximum power-point tracker without digital signal processing in 0.35μm CMOS for automotive applications,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2012, pp. 102–104.
[7]Hoonki Kim, Sangjin Kim, Chan-Keun Kwon, Young-Jae Min, Chulwoo Kim, and Soo-Won Kim, “An energy-efficient fast maximum power point tracking circuit in an 800-μw photovoltaic energy harvester,” IEEE Trans. Industrial Electronics, vol. 28, no. 6, pp. 2927-2935, June 2013.
[8]K. W. R. Chew, Zhuochao Sun, H. Tang, and L. Siek, “A 400nW single-inductor dual-input-tri-output DC-DC buck-boost converter with maximum power point tracking for indoor photovoltaic energy harvesting,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2013, pp. 68–69.
[9]Tsung-Heng Tsai and Kai Chen, “A 3.4mW photovoltaic energy-harvesting charger with integrated maximum power point tracking and battery management,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2013, pp. 72–73.
[10]Y. K. Tan and S.K. Panda, “Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes,” IEEE Trans. Industrial Electronics, vol. 58, no. 9, pp. 4424-4435, Sept. 2011.
[11]K. Kadirvel, Y. Ramadass, U. Lyles, J. Carpenter, V. Ivanov, V. McNeil, A. Chandrakasan, and B. Lum-Shue-Chan, “A 330nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2012, pp. 106–107.
[12]S. Bandyopadhyay, and A. P. Chandrakasan, “Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2199–2215, Sept. 2012.
[13]N. Krihely and S. Ben-Yaakov, “Self-contained resonant rectifier for piezoelectric sources under variable mechanical excitation,” IEEE Trans. Power Electronics, vol. 26, no. 2, pp. 612-621, Feb. 2011.
[14]Y. Rao and D. P. Arnold, “An input-powered vibrational energy harvesting interface circuit with zero standby power,” IEEE Trans. Power Electronics, vol. 26, no. 12, pp. 3524-3533, Dec. 2011.
[15]Y. Sun, N. H. Hieu, C.-J. Jeong, and S.-G. Lee, “An integrated high-performance active rectifier for piezoelectric vibration energy harvesting systems,” IEEE Trans. Power Electronics, vol. 27, no. 2, pp. 623-627, Feb. 2012.
[16]T. Paing, E. A. Falkenstein, R. Zance, and Z. Popovic, “Custom IC for ultralow power RF energy scavenging,” IEEE Trans. Power Electronics, vol. 26, no. 6, pp. 1620-1626, Jun. 2011.
[17]Y. K. Tan and S. K. Panda, “Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes,” IEEE Trans. Power Electronics, vol. 26, no. 1, pp. 28-50, Jan. 2011.
[18]A. Meehan, H. Gao, and Z. Lewandowski, “Energy harvesting with microbial fuel cell and power management system,” IEEE Trans. Power Electronics, vol. 26, no. 1, pp. 176-181, Jan. 2011.
[19]E. Carlson, K. Strunz, and B. Otis, “20mV input boost converter for thermoelectric energy harvesting,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 741–750, Apr. 2010.
[20]A. Richelli and Z.M. Kovacs-Vajna, “A DC/DC boosting technique and power management for ultralow-voltage energy harvesting applications,” IEEE Trans. Industrial Electronics, vol. 59, no. 6, pp. 2701-2708, Jun. 2012.
[21]Jungmoon Kim, Minseob Shim, Junwon Jung, Heejun Kim, and Chulwoo Kim, “A DC-DC boost converter with variation tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications, “IEEE Asia and South Pacific Design Automation Conference (ASP-DAC), 2014, pp. 35-36.
[22]Y. K. Ramadass and A. P. Chandrakasan, “A batteryless thermoelectric energy-harvesting interface circuit with 35 mV startup voltage,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 333–341, Jan. 2011.
[23]J.-P. Im, S.-W. Wang, K.-H. Lee, Y.-J. Woo, Y.-S. Yuk, T.-H. Kong, S.-W. Hong, S.-T. Ryu, and G.-H. Cho, “A 40 mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2012, pp. 104–105.
[24]Po-Hung Chen, K. Ishida, K. Ikeuchi, Xin Zhang, K. Honda, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “Startup techniques for 95 mV step-up converter by capacitor pass-on scheme and Vth-tuned oscillator with fixed charge programming,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1252-1260, May 2012.
[25]李明勳, “具負電壓控制技術之低電壓直流轉直流升壓轉換器,” 國立中興大學電機工程學系碩士學位論文, July 2013.
[26]P.-S. Weng, H.-Y. Tang, P.-C. Ku, L.-H. Lu, “50 mV-input batteryless boost converter for thermal energy harvesting,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1031-1041, April 2013.
[27]I. Doms, P. Merken, R. Mertens, and C. Van Hoof, “Integrated capacitive power-management circuit for thermal harvesters with output power 10 to 1000μW,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 300-301.
[28]E. Torres and G. Rincὀn-Mora, “Energy-harvesting chips and quest for everlasting life,” Jun. 2005, http://www.eetimes.com/.
[29]P. Chen, K. Ishida, X. Zhang, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakurai, “0.18-V input charge pump with forward body biasing in startup circuit using 65nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2010, pp.239-242.
[30]G. Palumbo and D. Pappalar, “Charge pump circuits: An overview on design strategies and topologies,” IEEE Circuits and Systems Magazine, vol. 10, no.1, pp. 31-45, First Quarter, 2010.
[31]N. Mohan, T.M. Undeland, and W.P. Robbins, Power Electronics, 3rd edition, Chapter 7, John Wiley & Sons, Inc., 2003.
[32]J. Kimball, T. Flowers, and P. Chapman, “Low-input-voltage, low power boost converter design issues,” IEEE Power Electron, Lett., vol. 2, no. 3, pp. 96-99, Sep. 2004.
[33]J. Damaschke, “Design of a low-input-voltage converter for thermoelectric generator,” IEEE Trans. Industry Applications, vol. 33, no. 5, pp. 1203-1207, Sep. 1997.
[34]P. Spies, M. Pollak, and G. Rohmer, “Energy harvesting for mobile communication devices,” in Proc. Int. Telecommunications Energy Conf., Sep. 2007, pp. 481-488.
[35]T. J. Seebeck. “Magnetische polarization der metalle und erze durch temperature-differenze. abhand deut.” Akad. Wiss. Berlin, pp. 265-373, 1821.
[36]J. Lim, C.-K. Huang, M. Ryan, G. J. Snyder, J. Herman, and J.-P. Fleurial, “MEMS/ECD method for making Bi2-xSbxTe3 thermoelectric devices,” NASA Technology Briefs, vol. 32, no. 7, pp. NPO-30 797, Jul, 2008.
[37]S. Lineykin and S. Ben-Yaakov, “Modeling and analysis of thermoelectric modules,” IEEE Trans. Industry Applications, vol. 43, no. 2, pp. 505-512, Mar. 2007.
[38]Hsien-Wen Ko, “熱電轉換及其應用,” 科技發展政策報導,2007年9月第五期第51-65頁。
[39]林克衞, “熱電材料在汽車廢熱回收的應用,” 車輛研測資訊, pp. 26-27, Sept. 2006.
[40]J. Yang, “Potential applications of thermoelectric waste heat recovery in the automotive industry,” in Proc. Int. Conf. on Thermoelectrics, Jun, 2005, pp. 170-174.
[41]E. Thacher, et al., “Electric energy generation from the exhaust of a light truck,” in Proc. DOE/EPRI High Efficient Thermoelectric Workshop, 2004.
[42]G. L. Bennett, “Space nuclear power: opening the final frontier,” in Proc. 4th Int. Energy Conversion Engineering Conf. and Exhibit (IECEC), Jun. 2006, pp. 26-29.
[43]Y. K. Ramadass, Energy Processing Circuits for Low-Power Applications, Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, Jun. 2009.
[44]H.-P. Le, C.-S. Chae, K.-C. Lee, S.-W. Wang, G.-H. Cho, G.-H. Cho, “A single-inductor switching dc-dc converter with five outputs and ordered power-distributive control,” IEEE J. of Solid-State Circuits, vol. 42, no. 12, pp. 2706-2714, Dec. 2007.
[45]“LT3467/LT3467A.: 1.1A step-up DC/DC converter in thin SOT with integrated soft-start,” 2003, http://www.linear.com.
[46]E. Mendez-Delgado and G. J. Serrano, “A 300mV low-voltage start-up circuit for energy harvesting systems,” in Proc. IEEE Intl. Symp. on Circuits and Systems, May 2011, pp. 829-832.
[47]教育部綠色電子聯盟資訊。
[48]P. Chen, K. Ishida, X. Zhang, Y. Okuma, Y. Ryu, M. Takamiya, and T. Sakura, “A 80-mV input, fast startup dual-mode boost converter with charge-pumped pulse generator for energy harvesting,” in Proc. IEEE Asian Solid-State Circuit Conf., Nov. 2011, pp. 33-36.
[49]Y.-C. Hsu, C.-L. Wei, and H.-H. Wu, “Design of a boost DC-DC converter with a low startup voltage,” in Proc. Int. Conf. on Communications, Circuits and Systems (ICCCAS), Nov. 2013, pp. 435-438.
[50]S. Carreon-Bautista, A. Eladawy, A. N. Mohieldin, and E. Sanchez-Sinencio, “Boost converter with multi-array thermoelectric generators,” IEEE Trans. Industrial Electronics, vol. 61, no. 10, pp. 5345-5353, Oct. 2014.
[51]N.-M. Sze, F. Su, Y.-H. Lam, W.-H. Ki, and C.-Y. Tsui, “Integrated single-inductor dual-input dual-output boost converter for energy harvesting applications,” in Proc. IEEE Intl. Symp. on Circuits and Systems, pp. 2218-2221, June, 2008.
[52]F. Zhang, Y. Zhang, J. Silver, Y. Shakhsheer, M. Nagaraju, A. Klinefelter, J. Pandey, J. Boley, E. Carlson, A. Shrivastava, B. Otis, and B. Calhoun, “A batteryless 19μW MICS/ISM-band energy harvesting body area sensor node SoC,” in IEEE Int. Solid-State Conf. Dig. Tech. Papers, 2012, pp. 298-299.
[53]B. Razavi, Design of Analog CMOS Integrated Circuits. New York, NY, USA: McGraw-Hill, 2001.
[54]mm-Wave Silicon Technology: 60GHz and Beyond, A. M. Niknejad and H. Hashemi, Eds. New York, NY, USA: Springer, 2008.
[55]A. D. Berny, A. M. Niknejad, and R. G. Meyer, “A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 909-917, Apr. 2005.
[56]C. P. Basso, Switch-Mode Power Supplies SPICE Simulations and Practical Designs. New York, NY, USA: McGraw-Hill, 2008.
[57]A. B. Carlson, Circuits: Engineering Concepts and Analysis of Linear Electric Circuits. Belmont, CA USA: Brooks/Cole, 2000.
[58]J. Kim, J. Kim, and C. Kim, “ A regulated charge pump with a low-power integrated optimum power point tracking algorithm for indoor solar energy harvesting,” IEEE Trans. Circuits System II, Exp. Breifs, vol. 58, no. 12, pp. 802-806, Dec. 2011.
[59]H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, and M. Rosset, “Efficient power management circuit: From thermal energy harvesting to above-IC microbattery energy storage,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 246-255, Jan. 2008.
[60] “LTC3108: Ultralow voltage step-up converter and power manager,” Linear Technology Corporations, Milpitas, CA, 2010 [Online]. Available: http://www.linear.com.
[61]“G1-1.0-127-1.27: Tellurex Thermoelectric Energy Harvester,” Tellurex, MI, (2007). [Online]. Available: http://www.tellurex.com.
[62]A. Mirocha and P. Dziurdzia, “Improved electrothermal model of thermoelectric generator implemented in SPICE,” in Proc. Int. Conf. Signals Electronics System, Sep. 2008, pp. 317-320.
[63]R. Jacob Baker, CMOS Circuit Design, Layout, and Simulation. New York: IEEE Press, Wiley-Interscience, 2010, pp. 529-530.
[64]F.-F. Ma, W.-Z. Chen, and J.-C. Wu, “A monolithic current-mode buck converter with advanced control and protection circuits,” IEEE Trans. Power Electronics, vol. 22, no. 5, pp. 1836-1846, Sep. 2007.
[65]J. A. A. Qahouq, “Control scheme for sensorless operation and detection converters,” IEEE Trans. Power Electronics, vol. 25, no. 10, pp. 2489-2495, Oct. 2010.
[66]L. Magnellij, F. Crupi, P. Corsonello, C. Pace, and G. Iannaccone, “A 2.6nW, 0.45V temperature-compensated subthreshold CMOS voltage reference,” IEEE J. Solid-Stage Circuits, vol. 46, no. 2, pp. 465-473, Feb. 2011.
[67]“ECT 310 Perpetuum: EnOcean powered by Thermal Energy,” EnOcean, Inc., Oberhaching, Germany, 2010 [Online]. Available: http://www.enocean.com.
[68]R. Y. Kin, and J. S. Lai, “A seamless mode transfer maximum power point tracking controller for thermoelectric generator applications,” IEEE Trans. Power Electronics, vol. 23, no. 5, pp. 2310-2318, Sep. 2008.
[69]S. K. Cho, N. J. Kim, S. S. Park, and S. H. Kim, “A coreless maximum power point tracking circuit of thermoelectric generators for battery charging systems,” IEEE Asian Solid-State Circuits Conf., Nov. 2010.
[70]T. Paing, J. Shin, R. Zane, and Z. Popovic, “Resistor emulation approach to low-power RF energy harvesting,”, IEEE Trans. Power Electronics, vol. 23, no. 3, pp. 1494-1501, May, 2008.
[71]“TE-Power PROBE &MPG D751 www.micropelt.com”.
[72]Po-Hung Chen, K. Ishida, Xin Zhang, Y. Okuma, Y. Ryu, M. Takamiya, T. Sakurai, “A 120-mV input, fully integrated dual-mode charge pump in 65-nm CMOS for thermoelectric energy harvester,” Asian Pacific Design Automation Conf. (ASP-DAC), pp. 469-470, 2012.
[73]R. Grezaud and J. Willemin, “A self-starting fully integrated auto-adaptive converter for battery-less thermal energy harvesting,” IEEE New Circuits and Systems Conf. (NEWCAS), pp. 1-4, 2013.
[74]X. Cao, W.-C. Chiang, Y.-C. King, and Y.-K. Lee, “Electromagnetic energy harvesting circuit with feedforward and feedback DC-DC PWM boost converter for vibration power generator system,” IEEE Trans. Power Electronics, vol. 22, no. 2, pp. 679-685, Mar. 2007.
[75]A. Richelli, L. Colalongo, S. Tonoli, and Z. M. Kovacs-Vajna, “A 0.2-1.2V DC/DC boost converter for power harvesting applications,” IEEE Trans. Power Electronics, vol. 24, no. 6, pp. 1541-1546, June, 2009.
[76]M.-M. Sze, W.-H. Ki, and C.-Y. Stui, “Threshold voltage start-up boost converter for sub-mA applications,” in Proc. IEEE Intl. Symp. on Electronic Design, Test and Applications, pp. 338-341, Mar. 2008.
[77]Y.-K. Luo, C.-C. Chiou, C.-H. Wu, K.-H. Chen, and Wei-Chou Hsu, “Transient improvement by window transient enhancement (WTE) and overshoot suppression (OSS) techniques in current mode boost converter,” IEEE Trans. Power Electronics, Feb. 2011.
[78]郭宇傑, “具兩階段與負電壓控制技術之低電壓啟動直流轉直流升壓轉換器,” 國立中興大學電機工程學系碩士學位論文, July, 2015.
[79]https://en.wikipedia.org/wiki/Button_cell
[80]http://www.natureinterface.com/e/ni03/P045-049/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top