(3.210.184.142) 您好!臺灣時間:2021/05/09 09:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李冠玟
研究生(外文):Guan-Wen Li
論文名稱:無線功率傳輸系統之磁共振線圈設計
論文名稱(外文):Design of Magnetic Resonance Coils for Wireless Power Transfer System
指導教授:許恒銘
指導教授(外文):Heng-Ming Hsu
口試委員:陳怡然洪浩喬
口試委員(外文):Yi-Jan ChenHao-Chiao Hong
口試日期:2016-07-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:72
中文關鍵詞:無線充電四級線圈共振
外文關鍵詞:wireless chargingfour stage coilsresonanceWPT
相關次數:
  • 被引用被引用:1
  • 點閱點閱:72
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要為分析無線充電系統-四級磁共振架構,其應用為將功率以無線之方式由發射機發送至接收機,而在本論文並將其使用到之電感電容元件相關寄生效應進行考量,而電感與電感間之互感效應之量測也在此論文中寫出並解釋,除此之外將四級磁共振架構之實驗量測分析並使用軟體驗證,而最後將四級磁共振架構提出針對磁場方向之改良和模擬與量測。
首先論文第一章將介紹無線功率傳輸之背景,以及無線功率傳輸技術之文獻回顧並簡單介紹。第二章針對被動元件與其等效電路做詳細介紹,並將被動元件之相互效應以電路解析方式呈現,並在此討論電感間相互耦合之效應以解釋四級磁共振線圈產生之頻率分裂行為。在第三章中將討論本論文之主軸-四級磁共振式線圈,主要應用中心頻率為13.56MHz,在此章節中將會以電路解析方式將四級磁共振架構完整的做電路推導,並且以網路分析儀和示波器做量測,其最高效率可達到90%以上。第四章為三維度之四級磁共振式線圈架構,在此章節中我們將磁共振線圈架構加以改良並使其磁場發送至更遠距離,此三維度架構可將使無線功率傳輸系統之傳輸距離更遠,而第五章為總結及未來展望。


In this thesis, design of the wireless power transfer system (WPT) – Four Stage Magnetic Resonance Coils (MCRs) is presented. The resonance-based wireless power transfer is an efficient technique to transfer power over a relatively long distance. For the circuit model of this structure, in order to obtain the exact circuit equation, we analyze the passive components of inductance and capacitance which we used, the parasitic effect should be considered, and the Mutual effect between two inductance has been explained here. Design steps to obtain the efficient power-transfer system are presented and a design example is provided. A proof-of-concept prototype system is implemented and confirms the validity of the proposed analysis and design techniques, Final, a Magnetics analysis method of this structure is presented here.
First, the introduction and the application of the Four Stage Magnetics Resonance Coils has been reviewed and introduced. In chapter two, the parasitic effect of the passive components are presented using circuit model, we discuss the Mutual effect of inductance here and explain the frequency-splitting of inductive coils. In chapter three of the four-coil system, the adverse effects of a low coupling coefficient between secondary and third coils are compensated by using high-quality (Q) factor coils, and the efficiency of the system is over 90% and be proved by equations. In the chapter four, to improve the efficiency of over-long distance, a Magnetic analysis method of this structure is presented. And we’ll show the result and discuss this behavior. Final, the conclusion is given in chapter six.


致謝 i
摘要 ii
Abstract iii
目錄 iv
第一章 序論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 論文大綱 3
第二章 電感電容共振與耦合電路 4
2-1 研究動機 4
2-2 電感的基本特性 4
2-2-1 電感品質因素之定義 4
2-2-2 盤面螺旋型電感的損耗 5
2-2-3 互感效應 8
2-3 電感與電容之諧振效應 11
2-3-1 電容之寄生內阻(ESR) 11
2-3-2 LC諧振電路 12
2-4 磁耦合RLC電路 13
2-5 LC耦合電路之輸入與輸出諧振技術 16
2-6 結果與討論 17
第三章 四級磁共振式線圈 18
3-1 研究動機 18
3-2 四級磁共振式線圈之理論分析 18
3-3 四級共振式線圈之模擬及量測 24
3-3-1 共振線圈之設計流程 24
3-3-2 共振線圈之電路模擬 26
3-3-3 共振線圈之量測 31
3-3-4 Matlab計算及實驗結果與分析 37
3-4 一對二之四級共振式線圈模擬及量測 44
第四章 三維度之四級磁共振線圈 48
4-1 研究動機 48
4-2 原理及架構說明 48
4-3 量測結果與分析 56
4-3-1 網路分析儀結果分析 56
4-3-1 網路分析儀S-parameter量測結果 61
第五章 總結與未來展望 67
5-1 總結 67
5-2 未來展望 68
參考文獻 69



[1] Wireless Power Consortium Website. (2013). [Online]. Available:
http://www.wirelesspowerconsortium.com
[2] N. Tesla, Apparatus for transmitting electrical energy, US patent number
1,119,732, issued in December 1914.
[3] J. C. Schuder, H. E. Stephenson, and J. F. Townsend, “High level electromagnetic
energy transfer through a closed chestwall,” IRE Int. Conv. Rec., vol. 9, pp. 119–
126, 1961.
[4] W. H. Ko, S. P. Liang, and C. D. F. Fung, “Design of rf-powered coils for implant
instruments,” Med. Biol. Eng. Comput., vol. 15, pp. 634–640, 1977.
[5] E. Hochmair, “System optimization for improved acuracy in transcutaneous signal
and power transmission,” IEEE Trans. Biomed. Eng., vol. BME-31, no. 2, pp.
177–186, Feb. 1984.
[6] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-
profile contactless battery charger using planar printed circuit board windings as
energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140–147,
Feb. 2004.
[7] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system
for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no.
3, pp. 520–527, Jun. 2003.
[8] A. W. Green and J. T. Boys, “10 kHz inductively coupled power transferconcept
and control,” in Proc. ICPE-VSD, 1994, pp. 694–699.
[9] J. T. Boys, G. A. Covic, and A. W. Green, “Stability and control of inductively
coupled power transfer systems,” Proc. Electric Power Appl., vol. 147, no. 1, pp.
37–43, 2000.
[10] J. T. Boys, A. P. Hu, and G. A. Covic, “Critical Q analysis of a current-fed resonant converter for ICPT applications,” Electron. Lett., vol. 36, no. 17, pp. 1440–1442, 2000.
[11] G. A. J. Elliott, G. A. Covic, D. Kacprzak, and J. T. Boys, “A new concept: Asymmetrical pick-ups for inductively coupled power transfer monorail systems,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3389–3391, 2006.
[12] M. L. G. Kissin, J. T. Boys, and G. A. Covic, “Interphase mutual inductance in polyphase systems,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2393–2400, 2009.
[13] A. Sample, D. Meyer, and J. Smith, ‘‘Analysis, experimental results, range
adaptation of magnetically coupled resonators for wireless power transfer,’’ IEEE
Trans. Ind. Electron., vol. 58, no. 2, pp. 544–554, Feb. 2011.
[14] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic,
“Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, Science
[15] S. Y. R. Hui, and W. Zhong, ”A Critical Review of Recent Progress in Mid-
Range Wireless Power Transfer,” IEEE transactions on power electronics, vol.
29, no. 9, sep 2014.
[16] A. Kukde, V. Singh, and C. Warty,” Analysis of Resonance based Wireless Power
Transmission using Circuit Theory Approach”, International Conference on
Advances in Computing, Communications and Informatics (ICACCI) 2014.
[17] Z. Liu, H. Zhao, C. Shuai ,and S. Li, “Analysis and Equivalent of Four-coil and
Two-Coil Systems in Wireless Power Transfer”, IEEE Conference Publications
2015.
[18] A. Kumar, S. Mirabbasi, and M. Chiao, “Resonance-based Wireless Power
Delivery for Implantable Devices,” IEEE Conference Publications 2009.

[19] I. K. Cho, S. M. Kim, J. I. Moon, and J. H. Yoon, “Miniature magnetic resonance
coils for wide wireless power transfer applications,” IEEE Conference
Publications 2014.
[20] Z. Dang, and A. A. Qahouq, “Elimination Method for The Transmission
Efficiency Valley of Death in laterally Misaligned Wireless Power Transfer
Systems,” IEEE Conference Publications 2015.
[21] Dukju Ahn and Songcheol Hong, “A Transmitter or a Receiver Consisting of
Two Strongly Coupled Resonators for Enhanced Resonant Coupling in Wireless
Power Transfer,” IEEE Trans. on Industrial Electronics, Vol.61, pp.1193-1203,
Mar., 2014.
[22] S.M. Kim et.al. “1.9MHz Wireless power transmission system using coupled
magnetic resonance” IEEE 2012 International conference on Microwave, radar
and wireless communications, pp519-522.
[23] Sedra A. S.,Smith K. C.(2009), Microelectronics Circuits, Oxford University
Press.
[24] L. Tan, X. Huang, H. Li , and H. Huang, “Study of Wireless Power Transfer
System Through Strongly Coupled Resonances,” International Conference on
Electrical and Control Engineering, 2010.
[25] A. K. RamRakhyani, and S. Mirabbasi, and M. Chiao, “Design and Optimization
Of Resonance-Based Efficient Wireless Power Delivery Systems for
Biomedical Implants” IEEE transactions on biomedical circuit and system, vol.
5, no.1,Feb 2011.
[26] C. Zhang, W. Zhong, and S. Y. R. Hui, “A Time-Efficient Methodology for
Visualizing Time-Varying Magnetic Flux Patterns of Mid-Range Wireless Power
Transfer Systems” IEEE Conference Publications 2013.

[27] Z. Liu, H. Zhao, C. Shuai, and S. Li, “Analysis and Equivalent of Four-coil and
Two-Coil Systems in Wireless Power Transfer” IEEE Conference Publications 2015.
[28] K. Na, H. Jang, H. Ma, and F. Bien, “Tracking Optimal Efficiency of Magnetic Resonance Wireless Power Transfer System for Biomedical Capsule Endoscopy” IEEE transactions on microwave theory and techniques, vol. 63, no.1,Jan 2015.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔