跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/08 13:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余信翰
研究生(外文):Sin-Han Yu
論文名稱:雙面太陽能電池表面特性探討與改善
論文名稱(外文):The Optical Improvement for Surface of Bifacial Solar Cells
指導教授:貢中元貢中元引用關係
指導教授(外文):Chung-Yuan Kung
口試委員:陳松裕楊尚霖
口試委員(外文):Sung-Yu ChenSan-Lin Young
口試日期:2016-06-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:78
中文關鍵詞:雙面太陽能電池鈍化射極與背電極太陽能電池太陽能電池電漿輔助化學氣相沉積抗反射層氮化矽
外文關鍵詞:Bifacial solar cells (BSC)Passivated Emitter Rear Cell (PERC)Solar CellsPlasma enhanced chemical vapor deposition (PECVD)Antireflection coating (AR)Silicon nitride (SiNx:H)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
發展太陽能電池效率是許多人努力的目標。而太陽能電池矽基板本身的反射率很高,高達30%~40% 無法被吸收而浪費了。本篇論文著重如何在基板上製作正面抗反射層與背面反射層以降低反射率進而提高光電流。
本篇論文研究利用電漿輔助化學氣相沉積(Plasma Enhanced Chemical Vapor Deposition PECVD)製作氮化矽(SiNx:H)抗反射層,調整製程中矽甲烷(silane SiH4)與氨氣(ammonia NH3)氣體流量比例,以改變氮化矽(SiNx:H)組成結構,在矽基板上製作不同折射率抗反射層鍍膜。
並應用在工研院(ITRI)設計的雙面太陽能電池(BSC)。並分別製作單層、雙層與多層氮化矽(SiNx)抗反射層,找出正背面合適的氮化矽(SiNx)層參數,以提升光電流進而提升轉換效率。其最佳結果對比於當前標準製程總效率可提升0.6%。

關鍵字:雙面太陽能電池(BSC)、鈍化射極與背電極太陽能電池(PERC)、太陽能電池(Solar Cells)、電漿輔助化學氣相沉積(PECVD)、抗反射層(AR)、氮化矽(SiNx)。

Improve the efficiency of solar cell is very important to fuuly utilize solar energy. As high as 30% to 40% of solar energy were wasted by reflection of the silicon substrate itself. This paper aim at on making a front Antireflection coating and rear reflection coating on the substrate, thereby,reduce the reflectivity and improving photocurrent.
This paper studies, we have adjusted silane (SiH4) and ammonia (NH3) gas flow ratio, to Change the silicon nitride (SiNx:H) composition , and coated on front side (Antireflection coating) and backside of cell using plasma enhanced chemical vapor deposition (PECVD). Apply them to the bifacial solar cell (BSC) of Industrial Technology Research Institute (ITRI) design of the bifacial solar cell (BSC).
The best parameters of silicon nitride (SiNx:H) layer were tried on both front and backside of silicon substrates with different roughness. The best results has shown an improvement of 0.6% in effiency in compare with that of control group.

Keywords : Bifacial solar cells (BSC); Passivated Emitter Rear Cell (PERC); Solar Cells; Plasma enhanced chemical vapor deposition (PECVD); Antireflection coating (AR); Silicon nitride (SiNx:H)


目錄
誌謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1研究動機 1
1.2研究架構與目的 1
第二章 文獻回顧 3
2.1太陽能電池概論 3
2.1.1太陽能電池的起源 3
2.1.2太陽能電池種類與發展 4
2.2太陽輻射與光譜 6
2.2.1太陽光輻射與吸收 6
2.2.2太陽能電池的光譜響應 7
2.3太陽能電池工作原理 9
2.3.1半導體的PN接面 9
2.3.2太陽能電池發電原理 10
2.4太陽能電池模型與參數 11
2.4.1太陽能電池模型 11
2.4.2太陽能電池光/暗電流特性曲線 12
2.4.3太陽能電池基本參數 14
2.5電池表面結構與光學 16
2.5.1折射與反射 16
2.5.2表面粗糙化 17
2.5.3抗反射層 18
第三章 實驗介紹 21
3.1製程機台介紹 21
3.1.1酸鹼蝕刻槽 21
3.1.2晶片旋乾機 22
3.1.3矽晶太陽能電池擴散與成膜爐管 23
3.1.4管狀高溫爐管 24
3.1.5批量原子層沉積設備 25
3.1.6對位網印機 26
3.1.7矽晶電池表面電極紅外線燒結爐 27
3.2實驗流程介紹 28
3.2.1晶片清洗(Wafer Clean) 28
3.2.2表面粗糙化(Texture) 29
3.2.3磷擴散(Phosphorus Diffusion/POCl3 Diffusion) 30
3.2.3磷玻璃去除(PSG Removal) 31
3.2.4鈍化退火(Emitter Passivation) 31
3.2.5正面抗反射層鍍膜(Front AR Coating) 32
3.2.6背面拋光(Rear Polish) 32
3.2.7成長背面氧化層(Rear Oxidation) 33
3.2.8批量原子層沉積(Atomic Layer Deposition ALD) 33
3.2.9高溫退火(Annealing) 34
3.2.10背面抗反射層鍍膜(Rear AR Coating) 35
3.2.11雷射開線(Laser Opening) 35
3.2.13網版印刷(Screen Printing) 35
3.2.14燒結(IR Sintering) 38
3.3量測儀器介紹 41
3.3.1橢圓偏光儀 41
3.3.2霧度光譜儀 41
3.3.3太陽能電池光源模擬器系統 (I-V量測) 42
3.3.4光譜響應量測系統 43
第四章 結果與討論 45
4.1表面結構與反射率 45
4.2雙層抗反射膜MgF2/SiNx 45
4.3 PECVD參數調整 47
4.4 PV lighthouse模擬[39] 49
4.4.1正面單層抗反射層模擬 49
4.4.2正面雙層抗反射層模擬 50
4.4.3雙面電池模擬抗反射層模擬 52
4.5正面單層抗反射層電池 53
4.5.1正面單層抗反射層反射率 54
4.5.2正面單層抗反射層電池結果 54
4.6正面雙層抗反射層電池 57
4.6.1現有Recipe正面雙層抗反射層電池 57
4.6.2正面雙層抗反射層反射率 58
4.6.3正面雙層抗反射層電池結果 59
4.7漸變式抗反射層電池 63
4.6.1漸變式抗反射層反射率 63
4.7.2漸變式抗反射層電池結果 65
4.8雙面太陽能電池(BSC)背面抗反射層 66
4.8.1背面單層抗反射層反射率 66
4.8.2雙面電池背面單層抗反射層電池結果 68
4.9雙面電池正背面整合後與目前標準製程比較 72
第五章 結論 74
參考文獻 75

參考文獻
[1]林明獻,太陽電池技術入門,全華圖書股份有限公司,2008年07月
[2]Martin A.Green著,曹朝陽、狄大衛、李秀文譯,“太陽電池-工作原理、技術與系統應用”,五南圖書出版股份有限公司,2009年8月。
[3]Adolf, G; Christopher, H; Hans-Werner, S., "Photovoltaic Material, History, Status and Outlook", Mater. Sci. Eng., R, 1-46, 2003
[4]M. A. Green, " Proceeding of the 21st IEEE photovoltaic specialists conference", Orlando, USA: IEEE Publication, 1990.
[5]M. Chapin, S. Fuller, L. Pearson, "A new silicon p-n junction photocell for converting solar radiation into electrical power", Journal of Applied Physics, Vol. 25, No. 5, pp. 676-677, 1954
[6]S. R. Wenham, and M. A. Green, "Silicon solar cells", Progress Inphotovoltaics: Research and Applications, Vol. 4, pp. 3-33, 1996.
[7]D. A. Jenny, J. J. Loferski, and P. Rappaport , "Photovoltaic Effect in GaAs p-n Juntions and Solar Energy Conversion", Physical Review, vol. 101, 1208, 1956.
[8]Buildingsolar.com:"Building-Integrated Photovoltaics", Wisconsin Public Service Corporation, accessed:2007-03-23
[9]Michael Grätzel,"Prog. Photovolt", Res. Appl. 8, 2000﹐pp.171-185.
[10]KRI Report No.8:Solar Cell , February 2005.
[11]"U.S. Department of energy", National Renewable Energy Laboratory, 2016.
[12]徐茗謙,氮化矽/氧化鑭鋁雙層抗反射層之單晶矽太陽能電池與二氧化鈦染料敏化太陽能電池之研究,中華大學電機系碩士論文2004年7月
[13]Standard Tables for Reference, "Solar spectral irradiances:Direct normal and hemispherical on tilted surface", American Society for Testing and Materials, 2012.
[14]Japan Photovoltaic Energy Association, "Spectral response characteristics of solar cell", JPEA.
[15]Neamen, An Introduction to Semiconductor Devices 2006
[16]R.F. Pierret, "Semiconductor Device Fundamentals, Addison Wesley", April , 1996
[17]Wikimedia, Schematische Darsellung des p-n-Übergangs, nach der Quelle neu erstellt mit wesentlich übersichtlicherem Quellcode und Unterstützung von mehreren Sprachen, August 2010
[18]U. Boeglin, " PN-Junction", Modern Lab Experiments, 2011.
[19]黃惠良、蕭錫鍊、周明奇、林堅楊、江雨龍、曾百亨、李威儀、李世昌、林唯芳,太陽電池,五南圖書出版股份有限公司,2008。
[20]"Solar cell voltage-current characterization introdIntroduction a solar cell is a semiconductor PN junction diode normally without an external bia", California Scientific Inc, 2010.
[21]M. Azab, "Improved circuit model of photovoltaic array", International Journal of Electrical Power and Energy Systems Engineering, pp. 185-188, 2009.
[22]"Part II – photovoltaic cell I-V characterization theory and labVIEW analysis dode", National Instruments Corporation, 2012.
[23]"Quantum efficiency", Photovoltaic Education Network, 2013.
[24]Green, M. A., "Crystalline and thin-film silicon solor cells: state of the art and future potential", Solar Energy, 74, 181-192, 2003
[25]C. D. Mobley, "Light and water: Radiative transfer in natural waters", Academic Press, pp. 1-4, 1994.
[26]Kwan, A., Dudley, J., and Lantz, E. "Who really discovered Snell''s law? ". Physics World. 2002, 15 (4): 64.
[27]T. Dzhafarov, "Silicon solar cells with nanoporous silicon layer", Arturo Morales-Acevedo, pp. 28-57, 2013.
[28]Y. P. Chiou, and J. H. Lin, "Geometrically optical analysis of surface anti-reflection vgroovesn for solar cells", Photovoltaic Specialists Conference, pp. 1414-1416, 2011.
[29]李正中,薄膜光學與鍍膜技術第六版,藝軒圖書出版社,2009年7月。
[30]EYETRUST VISION LLC: http://brickellvision.com/?attachment_id=1850
[31]Chattopadhyay, S.,Huang, Y. F., Jen, Y. J,Ganguly, A.,Chen, K.H., Chen, L. C.,"Anti-reflecting and photonic nanostructures", Meter. Sci. Eng. R-Rep., 69, 1-35, 2010
[32]W. H. Southwell, "Gradient-index antireflection coatings", Optics. Lett., 8, 584-586, 1983.
[33]Martin A. Green., "The Passivated Emitter and Rear Cell From conception to mass production", June 2015.
[34]Hung-Chih Chang, Chih-Jeng Huang, Po-Tsung Hsieha, Wei-Cheng Mo, Shu-Hung Yu, Chi-Chun Li., "Improvement on industrial n-type bifacial solar cell with>20.6% efficiency", Motech Industries, Taiwan, Energy Procedia 55 ( 2014 ) 643 – 648
[35]Philip Rothhardt, Sebastian Meier, Carsten Demberger, Andreas Wolf, Daniel Biro, "Codiffused bifacial n-type solar cells (CoBiN)", Fraunhofer Insitute for Solar Energy Systems (ISE), Germany, Energy Procedia 55 2014. p.p 287–294
[36]P. Rothhardt, S. Meier, K Jiang, A Wolf, D. Biro.,"19.9 % EFFICIENT BIFACIAL N-TYPE SOLAR CELL PRODUCED BY CO-DIFFUSION-COBIN", Fraunhofer Insitute for Solar Energy Systems (ISE), Germany, September 2014
[37]Chuan-Chi Chen, Chia-Lung Lin, Jung-Wu Chien, Yu-Ta Chen, Yih-Jiun Lin, Feng-Mei Huang, Hsiu-Chu Wu.,"High efficiency on boron emitter n-type Cz silicon bifacial cells with industrial process", aInventec Solar Energy Corp., Taiwan (R.O.C.), March 2013.
[38]工研院材化所材料世界網工業材料雜誌324期 P.P.94-102
[39]PV lighthouse : https://www.pvlighthouse.com.au/


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊