(18.204.227.34) 您好!臺灣時間:2021/05/17 05:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉名凱
研究生(外文):Ming-Kai Liu
論文名稱:設計驅動與煞車一體的電動自行車
論文名稱(外文):Integrated Driving-Braking Control Design for Electric Bikes
指導教授:林俊良林俊良引用關係
指導教授(外文):Chun-Liang Lin
口試委員:許舜斌林昱成
口試委員(外文):Shun-Pin HsuYu-Chen Lin
口試日期:2016-06-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:61
中文關鍵詞:直流無刷馬達電動腳踏車短路電磁煞車步進馬達
外文關鍵詞:BLDCHMElectric bicycleShort circuit brakeStepping motor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出了以dspic3011為基礎的控制單元,同時驅動電動腳踏車與剎車。驅動時,藉由PI控制算出驅動命令,並運用典型的六步方波,驅動直流無刷馬達。本文輔助式步進馬達電磁剎車,主要是以電磁煞車為主,步進馬達煞車為輔。同時運用2個煞車力,藉此得到最大的制動力矩,使得高速運轉的直流無刷馬達可以快速停止。電磁剎車可以藉由兩種方式調整其轉矩。一種為硬體的實現,使用虛擬負載來改變制動轉矩;另一為軟體,運用脈波寬度調變(PWM)的責任週期大小,來調整驅動級晶體的開關狀態以調整制動力矩。因為虛擬負載愈小,會間接的影響電磁煞車的轉矩。所以本文的電磁煞車是採用短路電磁煞車的方式,虛擬負載是使用導線。步進馬達煞車則是運用步進馬達的旋轉有高精確角度及高精度定位的特性且外加一機械臂,藉軟體產生脈波訊號控制步進馬達,使得機械臂快速碰觸輪胎外框,輔助電磁剎車制動轉矩的不足。所提出的方案,已實現在電動腳達車上。利用dspic3011,完成了六步方波的驅動,並且也實現了本文所提出的輔助式步進馬達煞車的方式。研究成果已經通過實驗驗證證實效果良好。

This thesis presents design and implementation of a dspic3011-based control desgin for the speed control of brushless DC hub motor (BLDCHM) drive and brake. For the driving section, the control command determined by the proportional-integral (PI) calculation and the use of a typical six-step square wave drive brushless DC motor. For the braking section, we propose an electromagnetic brake with the aid of a stepping motor to drive a braking arm to create extra friction to the wheel frame for enhancement of braking effect. The design is advantageous when it is necessary to control wheel speed while driving down very steep and long slopes. Electromagnetic brake adjusts braking force in two ways. One is related to hardware implementation which introduces a virtual load to the motor stator’s coil while the wheel in under free inertial rotation. The other is the use of software design to adjust the duty cycle of pulse width modulated (PWM) status of the MOSFETs at the driving circuit. For the auxiliary brake, the use of high-precision angle and positioning control of a stepping motor linked with a brake pad to create extra friction to help stopping the wheel. The proposed scheme has been implemented in an electric bicycle. All functions and effects of driving and braking designs have been well verified via a variety of real-world experiments.

誌謝辭 i
中文摘要 ii
Abstract iii
Content iv
List of Figures vi
List of Tables ix
Nomenclature x
Chapter 1 Introduction 1
Chapter 2 The Driving System and BLDCHM 5
2.1 Brushless DC hub Motor (BLDCHM) 5
2.2 BLDCHM Principle and Structure 6
2.3 Mathematical Model of BLDCHM 10
2.3 Six-step Square Wave 11
Chapter 3 Braking System 17
3.1 Electromagnetic Brakes 17
3.1.1 Principle 17
3.1.2 Mathematical Model of Electric Braking 19
3.2 Stepping Motor Brake 20
3.3 Bicycle Dynamics 24
3.4 Stepper Motor Brake Force Analysis 26
Chapter 4 Hardware/Software Implementation 29
4.1 Description of Control Strategy 29
4.1.1 Driving Part 29
4.1.2 Auxiliary Stepping Motor Electromagnetic Brake Part 30
4.1.3 Fuzzy PI control 32
4.2 Implementation of System Integrated Driving and Braking 34
Chapter 5 Results and discussion 41
5.1 Hardware Implementation 41
5.2 Results of Braking Experiments 42
Chapter 6 Conclusion and Future Work 58
6.1 Conclusions 58
6.2 Future works 58
References 59


[1]J. Luo, M. Namburu, K. R. Pattipati, L. Qiao, and S. Chigusa, “Integrated model-based and data-driven diagnosis of automotive antilock braking systems,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 40, no. 2, pp. 321-336, 2010.
[2]H. Jing, Z. Liu, and H. Chen, “A switched control strategy for antilock braking system with on/off valves,” IEEE Transactions on Vehicular Technology, vol. 60, no. 4, pp. 1470-1484, 2011.
[3]M. Ye, Z. F. Bai, and B. Cao, “Robust H2/Hinfinity control for regenerative braking of electric vehicles,” in Proceedings of IEEE International Conference on Control and Automation, 2007, pp. 1366-1370.
[4]M. J. Yang, H. L. Jhou, B. Y. Ma, and K. K. Shyu, “A cost-effective method of electric brake with energy regeneration for electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2203-2212, 2009.
[5]B. Cao, Z. F. Bai, and W. Zhang, “Research on control for regenerative braking of electric vehicle,” in Proceedings of IEEE International Conference on Vehicular Electronics and Safety, 2005, pp. 92-97.
[6]C. T. Huang, C. L. Lin and C. S. Lee, “Efficient energy management for electrical scooters,” in Proceedings of IEEE International Conference on Electrical and Electronics Engineering, 2010, pp. 772-776.
[7]X. Nian, F. Peng, and H. Zang, “Regenerative braking system of electric vehicle driven by brushless DC motor,” IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5798-5808, 2014.
[8]B. C. Kuo and G. Singh, “A DC-Type hybrid step motor for large power applications,” IEEE Transactions on Industry Applications, vol. IA.-l1, no. 4, pp. 365-372, 1975.
[9]H. X. Wu, S. K. Cheng, and S. M. Cui, “A controller of brushless DC motor for electric vehicle,” IEEE Transactions on Magnetics, vol. 41, no. 1, pp. 509-513,2005.
[10]K. T. Chau, B. Shi, and M. Q. Hu, “A new design method and half-step operation for ultrasonic stepping motors,” IEEE Transactions on Industry Applications, vol. 39, no. 4, pp. 953960, 2003.
[11]L. Li and X. Chen, “Study on the novel main circuit topology of stepping motor drive,” in Proceedings of IEEE 6th International Conference on Power Electronics and Motion Control, 2009, pp. 2021-2024.
[12]H. B. Ertan and N. B. Simsir, “Comparison of PWM and PFM induction drives regarding audible noise and vibration for household applications,” IEEE Transactions on Industry Applications, vol. 40, no. 6, pp. 1621-1628, 2004.
[13]Y. Iwaji and S. Fukuda, “A pulse frequency modulated PWM inverter for induction motor drives,” IEEE Transactions on Power Electronics, vol. 7, no. 2, pp. 404-410,1992.
[14]H. B. Ertan and B. Simsir, “A pulse frequency modulated drive for a wide speed range application,” in Proceedings of IEEE International Conference on Power Electronic Drives and Energy Systems, 1998, pp. 546-551.
[15]J. W. Dixon and M. E. Ortuzae, “Ultracapacitors +DC-DC converters in regenerative braking system,” IEEE Transactions on Aerospace and Electronic Systems, vol. 17, no. 8, pp. 16-21, 2002.
[16]Q. Zhang and J.Bai, “Application of Fuzzy Logic Controller with Self-tuning PID Parameters for Contral System of 40kg Coke Oven,” in Proceedings of IEEE 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control, 2013, pp. 1613-1617.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top