|
[1]S. Buseman, J. Mouchawar, N. Calonge, and T.Byers, “Mammography screening matters foryoung women with breast carcinoma,” Cancer, vol.97, no. 2, pp. 352-358, 2003. [2]G. M. Kacl, P. Liu, J. F. Debatin, E. Garzoli, R. F. Caduff, G. P. Krestin. Detection of breast cancer with conventional mammography and contrast-enhanced MR imaging. Eur Radiol. 1998; 8:194–200. [3]BI-RADS Breast Imaging Reporting and Data System – Magnetic Resonance Imaging, First Edition, American College of Radiology, 2003. [4]C.K. Kuhl, R.K. Schmutzler, C.C. Leutner, A. Kempe, E. Wardelmann, A. Hocke, M. Maringa, U. Pfeifer, D. Krebs and H. H. Schild, "Breast MR Imaging Screening in 192 Women Proved or Suspected to Be Carriers of a Breast Cancer Susceptibility Gene: Preliminary Results I" Radiology 2000; 215:267-279. [5]S. C. Partridge, W. B. Demartini, B.F. Kurland, P. R. Eby, S. W. White, C. D. Lehman, “Differential diagnosis of mam-mographically and clinically occult breast lesions on diffusion-weighted MRI,” JMRI, 31(3):562–70, 2010. [6]R. H. Ei Khouli, M. A. Jacobs, S. D. Mezban, P. Huang, I. R. Kamel, K. J. Macura, D. A. Bluemke, “Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging,” Radiology, 256(1): 64–73, 2010. [7]E. Rubesova, A. S. Grell, V. D. Maertelaer, T. Metens, S. L. Chao, M. Lemort, “Quantitative diffusion imaging in breast cancer: a clinical prospective study,” JMRI, 24(2): 319–24, 2006. [8]C. Marini, C. Iacconi, M. Giannelli, A. Cilotti, M. Moretti, C. Bartolozzi, “Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion,” Eur Radiol, 17(10): 2646–55, 2007. [9]Le Bihan D, Turner R, MacFall JR. Effects of intravoxel incoherent motions (IVIM)in steady-state free precession (SSFP) imaging: application to molecular diffu-sion imaging. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med1989; 10(3):324–37. [10]Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and per-fusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168(2):497–505. [11]Y. Freund, L. Mason “The Alternating Decision Tree Learning Algorithm,” ICML ''99 Proceedings of the Sixteenth International Conference on Machine Learning: 124-133. [12]Y. C. Ouyang, H. M. Chen, J. W. Chai, C. C. C. Chen, S. K. Poon, C. W. Yang, S. K. Lee and C.-I Chang, “Band expansion-based over-complete independent component analysis for magnetic resonance image analysis,” IEEE Trans. Biomedical Engineering, vol. 55, no. 6, pp. 1666-1677, June 2008. [13]P. C. Lauterbur, “Image formation by induced local interactions: examples employing nuclear magnetic resonance,” Nature 242, 190-191 (1973). [14]R. Woodhams, S. Ramadan, P. Stanwell, et al. Diffusion-weighted imaging of the breast: principles and clinical applications. RadioGraphics 2011; 31(4):1059–1084. [15]E. M. Charles-Edwards, N. M. deSouza. Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 2006; 6:135–143. [16]R. N. Sener. Diffusion MRI: apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Comput Med Imaging Graph. 2001; 25 (4): 299-326. [17]M. Mascalchi, M. Filippi, Floris R et-al. Diffusion-weighted MR of the brain: methodology and clinical application. Radiol Med. 2005; 109 (3): 155-97. [18]S. Rana, S. Albayram, Lin DD et-al. Diffusion-weighted imaging and apparent diffusion coefficient maps in a case of intracerebral abscess with ventricular extension. AJNR Am J Neuroradiol. 2002; 23 (1): 109-12. [19]R. M. El Kady, A.K. Choudhary, R. Tappouni. Accuracy of apparent diffusion coefficient value measurement on PACS workstation: A comparative analysis. AJR Am J Roentgenol. 2011; 196 (3): W280-4. [20]R. Woodhams, S. Ramadan, P. Stanwell, et al. Diffusion-weighted imaging of the breast: principles and clinical applications. RadioGraphics 2011; 31(4):1059–1084. [21]H. Ren and C.-I Chang, “Automatic spectral target recognition in hyperspectral imagery,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, pp. 1232–1249, Oct. 2003. [22]Boardman, 1992, SIPS User’s Guide Spectral Image Processing System, Version 1.2, Center for the Study of Earth from Space, Boulder. [23]F. A. Kruse, A. B. Lefkoff, J. W. Boardman, K. B. Heiedbrecht, A. T. Shapiro, P. J. Barloon, A. F. H. Goetz, “The Spectral Image Processing System (SIPS) - Software for Integrated Analysis of AVIRIS Data,” Summaries of the 4th Annual JPL Airborne Geoscience Workshop, JPL Pub-92-14, AVIRISWorkshop. Jet Propulsion Laboratory, Pasadena, CA, pp. 23-25, 1992. [24]J. C. Harsanyi, “Detection and classification of subpixel spectral signatures in hyperspectral image sequences,” Ph.D. dissertation, Dept, Elect. Eng., Univ. Maryland Baltimore County, Baltimore, MD, 1993. [25]J. C. Harsanyi, W. Farrand, and C.-I. Chang, “Detection of subpixel spectral signatures in hyperspectral image sequences,” in Proc. American Society of Photogrammetry & Remote Sensing Annu. Meeting, Reno, pp. 236-247, 1994. [26]R. S. Resmini, M. E. Kappus, W. S. Aldrich, J. C. Harsanyi, and M. Anderson, “Mineral mapping with Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor data at Cuprite, Nevada, U.S.A.,” lnt. J. Remote Sensing, vol. 18, no. 17, pp. 1553-1570, 1997. [27]J. C. Shafer, R. Agrawal, M. Mehta: SPRINT: A Scalable Parallel Classifier for Data Mining. VLDB 1996, p. 544-555. [28]M. Mehta, R. Agrawal, J. Rissanen.: SLIQ: A fast scalable classifier for data mining. In Proc. 1996 Intl. Conf. on Extending Database Technology (EDBT’96), Avignon, France, March 1996. [29]S. M. Weiss, C. A. Kulikowski.: Computer System that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert System. Morgan Kaufman, 1991. [30]J. Han, M. Kamber.: Data Mining: Concepts and Techniques. Simon Fraser University, 2001. [31]J. Patel, E. E. Sigmund, H. Rusinek, M. Oei, J. S. Babb, B. Taouli, “Diagnosis of Cirrhosis With Intravoxel Incoherent Motion Diffusion MRI and Dynamic Contrast-Enhanced MRI Alone and in Combination: Preliminary Experience,” JOURNAL OF MAGNETIC RESONANCE IMAGING, 31:589–600, 2010.
|