(44.192.66.171) 您好!臺灣時間:2021/05/18 01:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭庭佑
研究生(外文):Ting-Yu Kuo
論文名稱:生物電腦之合成
論文名稱(外文):Toward Theoretical Synthesis of Biocomputer
指導教授:林俊良林俊良引用關係
指導教授(外文):Chun-Liang Lin
口試委員:陳博現黃穎聰
口試委員(外文):Bor-Sen ChenYin-Tsung Hwang
口試日期:2016-07-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:45
中文關鍵詞:合成生物學基因邏輯電路生物-算術邏輯單元生物-控制單元
外文關鍵詞:synthetic biologygenetic logic circuitbio-ALUbio-control unit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,基本生物邏輯閘之研究成功應用於生物合成學領域。延續先前之生物邏輯閘相關基因電路,模擬傳統電子電路中的中央處理單元(CPU),本論文嘗試發展出一套包含控制單元與邏輯運算單元之生物電腦系統。
首先,我們使用生物D型正反器,組合成一系列循序邏輯電路,應用於暫存器之中,可用來存放從記憶體中提取(fetch)的資料。算術邏輯單元(ALU)方面,我們使用半加器結合成生物之全加器,作為ALU系統中運算核心,運算後使用累加器儲存結果資料,等待資料寫回記憶體(write-back)。
隨著發展出生物算術邏輯單元,我們更進一步開發控制單元(control unit),運作方式仿效傳統電腦,透過輸入機械指令(machine instruction),進入控制單元解碼後,判斷出指令(如MOV、ADD、SUB),觸發(trigger)ALU系統內部動作,與ALU系統相結合。
電子電路中的中央處理單元包含三大部分:控制單元、算術邏輯單元、記憶體單元,本論文將前兩部分用生物邏輯閘方式呈現,其模擬結果展現生物電路應用在CPU之可行性。


We introduce an idea of synthesizing a class of genetic registers based on the existing sequential biological circuits, which are composed of fundamental biological gates. In the renowned literature, biological gates and genetic oscillator have been unveiled and experimentally realized in recent years. These biological circuits have formed a basis for realizing a primitive biocomputer. Proceeding to the current development, we present the relationship between the genetic arithmetic and logical unit (ALU) and genetic control unit using composed genetic logic circuits. We introduce how the ALU and control unit work on the biological field respectively, and then connect them together in order to implement the instruction to bio-ALU from the bio-control unit. The ALU system architecture consists of three parts: temp register, ALU and accumulator register. Using the concept of the ALU on the digital computer, we present the fundamental function of the genetic ALU via full adder register and also build the bio-storage devices to store data generated from the genetic ALU. We propose developing trend of genetic circuit applications and demonstrate the results of application genetic system. In silicon experiments illustrate results of the proposed design.

誌謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
Chapter 2 Design of Bio-register 4
2.1 Establishment of fundamental genetic gates 4
2.2 Synthesis of NAND gate 7
2.3 Synthesis of D-type Flip Flop 8
2.4 Realization of Bioregister 11
2.5 PRACTICAL CONCERN 14
Chapter 3 Synthesis of ALU system 15
3.1 Genetic full adder 15
3.2 Bio-temp register and Bio-accumulator 24
3.3 Carry Look Ahead 27
3.4 Equivalence between silicon and biological ALUs 30
Chapter 4 Genetic control unit system with ALU 32
4.1 Bio-Control Unit 33
4.2 Ring counter 34
4.3 Decoding of Instruction 35
Chapter 5 Conclusions 41
Acknowledgment 42
References 43


[1.]J.M. Callura, C.R. Cantor, J.J. Collinsa, “Genetic switchboard for synthetic biology applications,” PNAS, vol.109 (15), pp. 5850–5855, 2012
[2.]S. Konur, M. Gheorghe, “Design and analysis of genetically constructed logic gates, in Proceedings of USES Conference,”, vol. 1, pp. 31 - 32, 2014
[3.]A. Wong, H. Wang, C.L. Poh, et al. “Layering genetic circuits to build a single cell, bacterial half adder,” BMC Biology, vol. 13 (40), pp. 1 –16, 2015
[4.]D. Latchman, “Gene Control,” Garland Science, 2015
[5.]Y. Naasse, H. Charoute, B.E. Houate, et al. “Chromosomal abnormalities and Y chromosome microdeletions in infertile men from Morocco,” BMC Urology, vol. 15 (1), pp. 2–6, 2015
[6.]M.N. Win, C.D. Smolke, “Higher-order cellular information processing with synthetic RNA devices,” Science, vol. 322 (5900), pp. 456-460, 2008
[7.]S. Auslander, D. Auslander, M. Muller, et al. “Programmable single-cellmammalian biocomputers,” Nature, vol. 487 (7405), pp. 123-127, 2012
[8.]Moskon, M., Ciglic, M., Zimic, N., et al.: “Toward in vivo digital synchronous sequential circuits,” WSEAS Transactions on Circuits and Systems, vol. 8 (3), pp. 301–310, 2009
[9.]Zhang, Y., Li, P., Huang, GM., “Quantifying dynamic stability of genetic memory circuits,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9 (3), pp. 871-84, 2012
[10.]Chang, YC., Lin, CL., Jennawasin, T, “Design of synthetic genetic oscillators using evolutionary optimization,” Evolutionary Bioinformatics, vol. 9, pp. 137–150, 2013
[11.]Drubin, DA., Way, JC., Sliver, PA., “Designing biological systems,” Genes & Development, vol. 21 (3), pp. 242–254, 2007
[12.]Judd, EM., Laub, MT., McAdams, HH., “Toggles and oscillators: new genetic circuit designs,” BioEssays, vol. 22 (6), pp. 507-509, 2000
[13.]Wang, B., Kitney, RI., Joly, N., and M. Buck, “Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology,” Nature Communications, vol. 2, pp. 1-9, 2011.
[14.]Silva-Rocha, R., de Lorenzo, V., “Mining logic gates in prokaryotic transcriptional regulation networks,” FEBS Letters, vol. 582 (8), pp. 1237–1244, 2008
[15.]Terzer, M., Jovanovic, M., Choutko, A., et al., “Design of a biological half adder,” IET Synthetic Biology, vol. 1 (1.2), pp. 53–58, 2007
[16.]Lin, CL., Chuang, CH., “A novel synthesizing genetic logic circuit: frequency multipler,” IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 11, pp. 702-713, 2014
[17.]Marchisio, MA., Stelling, J., “Automatic design of digital synthetic gene circuits,” PLos Comput. Biol., vol. 7, e1001083. doi:10.1371/journal.pcbi.1001083, 2011
[18.]Elowitz, MB., Leibler, S., “A synthetic oscillatory network of transcriptional regulators,” Nature, vol. 403, pp. 335-338, 2000
[19.]Chen, BS., Wu, CH., “Robust optimal reference-tracking design method for stochastic synthetic biology systems: T-S fuzzy approach,” IEEE Trans. Fuzzy Syst., vol. 18, pp. 1144-1159, 2010
[20.]Chen, PK., Lin, CL., “Synthesis of genetic clock with combinational biologic circuits,” IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 12, pp. 1206-1212, 2015
[21.]Benenson, P., “Biocomputers: from test tubes to live cells,” Mol. Biosyst., vol. 5, pp. 675-85, 2009
[22.]Lamaniya, A., Patel, B., “Design of full adder and full subtractor using DNA computing,” International Journal of Latest Trends in Engineering and Technology, vol. 3 (3), pp. 12 – 16, 2014
[23.]Dennis, T., Jiwon, L., Taylan, O., et al., “Gene circuits: foundations and applications,” Nanotechnology in Biology and Medicine, vol. 20, pp. 363 – 372, 2006
[24.]Bonnet, J., Yin, P., Ortiz, ME., et al., “Amplifying genetic logic gates,” Science, vol. 340 (6132), pp. 599-602, 2013
[25.]Carlson, MR., Zhang, B., Fang, Z., et al., “Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks,” BMC Genomics, vol. 7 (40) , 2006
[26.]Ayukawa, S., Kobayashi, A., Nakashima, Y., et al., “Construction of a genetic AND gate under a new standard for assembly of genetic parts,” BMC Genomics, vol. 11 (4), pp. 1-7, 2010
[27.]Ichinose, N., Yada, T., Gotoh, O., et al., “Reconstruction of transcription-translation dynamics with a model of gene networks,” Journal of Theoretical Biology, vol. 255 (4), pp. 378-386, 2008
[28.]Gilbert, SF., “Developmental Biology 6th edition,” Sinauer Associates, 2000
[29.]Agliari, E., Altavilla, M., Barra, A., et al., “Notes on stochastic (bio)-logic gates: computing with allosteric cooperativity,” Scientific Reports, vol. 5 (9415), pp. 1-9, 2015
[30.]Chuang, CH., Lin, CL., “Synthesizing genetic sequential logic circuit with clock pulse generator,” BMC Systems Biology, vol. 8 (63), pp. 1-15, 2014
[31.]Cuccato, G., Della Gatta, G., di Bernardo, D., “Systems and synthetic biology: tackling genetic networks and complex diseases,” Heredity, vol. 102 (6), pp. 1-3, 2009
[32.]Tamsir, A., Tabor, J. J., Voigt, C. A., “Robust multicellular computing using genetically encoded NOR gates and chemical wires,” Nature, vol. 469 (7329), pp. 212 - 214, 2011
[33.]Moon, T. S., Lou, C., Tamsir, A., et al., “Genetic programs constructed from layered logic gates in single cells,” Nature, vol. 491 (7423), pp. 249-252, 2012
[34.]George, M., Yuan, Gao., Sriram, Kosuri., “Next-Generation Digital Information Storage in DNA,” Science, vol. 337, pp.1628, 2012


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文