|
[1]Zhong L. Wang, Characterizing the Structure and Properties of Individual Wire-Like Nanoentities, Adv. Mater. Volume 12, Issue 17, pp.1295–1298 (2000) [2]Jiangtao Hu, Teri Wang Odom, Charles M. Lieber, Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes, Acc. Chem. Res. 32, pp. 435-445 (1999). [3]Z.R.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H.F. Xu, Complex and oriented ZnO nanostructures, Nat. Mater. 2, pp. 821–826 (2003). [4]J.Y. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO Nanostructures, Nano Lett. 2, pp. 1287–1291 (2002). [5]X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves, Science 316 , pp. 102–105 (2007). [6]X.S. Fang, L.M. Wu, L.F. Hu, ZnS nanostructure arrays: a developing material star, Adv. Mater. 23, pp. 585–598 (2011). [7]Davide Barreca, Daniela Bekermann, Elisabetta Comini , Anjana Devi , Roland A. Fischer , Alberto Gasparotto , Chiara Maccato , Giorgio Sberveglieri , Eugenio Tondello, 1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases, Sensors and Actuators B 149, pp. 1–7 (2010). [8]Q. Zhao, H. Z. Zhang, Y. W. Zhu and S. Q. Feng,“Morphological effects on the field emission of ZnO nanorod arrays, Applied physics letters 86, pp. 203115(2005). [9]M. S. Arnold, P. Avouris and Z. W. Pan, Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts, The Journal of Physical chemistry B 107, pp. 659-663 (2003). [10]W. Park, J. S. Kim and G. C. Yi, Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors, Applied physics letters 85, pp. 5052-5054(2004). [11]Chun-Chieh Hu, The Luminescence Properties of ZnO Thin Films Prepared by Room Temperature Sputtering Process, National Chung Shan University, Kaohsiung, Taiwan (2005). [12]F. Li , Z. Li, and F. J. Jin , Structural and luminescent properties of ZnO nanorods prepared from aqueous solution, Mater. Lett., 61, pp. 1876–1880 (2007). [13]K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, and J.A. Voigt Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys., 79, pp. 7983-7990 (1996). [14]B. Lin, Z. Fu, Y. Jia, and G. Liao , Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions, J. Electrochem. Soc., 148, pp. 110-113 (2001). [15]Po-Tsung Hsieh, Study on the Luminescence Characteristics of ZnO Thin Film, National Chung Shan University, Kaohsiung, Taiwan (2008). [16]Yuan-Chung Wang, Preparation of nanosized ZnO arrays by electrophoretic deposition, Electro chemical and Solid-Stateletters, 5, pp.C53 (2002). [17]M. J. Zheng, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays byone-step electro chemical deposition technique, Chemical PhysicalLetters, 363,p p.123-126 ( 2002). [18]Z.Zhou, W. Peng, S. Ke, H. Deng, Tetrapod-shaped ZnO whisker and its composites, Journal of Materials Processing Technology,89, pp. 415-418 (1999). [19]B. P. Zhang, N. T. Binh, K. Wakatsuki, Y.Segawa, Formation of highly aligned ZnO tubes on sapphire (0001) substrates, Appl. Phys. Lett.,84, pp.4098-4100 (2004). [20]Tsai Chin-Chou, Huang Sheng-Pin, Study of Nitrogen and Aluminum co-doped P-type ZnO Thin Films, International Conference on Safety & Security Management and Engineering Technology (ICSSMET2010)Vol. 2 of 2 (2010). [21]Seungjun Oh, Takahiro Nagata, Ja´nos Volk, and Yutaka Wakayama, Nanoimprint for Fabrication of Highly Ordered Epitaxial ZnO Nanorods on Transparent Conductive Oxide Films, Applied Physics Express 5 095003 (2012). [22]M.T. Browne, P. Charalambous, and VA Kudryashov, “The proximity effect in electron beamnanolithography”, Microelectron Eng. 13, pp. 221-224 (1991). [23]X.Wang, C.J. Summers, and Z. L. Wang, Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays, Nano Lett., 4, pp. 423-426 (2004). [24]J. W. P. Hsu, Z. R Tian, N. C. Simmons, C. M. Matzke, J. A.Voigt, and J. Liu, Directed Spatial Organization of Zinc Oxide Nanorods, Nano Lett., 5, pp.83-86 (2005). [25]M. Geissler, A. Bernard, A. Bietsch, H. Schmid, B. Michel, and E. Delamarche, Microcontact-Printing Chemical Patterns with Flat Stamps, J. Am. Chem. Soc., 122, , pp. 6303-6304 (2000). [26]Yi-Che Su, Wei-Cheng Tang, Nanocomposites Prepared by Sol-Gel Process”, CHEMISTRY, The Chinese Chemical Society, Taipei, Vol. 70, No. 1, pp. 39-51 ( 2012). [27]wangchao.net.cn, ZnO, from http://tc.wangchao.net.cn/baike/detail_ 421360.html (2010). [28]EDN Network, White LEDs Printed on Paper—A Doctoral Thesis—Part I, from http://www.edn.com/design/led/4391796/2/White-LEDs-Printed-on- Paper-A-Doctoral-Thesis-Part-I (2012). [29]Buffat, Ph.; Borell, J. P., Size effect on the melting temperature of gold particles, Phys. ReV. A, 13, pp. 2287-2298 (1976). [30]A. N. Goldstein,C. M. Echer, A. P. Alivisatos, Melting in Semiconductor Nanocrystals, Science 256, pp. 1425-1427 (1992). [31]H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, M.Meyyappan, Growth of Epitaxial Nanowires at the Junctions of Nanowalls, Science,300, pp.1249-1251 (2003). [32]Woong Lee, Min-Chang Jeong, Jae-Min Myoung, Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation, Acta Materialia 52, pp. 3949–3957 (2004). [33]Yuan-Chung Wang, Preparation ofnanosized ZnO arrays by electrophoretic deposition, Electrochemical and Solid-Stateletters, 5, pp. 53-55 (2002). [34]M. J. Zheng, Fabrication and opticalproperties oflarge-scale uniform zinc oxidenanowirearrays byone-step electrochemicaldeposition technique, Chemical Phys. Lett., 363, pp.123-125 (2002). [35]R. A. Laudise, and A. A. Ballman, Hydrothermal synthesis of zinc oxide and zinc sulfide, J. Phys. Chem., 64, pp. 688-690 (1960) [36]K. Govender, D.S. Boyle, P.B. Kenway andP. O''Brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution, J.Mater Chem., 14, pp. 2575-2591 (2004). [37]Q Ahsanulhaq, A Umar and Y B Hahn, Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties, Nanotechnology 18, pp. 115603-11610 (2007). [38]Y. Sun, D. J.Riley, and M. N. R. Ashfold, Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates, J. Phys. Chem. B 110, pp. 15186-15192 (2006). [39]Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, and R.P.H. Chang, Fabrication of ZnO nanorods and nanotubes in aqueous solutions, Chem. Mater. 17, pp. 1001-1005 (2005). [40]W. Geffcken, E. Berger and Dtsch, Verfahren zur AEnderung des Reflexionsver moegens optischer Glaeser, Reichspatent 736411 (1939). [41]A.J. Moulson and J.M. Herbert, “Electroceramics, 1st ed. Chap.1 &6 Chapman &Hall, New York, pp.1 &263. [42]工業技術研究院工業材料研究所編印,”精密陶瓷特性及檢測分析”,(1999) [43]M. Lourdes Calzada, Rafael Sirera, Francisco Carmona and Basilio Jiménez, Investigations of a Diol-based Sol-Gel Process for the Preparation of Lead Titanate Materials, Journal of the American Ceramic Society. Volume 78, Issue 7, pp. 1802–1808 (1995). [44]Dislich, H., Hinz P. J., Sol-gel coating films for optical and electronic application Non-Cryst. Solids, 48, pp. 11 (1982). [45]B. Jirgensons and M. E. Straumanis, Coloid Chemistry, MvMillian Co., New York, 1962. [46]Peng-Wei Chiang, Effects of different catalysts on the growth of ZnO nanorods for the application of dye-sensitized solar cells, National Chung Hsing University, Taichung, Taiwan (2011).’ [47]Thomas, I. M. Klein, C. C., Eds.;Noyes: Park Ridge, In Sol-Gel Technology for Thin Films Fibers Preforms Electronics and Specialty Shapes, Chap 1 (1998). [48]Sung-Hsun Chiang , Preparation and Characterization of AZO Transparent Conducting Films, National Cheng Kung University, Tainan, Taiwan (2006). [49]Caihong Wang, Xiangfeng Chu, Mingmei Wu, Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods, Sensors and Actuators B, 113,pp. 320–323 (2006). [50]O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad, Journal of Physics D: Applied Physics 42 , pp. 225305-225308 (2009). [51]Zuruzi A S, Kolmalov A, Macdonald N C and Moskovits M, Highly sensitive gas sensor based on integrated titania nanosponge arrays, Appl. Phys. Lett. 88, pp. 102904-102908 (2006). [52]Kim Y S, Ha S C, Kim K,Yang H, Park J T, Lee C H, Choi J, Paek J and Lee K, Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film, Appl. Phys. Lett. 86, pp. 213105-213107 (2005). [53]Huang H, Tan O K, Lee Y C, Tran T D, Tse M S and Yao X, Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment, Appl. Phys. Lett. 87 , pp. 163123-163127 (2005). [54]Baratto C, Sberveglieri G, Onischuk A, Caruso B and Stasio S D, Low temperature selective NO 2 sensors by nanostructured fibres of ZnO, Sensors Actuators B , 100, pp. 261-265 (2004). [55]Gao T and Wang T H, Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications, Appl. Phys. A 80, pp. 1451-1454 (2005). [56]Chang J F, Kuo H H, Leu I C and Hon M H, The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor, Sensors Actuators B 84, pp. 258-264 (2002). [57]Basu S and Dutta A, Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application, Sensors Actuators B 22, pp. 83-87 (1994). [58]J.S. Wright, W. Lim, D.P. Norton, S.J. Pearton, F. Ren, J.L. Johnson, A. Ural, Nitride and oxide semiconductor nanostructured hydrogen gas sensors, Semiconductor Science and Technology 25 , pp. 024002-024009 (2010). [59]J. Sun, J. Xu, Y.S. Yu, P. Sun, F. Liu, G. Lu, UV-activated room temperature metal oxide based gas sensor attached with reflector, Sensors and Actuators B: Chemical 169, pp. 291–296 (2012). [60]K.J. Choi, H.W. Jang,, One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues, Sensors 10, pp. 4083-4099 (2010). [61]Min Y, Tuller H L, Palzer S, Wollenstein J and Bottner H, Gas response of reactively sputtered ZnO films on Si-based micro-array, Sensors Actuators B 93, pp. 435-411 (2003). [62] L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO–nanostructures, defects, and devices, Materials Today 10, pp. 40-48 (2007). [63]M. Tonezzer, R.G. Lacerda, Zinc oxide nanowires on carbon microfiber as flexible gas sensor, Low-dimensional Systems and Nanostructures, Physica E 44, pp. 1098-1102 (2012). [64]Zhang D H, Li C, Liu X L, Tang T and Zhou C W, Doping-dependent Ammonia Sensing of Indium Oxide Nanowires, Appl. Phys. Lett. 83, pp. 1845-1847 (2003). [65]Wan Q and Wang T H, Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application, Chem. Commun. 30, pp. 3841-3843 (2005). [66]Li Q H, Liang Y X,Wan Q and Wang T H, Oxygen sensing characteristics of individual ZnO nanowire transistors , Appl. Phys. Lett. 85, pp. 6389-6393 (2004). [67]Chen Y J, Nie L, Xue X Y,Wang Y G and Wang T H, Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity, Appl. Phys. Lett. 88, pp. 083105-083109 (2006). [68]L. Liao, H. B. Lu, J.C. Lin and C. Lin, Size Dependence of Gas Sensitivity of ZnO Nanorods, The Journal of Physical Chemistry C 111, pp. 1900‒1903 (2006). [69]J X Wang, X W Sun, Y Yang, H Huang, Y C Lee, O K Tan and L Vayssieres, Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications, Nanotechnology 17, pp. 4995–4998 (2006). [70]Sadullah Öztürk, Necmettin Kılınç, Zafer Ziya Öztürk, Effect of ZnO nanorods density on NO2 sensing, The 14th International Meeting on Chemical Sensors P2.4.1 (2012). [71]Q. Li et al, Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions, Chemistry material 17, pp. 1001-1006 (2005). [72]J.X. Wang, X.W. Sun, H. Huang, Y.C. Lee, O.K. Tan, M.B. Yu, G.Q. Lo, D.L. Kwong, A two-step hydrothermally grown ZnO microtube array for CO gas sensing, Appl. Phys. A 88, pp. 611–615 (2007). [73]Oleg Lupan, Guangyu Chai, Lee Chow, Novel hydrogen gas sensor based on single ZnO nanorod, Microelectronic Engineering 85, pp. 2220–2225 (2008). [74]H. Huang, O.K. Tan, Y.C. Lee, T.D. Tran,M.S. Tse, X. Yao, Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with post plasma treatment, Appl. Phys. Lett. 87, pp. 163123-163127 (2005). [75]A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S.Z. Deng, N.S. Xu, Y. Dingn Z.L. Wang, Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks, Appl. Phys. Lett. 88, pp. 203101-203104 (2006). [76]M. Takata, D. Tsubone, H. Yanagida, Dependence of electricalconductivity of ZnO, degree of sensing, J. Am. Ceram. Soc. 59, pp. 4–8 (1976). [77]H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO, Sensors and Actuators B 115 , pp. 247–251 (2006). [78]S. Saito, M. Miyayama, K. Kuomoto, H. Yanagida, Gas sensing characteristics of porous ZnO and Pt, J. Am., Ceram. Soc. 68, pp. 40-45 (1985). [79]Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, Photoconductivity of ultrathin zinc oxide film, Jpn. J. Appl. Phys., 33, pp. 6611-6645 (1994). [80]Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles , Nano Letters, 8, pp. 1649-1654 (2008). [81]Luo Ji Zong , The applications of the thin films technology, pp. 105-109 (2004). [82]Li-Jen Lin, The theories and Applications of X-ray diffraction, Materialsnet 86 (1994). [83]Office of Research and Development of National Chung Hsing University, from FE-SEM, FIB” http://research.nchu.edu.tw/chinese/04_achievement/ 042_detail.aspx?MainID=33&kind=1. [84]Apurba, D.; Soumitra, K.; Subhadra, C., Optical and fieldemission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route, J. Phys. Chem. B, A-E, pp 1533–1540. (2006). [85]Peng-Wei Chiang , Effects of different catalysts on the growth of ZnO nanorods for the application of dye-sensitized solar cells, National Chung Hsing University, Taichung, Taiwan (2011). [86]Qingwei Li, JimingBian, Jingchang Sun, Jingwei Wang, Yingmin Luo, Kaitong Sun, Dongqi Yu, Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method, Appl. Surf. Sci. 256, pp. 1698–1702 (2010).
|