跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/16 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭誌程
研究生(外文):Jang-Cheng Jheng
論文名稱:裝飾金屬奈米粒子之氧化鋅奈米柱之結構、光學及氣體感應特性研究
論文名稱(外文):Study on Structural, Optical, and Gas Sensing Characteristics of ZnO Nanorods with Decoration of Metal Nanoparticles
指導教授:汪芳興
指導教授(外文):Fang-Hsing Wang
口試委員:賴聰賢楊尚霖
口試委員(外文):Tsong-Sheng LaySgang-Lin Yang
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:126
中文關鍵詞:裝飾金屬氧化鋅奈米柱水熱法
外文關鍵詞:nanorod:decorationZnOhydrothmal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是在玻璃及藍寶石凸、凹型三種不同表面形貌的基板上以0.03 M的醋酸鋅水熱法濃度不同成長時間(30、45、60min)氧化鋅奈米柱,並在奈米柱表面裝飾鋁、銅金屬奈米粒子並鍍上厚度為350 nm的指叉狀鋁電極,形成金屬-半導體-金屬的氣體感應器。
SEM中可發現在藍寶石凸型基板成長時間為60 min之氧化鋅奈米柱有最大的表面積與體積,其次是玻璃,再來是藍寶石凹型基板。Photoluminescence(PL)分析可得知裝飾金屬奈米粒子之氧化鋅奈米柱的成長時間為60 min有最強的紫外光強度。
藍寶石凸型基板上成長時間為60 min之氧化鋅奈米柱有最大的表面積與體積和H2以及CO反應,加入銅奈米粒子後,在氣體感測上也有最大的響應值。在不同濃度下量測H2及CO從100 ppm到2000 ppm,最佳工作溫度及最佳氣體濃度分別為300 °C及2000 ppm。通入2000 ppm的H2及CO環境下所量測到的響應值(Rair/Rgas)為2.89及2.91,H2與CO的響應時間(Response time)為90 s及115 s,恢復時間(recovery time)為75 s及85 s。H2和CO的響應值比加入鋁奈米粒子之氧化鋅奈米柱上升26%、30%,也比沒有金屬奈米粒子上升54%、57%,分別比裝飾銅奈米粒子之玻璃和藍寶石凹型基板大6%、10%以及11%、15%。


This study aims to form a metal-semiconductor-metal gas sensor on three substrates, that is, glass, convex and concave sapphire, with different surface morphologies to prepare zinc oxide nanorod arrays, which are decorated with aluminum and copper nanoparticles and finally are coated with 350 nm-thick interdigital aluminum electrode. The ZnO nanorod arrays are prepared with the concentration 0.03 M zinc acetate hydrothermal method and different growth time (30, 45, 60 min).
It is found that the maximal surface area and volume appear on the zinc oxide nanorod with the growth time 60 min on convex sapphire substrate, while the nanorods prepared on the concave sapphire substrate have the minimal surface area and volume. Photoluminescence (PL) analysis reveals that the strongest UV intensity appears on the growth time 60 min of zinc oxide nanorod, for decorating Cu nanoparticles.
The zinc oxide nanorod array with the growth time 60 min on convex sapphire substrates show better H2 & CO responses. After decorating copper nanoparticles, the responses increase for H2 & CO gases. With H2 and CO from 100 to 2000 ppm, the optimal operating temperature and optimal gas concentration are 300 °C and 2000 ppm, respectively. The response values (Rair/Rgas) measured in H2 and CO environments with 2000 ppm are 2.89 and 2.91, respectively; the response times for H2 and CO appears 90 s and 115 s, and the recovery times are 75 s and 85 s. The response values of H2 and CO increase by 26% and 30% for aluminum nanoparticles decorated devices and 54% and 57% for copper nanoparticles decorated devices as compared with those without metal nanoparticles. For copper nanoparticles decorated devices, the responses of H2 and CO for the convex substrate are 6% and 10% higher than those on the glass substrates and 11% and 15% higher than those on the concave substrates.


摘要 i
Abstract ii
目錄 iv
表目錄 vii
圖目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧與基礎理論 4
2.1 氧化鋅晶體結構與特性 4
2.2 氧化鋅光學特性 6
2.3 金屬奈米粒子對奈米柱的影響 8
2.4一維氧化鋅奈米結構的成長機制 8
2.4溶膠-凝膠法(sol-gel method) 12
2.5 溶膠-凝膠的製備方法 15
2.6 氧化鋅在氣體感測器的應用 16
第三章 實驗流程與步驟 23
3.1 實驗流程 23
3.1.1 實驗流程圖 23
3.1.2 氧化鋅奈米柱陣列製作示意圖 24
3.2 化學藥品與實驗用品 26
3.2.1 化學藥品 26
3.2.2 基板介紹 26
3.3 實驗儀器介紹 29
3.3.1 熱蒸鍍機 29
3.3.2 X光繞射分析儀 29
3.3.3 FE-SEM場發射掃描電子顯微鏡 31
3.3.4光激發螢光分析儀 32
3.4 基板清洗 33
3.5 氧化鋅晶種層製備 34
3.5.1 氧化鋅溶膠製備 34
3.5.2 氧化鋅種子層製備 35
3.5.3 退火處理 36
3.6 水熱法成長氧化鋅奈米柱陣列 37
3.7 熱蒸鍍機鍍鋁電極 37
3.9 氣體感應器量測 38
第四章 結果與討論 41
4.1 不同基板上奈米柱陣列之形貌與晶體分析 41
4.1.1 玻璃基板上之氧化鋅晶種層SEM分析 41
4.1.2 玻璃基板上之氧化鋅奈米柱SEM分析 41
4.1.3 玻璃基板上之氧化鋅奈米柱XRD分析 44
4.1.4 玻璃基板上之氧化鋅奈米柱PL分析 45
4.1.5 藍寶石凸型基板上之氧化鋅晶種層SEM分析 47
4.1.6 藍寶石凸型基板上之氧化鋅奈米柱SEM分析 48
4.1.7 藍寶石凸型基板上之氧化鋅奈米柱XRD分析 49
4.1.8 藍寶石凸型基板上之氧化鋅奈米柱PL分析 52
4.1.9 藍寶石凹型基板之晶種層SEM分析 53
4.1.10 藍寶石凹型基板之奈米柱陣列SEM分析 53
4.1.11 藍寶石凹型基板上之氧化鋅奈米柱XRD分析 54
4.1.12 藍寶石凹型基板上之氧化鋅奈米柱PL分析 54
4.2裝飾金屬奈米粒子之氧化鋅奈米柱陣列之形貌與晶體分析 58
4.2.1裝飾Al在玻璃基板上之氧化鋅奈米柱確認 58
4.2.2裝飾Al在不同基板上之氧化鋅奈米柱SEM與EDS分析 59
4.2.3裝飾Cu在不同基板上之氧化鋅奈米柱SEM與EDS分析 62
4.2.4裝飾金屬在不同基板上之氧化鋅奈米柱XRD與PL分析 64
4.3 氣體感應器量測其分析 69
4.3.1 Pristine在不同基板上之氧化鋅奈米柱氣體感測 69
4.3.2 裝飾Al NPs不同基板上之氧化鋅奈米柱氣體感測 74
4.3.3 裝飾Cu NPs不同基板上之氧化鋅奈米柱氣體感測 99
4.3.4 穩定性分析 106
4.3.5 綜合比較 110
第五章結論 114
參考文獻 116


[1]Zhong L. Wang, Characterizing the Structure and Properties of Individual Wire-Like Nanoentities, Adv. Mater. Volume 12, Issue 17, pp.1295–1298 (2000)
[2]Jiangtao Hu, Teri Wang Odom, Charles M. Lieber, Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes, Acc. Chem. Res. 32, pp. 435-445 (1999).
[3]Z.R.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H.F. Xu, Complex and oriented ZnO nanostructures, Nat. Mater. 2, pp. 821–826 (2003).
[4]J.Y. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO Nanostructures, Nano Lett. 2, pp. 1287–1291 (2002).
[5]X.D. Wang, J.H. Song, J. Liu, Z.L. Wang, Direct-current nanogenerator driven by ultrasonic waves, Science 316 , pp. 102–105 (2007).
[6]X.S. Fang, L.M. Wu, L.F. Hu, ZnS nanostructure arrays: a developing material star, Adv. Mater. 23, pp. 585–598 (2011).
[7]Davide Barreca, Daniela Bekermann, Elisabetta Comini , Anjana Devi , Roland A. Fischer , Alberto Gasparotto , Chiara Maccato , Giorgio Sberveglieri , Eugenio Tondello, 1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases, Sensors and Actuators B 149, pp. 1–7 (2010).
[8]Q. Zhao, H. Z. Zhang, Y. W. Zhu and S. Q. Feng,“Morphological effects on the field emission of ZnO nanorod arrays, Applied physics letters 86, pp. 203115(2005).
[9]M. S. Arnold, P. Avouris and Z. W. Pan, Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts, The Journal of Physical chemistry B 107, pp. 659-663 (2003).
[10]W. Park, J. S. Kim and G. C. Yi, Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors, Applied physics letters 85, pp. 5052-5054(2004).
[11]Chun-Chieh Hu, The Luminescence Properties of ZnO Thin Films Prepared by Room Temperature Sputtering Process, National Chung Shan University, Kaohsiung, Taiwan (2005).
[12]F. Li , Z. Li, and F. J. Jin , Structural and luminescent properties of ZnO nanorods prepared from aqueous solution, Mater. Lett., 61, pp. 1876–1880 (2007).
[13]K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, and J.A. Voigt Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys., 79, pp. 7983-7990 (1996).
[14]B. Lin, Z. Fu, Y. Jia, and G. Liao , Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions, J. Electrochem. Soc., 148, pp. 110-113 (2001).
[15]Po-Tsung Hsieh, Study on the Luminescence Characteristics of ZnO Thin Film, National Chung Shan University, Kaohsiung, Taiwan (2008).
[16]Yuan-Chung Wang, Preparation of nanosized ZnO arrays by electrophoretic deposition, Electro chemical and Solid-Stateletters, 5, pp.C53 (2002).
[17]M. J. Zheng, Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays byone-step electro chemical deposition technique, Chemical PhysicalLetters, 363,p p.123-126 ( 2002).
[18]Z.Zhou, W. Peng, S. Ke, H. Deng, Tetrapod-shaped ZnO whisker and its composites, Journal of Materials Processing Technology,89, pp. 415-418 (1999).
[19]B. P. Zhang, N. T. Binh, K. Wakatsuki, Y.Segawa, Formation of highly aligned ZnO tubes on sapphire (0001) substrates, Appl. Phys. Lett.,84, pp.4098-4100 (2004).
[20]Tsai Chin-Chou, Huang Sheng-Pin, Study of Nitrogen and Aluminum co-doped P-type ZnO Thin Films, International Conference on Safety & Security Management and Engineering Technology (ICSSMET2010)Vol. 2 of 2 (2010).
[21]Seungjun Oh, Takahiro Nagata, Ja´nos Volk, and Yutaka Wakayama, Nanoimprint for Fabrication of Highly Ordered Epitaxial ZnO Nanorods on Transparent Conductive Oxide Films, Applied Physics Express 5 095003 (2012).
[22]M.T. Browne, P. Charalambous, and VA Kudryashov, “The proximity effect in electron beamnanolithography”, Microelectron Eng. 13, pp. 221-224 (1991).
[23]X.Wang, C.J. Summers, and Z. L. Wang, Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays, Nano Lett., 4, pp. 423-426 (2004).
[24]J. W. P. Hsu, Z. R Tian, N. C. Simmons, C. M. Matzke, J. A.Voigt, and J. Liu, Directed Spatial Organization of Zinc Oxide Nanorods, Nano Lett., 5, pp.83-86 (2005).
[25]M. Geissler, A. Bernard, A. Bietsch, H. Schmid, B. Michel, and E. Delamarche, Microcontact-Printing Chemical Patterns with Flat Stamps, J. Am. Chem. Soc., 122, , pp. 6303-6304 (2000).
[26]Yi-Che Su, Wei-Cheng Tang, Nanocomposites Prepared by Sol-Gel Process”, CHEMISTRY, The Chinese Chemical Society, Taipei, Vol. 70, No. 1, pp. 39-51 ( 2012).
[27]wangchao.net.cn, ZnO, from http://tc.wangchao.net.cn/baike/detail_ 421360.html (2010).
[28]EDN Network, White LEDs Printed on Paper—A Doctoral Thesis—Part I, from http://www.edn.com/design/led/4391796/2/White-LEDs-Printed-on- Paper-A-Doctoral-Thesis-Part-I (2012).
[29]Buffat, Ph.; Borell, J. P., Size effect on the melting temperature of gold particles, Phys. ReV. A, 13, pp. 2287-2298 (1976).
[30]A. N. Goldstein,C. M. Echer, A. P. Alivisatos, Melting in Semiconductor Nanocrystals, Science 256, pp. 1425-1427 (1992).
[31]H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, M.Meyyappan, Growth of Epitaxial Nanowires at the Junctions of Nanowalls, Science,300, pp.1249-1251 (2003).
[32]Woong Lee, Min-Chang Jeong, Jae-Min Myoung, Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation, Acta Materialia 52, pp. 3949–3957 (2004).
[33]Yuan-Chung Wang, Preparation ofnanosized ZnO arrays by electrophoretic deposition, Electrochemical and Solid-Stateletters, 5, pp. 53-55 (2002).
[34]M. J. Zheng, Fabrication and opticalproperties oflarge-scale uniform zinc oxidenanowirearrays byone-step electrochemicaldeposition technique, Chemical Phys. Lett., 363, pp.123-125 (2002).
[35]R. A. Laudise, and A. A. Ballman, Hydrothermal synthesis of zinc oxide and zinc sulfide, J. Phys. Chem., 64, pp. 688-690 (1960)
[36]K. Govender, D.S. Boyle, P.B. Kenway andP. O''Brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution, J.Mater Chem., 14, pp. 2575-2591 (2004).
[37]Q Ahsanulhaq, A Umar and Y B Hahn, Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties, Nanotechnology 18, pp. 115603-11610 (2007).
[38]Y. Sun, D. J.Riley, and M. N. R. Ashfold, Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates, J. Phys. Chem. B 110, pp. 15186-15192 (2006).
[39]Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks, and R.P.H. Chang, Fabrication of ZnO nanorods and nanotubes in aqueous solutions, Chem. Mater. 17, pp. 1001-1005 (2005).
[40]W. Geffcken, E. Berger and Dtsch, Verfahren zur AEnderung des Reflexionsver moegens optischer Glaeser, Reichspatent 736411 (1939).
[41]A.J. Moulson and J.M. Herbert, “Electroceramics, 1st ed. Chap.1 &6 Chapman &Hall, New York, pp.1 &263.
[42]工業技術研究院工業材料研究所編印,”精密陶瓷特性及檢測分析”,(1999)
[43]M. Lourdes Calzada, Rafael Sirera, Francisco Carmona and Basilio Jiménez, Investigations of a Diol-based Sol-Gel Process for the Preparation of Lead Titanate Materials, Journal of the American Ceramic Society. Volume 78, Issue 7, pp. 1802–1808 (1995).
[44]Dislich, H., Hinz P. J., Sol-gel coating films for optical and electronic application Non-Cryst. Solids, 48, pp. 11 (1982).
[45]B. Jirgensons and M. E. Straumanis, Coloid Chemistry, MvMillian Co., New York, 1962.
[46]Peng-Wei Chiang, Effects of different catalysts on the growth of ZnO nanorods for the application of dye-sensitized solar cells, National Chung Hsing University, Taichung, Taiwan (2011).’
[47]Thomas, I. M. Klein, C. C., Eds.;Noyes: Park Ridge, In Sol-Gel Technology for Thin Films Fibers Preforms Electronics and Specialty Shapes, Chap 1 (1998).
[48]Sung-Hsun Chiang , Preparation and Characterization of AZO Transparent Conducting Films, National Cheng Kung University, Tainan, Taiwan (2006).
[49]Caihong Wang, Xiangfeng Chu, Mingmei Wu, Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods, Sensors and Actuators B, 113,pp. 320–323 (2006).
[50]O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, R. Azimirad, Journal of Physics D: Applied Physics 42 , pp. 225305-225308 (2009).
[51]Zuruzi A S, Kolmalov A, Macdonald N C and Moskovits M, Highly sensitive gas sensor based on integrated titania nanosponge arrays, Appl. Phys. Lett. 88, pp. 102904-102908 (2006).
[52]Kim Y S, Ha S C, Kim K,Yang H, Park J T, Lee C H, Choi J, Paek J and Lee K, Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film, Appl. Phys. Lett. 86, pp. 213105-213107 (2005).
[53]Huang H, Tan O K, Lee Y C, Tran T D, Tse M S and Yao X, Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with postplasma treatment, Appl. Phys. Lett. 87 , pp. 163123-163127 (2005).
[54]Baratto C, Sberveglieri G, Onischuk A, Caruso B and Stasio S D, Low temperature selective NO 2 sensors by nanostructured fibres of ZnO, Sensors Actuators B , 100, pp. 261-265 (2004).
[55]Gao T and Wang T H, Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications, Appl. Phys. A 80, pp. 1451-1454 (2005).
[56]Chang J F, Kuo H H, Leu I C and Hon M H, The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor, Sensors Actuators B 84, pp. 258-264 (2002).
[57]Basu S and Dutta A, Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application, Sensors Actuators B 22, pp. 83-87 (1994).
[58]J.S. Wright, W. Lim, D.P. Norton, S.J. Pearton, F. Ren, J.L. Johnson, A. Ural, Nitride and oxide semiconductor nanostructured hydrogen gas sensors, Semiconductor Science and Technology 25 , pp. 024002-024009 (2010).
[59]J. Sun, J. Xu, Y.S. Yu, P. Sun, F. Liu, G. Lu, UV-activated room temperature metal oxide based gas sensor attached with reflector, Sensors and Actuators B: Chemical 169, pp. 291–296 (2012).
[60]K.J. Choi, H.W. Jang,, One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues, Sensors 10, pp. 4083-4099 (2010).
[61]Min Y, Tuller H L, Palzer S, Wollenstein J and Bottner H, Gas response of reactively sputtered ZnO films on Si-based micro-array, Sensors Actuators B 93, pp. 435-411 (2003).
[62] L. Schmidt-Mende, J.L. MacManus-Driscoll, ZnO–nanostructures, defects, and devices, Materials Today 10, pp. 40-48 (2007).
[63]M. Tonezzer, R.G. Lacerda, Zinc oxide nanowires on carbon microfiber as flexible gas sensor, Low-dimensional Systems and Nanostructures, Physica E 44, pp. 1098-1102 (2012).
[64]Zhang D H, Li C, Liu X L, Tang T and Zhou C W, Doping-dependent Ammonia Sensing of Indium Oxide Nanowires, Appl. Phys. Lett. 83, pp. 1845-1847 (2003).
[65]Wan Q and Wang T H, Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application, Chem. Commun. 30, pp. 3841-3843 (2005).
[66]Li Q H, Liang Y X,Wan Q and Wang T H, Oxygen sensing characteristics of individual ZnO nanowire transistors , Appl. Phys. Lett. 85, pp. 6389-6393 (2004).
[67]Chen Y J, Nie L, Xue X Y,Wang Y G and Wang T H, Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity, Appl. Phys. Lett. 88, pp. 083105-083109 (2006).
[68]L. Liao, H. B. Lu, J.C. Lin and C. Lin, Size Dependence of Gas Sensitivity of ZnO Nanorods, The Journal of Physical Chemistry C 111, pp. 1900‒1903 (2006).
[69]J X Wang, X W Sun, Y Yang, H Huang, Y C Lee, O K Tan and L Vayssieres, Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications, Nanotechnology 17, pp. 4995–4998 (2006).
[70]Sadullah Öztürk, Necmettin Kılınç, Zafer Ziya Öztürk, Effect of ZnO nanorods density on NO2 sensing, The 14th International Meeting on Chemical Sensors P2.4.1 (2012).
[71]Q. Li et al, Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions, Chemistry material 17, pp. 1001-1006 (2005).
[72]J.X. Wang, X.W. Sun, H. Huang, Y.C. Lee, O.K. Tan, M.B. Yu, G.Q. Lo, D.L. Kwong, A two-step hydrothermally grown ZnO microtube array for CO gas sensing, Appl. Phys. A 88, pp. 611–615 (2007).
[73]Oleg Lupan, Guangyu Chai, Lee Chow, Novel hydrogen gas sensor based on single ZnO nanorod, Microelectronic Engineering 85, pp. 2220–2225 (2008).
[74]H. Huang, O.K. Tan, Y.C. Lee, T.D. Tran,M.S. Tse, X. Yao, Semiconductor gas sensor based on tin oxide nanorods prepared by plasma-enhanced chemical vapor deposition with post plasma treatment, Appl. Phys. Lett. 87, pp. 163123-163127 (2005).
[75]A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S.Z. Deng, N.S. Xu, Y. Dingn Z.L. Wang, Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks, Appl. Phys. Lett. 88, pp. 203101-203104 (2006).
[76]M. Takata, D. Tsubone, H. Yanagida, Dependence of electricalconductivity of ZnO, degree of sensing, J. Am. Ceram. Soc. 59, pp. 4–8 (1976).
[77]H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO, Sensors and Actuators B 115 , pp. 247–251 (2006).
[78]S. Saito, M. Miyayama, K. Kuomoto, H. Yanagida, Gas sensing characteristics of porous ZnO and Pt, J. Am., Ceram. Soc. 68, pp. 40-45 (1985).
[79]Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, Photoconductivity of ultrathin zinc oxide film, Jpn. J. Appl. Phys., 33, pp. 6611-6645 (1994).
[80]Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham, Solution-Processed Ultraviolet Photodetectors Based on Colloidal ZnO Nanoparticles , Nano Letters, 8, pp. 1649-1654 (2008).
[81]Luo Ji Zong , The applications of the thin films technology, pp. 105-109 (2004).
[82]Li-Jen Lin, The theories and Applications of X-ray diffraction, Materialsnet 86 (1994).
[83]Office of Research and Development of National Chung Hsing University, from FE-SEM, FIB” http://research.nchu.edu.tw/chinese/04_achievement/ 042_detail.aspx?MainID=33&kind=1.
[84]Apurba, D.; Soumitra, K.; Subhadra, C., Optical and fieldemission properties of ZnO nanorod arrays synthesized on zinc foils by the solvothermal route, J. Phys. Chem. B, A-E, pp 1533–1540. (2006).
[85]Peng-Wei Chiang , Effects of different catalysts on the growth of ZnO nanorods for the application of dye-sensitized solar cells, National Chung Hsing University, Taichung, Taiwan (2011).
[86]Qingwei Li, JimingBian, Jingchang Sun, Jingwei Wang, Yingmin Luo, Kaitong Sun, Dongqi Yu, Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method, Appl. Surf. Sci. 256, pp. 1698–1702 (2010).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊