(3.237.48.165) 您好!臺灣時間:2021/05/09 12:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:歐雯晴
研究生(外文):Wen-Chyng Au
論文名稱:叢枝菌根菌和矽對辣椒的成長與品質的影響
論文名稱(外文):Effectiveness of arbuscular mycorrhizal fungi and silicate on the growth and quality of chili pepper (Capsicum annum)
指導教授:楊秋忠楊秋忠引用關係
指導教授(外文):Chiu-Chung Young
口試委員:沈佛亭簡宣裕
口試委員(外文):Fo-Ting ShenShiuan-Yuh Chien
口試日期:2016-07-18
學位類別:碩士
校院名稱:國立中興大學
系所名稱:國際農學碩士學位學程
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:49
中文關鍵詞:叢枝菌根菌辣椒
外文關鍵詞:Arbuscular mycorrhizalsilicatechili pepper
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於優質食品需求量增加,生產優質的蔬菜也增加。這項研究的目的是調查叢枝菌根真菌(AMF)接種和矽酸鹽的加入對辣椒的生長和品質的影響。此外,目前的研究還探討矽酸鹽對於AMF生長的效果。這項研究是以盆栽試驗的形式進行。AMF的接種劑為分離自於楊秋忠老師的實驗室。
移植一個月後,接種Claroideoglomus etunicatum和Claroideoglomus claroideum和矽酸鹽應用降低地上部的乾重和營養成分。然而,移植三個月後,接種Claroideoglomus etunicatum和Claroideoglomus claroideum增加地上部的N含量,但減少地上部的Mn含量。矽酸鹽應用增加地上部的N,K和Ni含量。此外,矽酸鹽處理抑制AMF的發展,添加矽酸鹽降低大約15至28%的AMF的感染率。本研究還發現培植過程中,矽酸鹽處理增加水果營養成分,而,接種Claroideoglomus etunicatum和Claroideoglomus claroideum降低水果的營養含量。
最後,結果表明,在移植三個月後,Claroideoglomus etunicatum和Claroideoglomus claroideum接種處理和矽酸鹽的處理可以提高辣椒的品質質量。此外,矽酸鹽可以抑制AMF對它們的宿主植物的有益影響。


Due to high demand of quality food, production of high quality vegetable crops increasing. The objective of this study was to investigate the influence of arbuscular mycorrhizal fungi (AMF) inoculation and silicate addition on the growth and quality of chili pepper (Capsicum annum). Further, current study also look for effect of silicate on AMF development. The study was conducted in pot experiment with AMF inoculum that isolated from root of maize in Chiu-Chung Young’s laboratory.
The results showed inoculation with Claroideoglomus etunicatum and Claroideoglomus claroideum, and silicate application decreased shoot dry weight and shoot nutrient contents of chili pepper at 1 month post transplanting. Then, 3 months after transplanting, inoculation with Claroideoglomus etunicatum and Claroideoglomus claroideum increase shoot N contents, but decrease shoot Mn contents, whereas, silicate application increase shoot N, K and Ni contents. Consequently, it was found that silicate treatment inhibited AMF development, indeed silicate treatment decreased AMF root colonisation in ranging 15 to 28%. Moreover, the present study also found that silicate treatment increased fruit nutrient contents during cultivation, whereas, inoculation with Claroideoglomus etunicatum and Claroideoglomus claroideum decreased fruit nutrient contents during cultivation.
Finally, the results suggested that inoculation with Claroideoglomus etunicatum and Claroideoglomus claroideum, and silicate addition can improve quality of chili pepper after 3 months of transplanting. Further, silicate addition can inhibits AMF beneficial effects on their host plants.


TABLE OF CONTENTS
Page
ACKNOWLEDGEMENT i
ABSTRACT (Chinese) ii
ABSTRACT iii
LIST OF TABLES AND FIGURES vi
1. INTRODUCTION 1
2. LITERATURE REVIEW 2
2.1 Chili pepper 2
2.2 Importance of mineral nutrients 2
2.3 Definition of arbuscular mycorrhizal fungi (AMF) 4
2.4 Functions of AMF 4
2.5 Factors influence AMF activity 6
2.5.1 Soil properties 6
2.5.2 Plant properties 7
2.5.3 Properties of AMF inoculum 8
2.5.4 Experimental setting for cultivation 9
2.5.5 Growth substrates of plant crops 10
2.6 Silicon (Si) 10
2.6.1 Role of Si in plants 10
2.6.2 Role of Si in soils 12
3. MATERIALS AND METHODS 14
3.1 Isolation and identification of AMF 14
3.2 Pot experiments for assessing the effect of AMF inoculation on growth of chili pepper 14
3.3 Detection of AMF spore in growth medium after cultivation 16
3.4 Measurement of root colonisation of AMF 16
3.5 Plant analysis for nutrient contents in chili pepper 16
3.6 Statistical test 17
4. RESULTS 18
4.1 Detection of infected AMF in chili pepper 18
4.1.1 Spore numbers of AMF in growth medium after cultivation 19
4.1.2 Chili pepper root length colonisations of AMF in different sampling times 20
4.2 Impact of M-AMF inoculation and silicate addition on chili pepper growth 21
4.2.1 Effect of treatments on chili pepper shoot height, stem circumference and leave number 21
4.2.4 Effect of treatments on fresh weight of chili pepper shoot and root 23
4.2.5 Effect of treatments on dry weight of chili pepper shoot 24
4.2.6 Effect of treatments on dry weight of chili pepper fruit 25
4.3 Effect of M-AMF inoculation and silicate application on nutrient uptake 26
4.3.1 Effect of treatments on macro-nutrient uptake in shoot of chili pepper 26
4.3.2 Effect of treatments on micro-nutrient uptake in shoot of chili pepper 28
4.3.3 Effect of treatments on macro-nutrients uptake in fruit of chili pepper 30
4.3.4 Effect of treatments on micro-nutrients uptake in fruit of chili pepper 30
5. DISCUSSIONS 32
5.1 Effect of M-AMF inoculation on growth and quality of chili pepper 32
5.2 Effect of silicate treatment on growth and quality of chili pepper 33
5.3 Effect of combination M-AMF inoculum and silicate treatment on growth and quality of chili pepper 35
6. CONCLUSION 37
7. REFERENCES 38



REFERENCES
Abdelrahman, M.M., R.L. Kincaid and E.A. Elzubeir. 1998. Mineral deficiencies in grazing dairy cattle in Kordofan and Darfur regions in western Sudan. Trop. Anim. Health Prod. 30:123-135.
Agriculture and Food Agency, Council of Agriculture: Fertilizer Categories/Item Numbers and Specifications (肥料檢驗項目之檢驗方法), a supplementary provision 2 of Fertilizer Test Items and the Method Regulation (肥料種類品目及規格) in (April3,2013). Retrieved from http://law.coa.gov.tw/GLRSNEWSOUT/inc/GetFile.ashx?FileId=7303
Alaoui-Sosse, B., P. Genet, F. Vinit_Dunand, M.L. Toussaint, D. Epron and P.M. Badot. 2004. Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrates accumulation and charges in ion contents. Plant Sci. 166:1213-1218.
Allen, E.B., M.F. Allen, D.J. Helm, J.M. Trappe, R. Molina and E. Rincon. 1995. Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47-62.
Alloway, B.J. 2009. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 31:537-548.
Baslam, M., I. Garmendia and N. Goicoechea. 2013. The mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Sci. Hort. 164:145-154.
Baum, C., W. El-Tohamy and N. Gruda. 2015. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A Review. Sci. Hort. 187:131-141.
Bi, Y.L., X.L. Li and P. Christie. 2003. Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus. Chemosphere 50:831-837.
Bolan, N.S. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189-207.
Bosland, P.W. 1994. Chiles: History, cultivation and uses. In Charalambous, G (Ed), Spices, herbs and edible fungi. Elsevier Sci., New York, p.347-366.
Brito-Argáez, L., F. Moguel-Salazar, F. Zamudio, T. González-Estrada and I. Islas-Flores. 2009. Characterization of a capsicum chinese seed peptide fraction with broad antibacterial activity. Asian J. Biochem. 4:77-87.
Brundrett, M., N. Bougher, B. Dell, T. Grove and N. Malajczuk. 1996. Working with mycorrhizas in forestry and agriculture. ACISR monograph. Pirie Printers, Canberra.
Bürkert, B. and A. Robson. 1994. 55Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol. Biochem. 26:1117-1124.
Buttaro, D., A. Bonasia, A. Minuto, F. Serio and P. Santamaria. 2009. Effect of silicon in the nutrient solution on the incidence of the powdery mildew and quality traits in carosselo and barattiere (Cucumis melo L.) grown in soilless system. J. Hort. Sci. Biotech. 84:300-304.
Cakmak, I. 2000. Tansley review No. 111-possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 146:185-205.
Caris, C, W. Hordt, H.J. Hawkins, V. Romheld and E. George. 1998. Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 8:35-39.
Castillo, R.C., S.L. Sotomayor, O.C. Ortiz, C.G. Leonelli, B.F. Fernando and H.R. Rubio. 2009. Effect of arbuscular mycorrhizal fungi on an ecological crop of chili peppers (Capsicum annum L.). Chilean J. Agric. Res. 69:79-87.
Cavagnaro, T.R. 2008. The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentration: A Review. Plant Soil 304:315-325.
Centre for the Promotion of Imports (CBI) Market Intelligence, CBI scenario planning: Scarcity of spicy-chillies in (February, 2015). Retrieved from https://www.cbi.eu/sites/default/files/scenarios-europe-chillies-spices-herbs-2015.pdf
Chandra, R.K. 1990. Micro-nutrients and immune functions: An Overview. Annal New York Acad. Sci. 587:9-16.
Chen, J., R.D. Caldwell, C.A. Robinson and R. Steinkamp. 2000. Silicon: The estranged medium element. Bul. 341, a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Apopka, FL.
Chen, J.H., R.S. Chung, Y.M. Huang, Y.M. Zhou, H.J. Chen, and J.T. Wu (ed.) 2008. Manual of Soil and Fertilizer Analysis. Chapter 1: Assay for Chemical Properties of Soil. The Chinese Society of Soil and Fertilizer Sciences, Taichung. (In Chinese).
Clark, R.B. and S.K. Zeto. 1996. Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biol. Biochem. 28:1495-1503.
Corkidi, L., E.B. Allen, D. Merhaut, M.F. Allen, J. Downer, J. Bohn and M. Evans. 2004. Assessing the infectivity of commercial mycorrhizal inoculants in plant nursery conditions. J. Environ. Hort. 22(3):149-154.
Daniels, B.A. and H.D. Skipper 1982. Methods for the recovery and quantitative estimation of propagules from soil. p. 20-45. In Schenck, N.C. (ed.). Methods and Principles of Mycorrhizal Research. The American Phytopathological Society. St. Paul.
Darantes, L., R. Colmenero, H. Hernandez, L. Mota, M.L. Jaramillo, E. Fernandez and C. Solano. 2000. Inhibition of growth of some foodborne pathogenic bacteria by Capsicum annum extracts. Int. J. Food Microbiol. 57:125-128.
Davies, F.T.J.R., J.A.S. Grossi, L. Carpio and A.A. Estrada-Luna. 2000. Colonization and growth effects of the mycorrhizal fungus Glomus intraradices in a commercial nursery container production system. J. Environ. Hort. 18:247-251.
Epstein, E. 1999. Silicon Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:641-664.
Faisal, M., T. Ahmad and N.K. Srivastava. 2010. Influence of different levels of Glomus macrocarpum on growth and tiled of chili (Capsicum annum L.). Indian J. Sci. Res. 1:97-99.
Fred, T.D.J., M.C. Constantino and H. Zosimo. 2005. Influence of arbuscular mycorrhizae indigenous to peru and a flavonoid on growth, yield, and leaf elemental concentration of ‘Yungay’ potatoes. Hort Sci. 40:381-385.
Garmendia, I., N. Goicoechea and J. Aguirreolea. 2004. Effectiveness of three Glomus species in protecting pepper (Capsicum annuum L.) against verticillium wilt. Biolog. Control 31:296-305.
Gerdemann, J.W. and J.M. Trappe. 1974. The Endogonaceae in the Pacific Northwest. Mycologia Memoir 5:76.
Giovannetti, M. and B. Mosse. 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol. 84:489-500.
Gonzale-Chavez, C., J. D’Haen, J. Vangronsveld and J.C. Dodd. 2002. Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287-297.
Gonzalez-Guerrero, M., K. Benabdellah, A. Valderas, C. Azcon-Aguilar and N. Ferrol. 2010. GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by Cu, Cd and oxidative stress in Glomus intraradices. Mycorrhiza 20:137-146.
Guével, M.H., J.G. Menzies and R.R. Bélanger. 2007. Effect of root and foliar application of soluble silicon on powdery mildew control and growth of wheat plants. Eur. J. Plant Pathol. 119:429-436.
Gunes, A. Y.K. Kadioglu, D.J. Pilbeam, A. Inal, S. Coban, & A. Aksu. 2008b. Influence of silicon on sunflower cultivars under drought stress, II: Essential and nonessential element uptake determined by uolarized energy dispersive X-ray fluorescence. Communication Soil Sci. Plant Analysis 39:1904-1927.
Hacisalihoglu, G. and L.V. Kochian. 2003. How do some plants tolerate low levels of soil zinc? Mechanism of Zn efficiency in crop plants. New Phytol. 159:341-350.
Hafiz, M. 2014. Is there an association between root architecture and mycorrhizal growth response? New Phytol. 204:192-200.
Hart, M.M. and J.A. Forsythe. 2012. Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus. Sci. Hort. 148:206-214.
Hayman, D.S. 1983. The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can. J. Bot. Revue Can. Bot. 61:944-963.
Haynes, R.J. and R.S. Swift. 1983. An evaluation of the use of DTPA and EDTA as extractants for micronutrients in moderately acid soils. Plant Soil 74:111-122.
Ianson, D. C. and J. Smeenk. 2010. Mycorrhizae in the Alaska Landscape. p. 1-7. University of Alaska Fairbanks, Cooperative Extension Service.
Jansa, J., A. Mozafar and E. Frossard. 2003. Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481-488.
Jayawardana, H.A.R.K., H.L.D. Weerahewa and M.D.J.S. Saparamadu. 2014. Effect of root or foliar application of soluble silicon on plant growth, fruit quality and anthracnose development of capsicum. Tropical Agric. Res. 26:74-81.
Jeong, J. and M.L. Guerinot. 2009. Homing in on iron homeostasis in plants. Trend in Plant Sci. 14:280-285.
Karagiannidis, N. and S. Hadjisavva-Zinoviadi. 1998. The mycorrhizal fungus Glomus mosseae enhances growth, yield and chemical composition of durum wheat variety in 10 different soils. Nutrient Cycling in Agroecosytems 52:1-7.
Keeney, D.R., and D.W. Nelson. 1982. Nitrogen-inorganic forms. p.643-693. In A.L. Page et al. (ed) Method of soil analysis, part 2, (2nd ed) chemical microbiological methods. Agronomy. ASA, SSSA, Madison, WI.
Kharkina, T.G., C.O. Ottosen and E. Rosenqvist. 1999. Effects of root restriction on the growth and physiology of cucumber plants. Physiol. Plant 105:434-441.
Kim, K.H., J.B. Yoon, H.G. Park, E.W. Park and Y.H. Kim. 2004. Structural modification and programmed cell death of chili pepper fruits related to resistance responses to Colletotrichum gloeosporioides infection. Phytopathology 94:1295-1304.
Kim, S.A. and M.L. Guerinot. 2007. Mining iron: iron uptake and transport in plants. FEBS Lett. 581:2273-2280.
Klironomos, J.N. 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecol. 84:2292-2301.
Koske, R.E. and J.N. Gemma. 1989. A modified procedure for staning roots to detect AV mycorrhizas. Mycol. Res. 92:486-488.
Laing, M.D., M.C. Gatarayiha and A. Adandonon. 2006. Silicon used for pest control in agriculture: A Review. Proc. S. Aft. Sug. Technol. Ass. 80:278.
Leake, J.R., D. Johnson, D.P. Donnelly, G.E. Muckle, L. Boddy and D.J. Read. 2004. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. Revue Can. Bot. 82:1016-1045.
Lee, J.S., S.T. Seo, T.C. Wang, H.I. Jang, D.H. Pae, and L.M. Engle. 2004. Effect of potassium silicate amendments in hydroponic nutrient solution on the suppressing of Phytophthora Blight (Phytophthora capsici) in pepper. Plant Pathol. J. (Korea) 20:277–282.
Lehmann, A. and M.C. Rillig. 2015. Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops- A metal-analysis. Soil Biol. Biochem. 81:147-158.
Lehmann, A., D.V. Stavros, F.L. Eva and C.R. Matthias. 2014. Arbuscular mycorrhizal influence on zinc nutrition in crop plants-A meta-analysis. Soil Biol. Biochem. 69:123-131.
Li, X.L., H. Marschner and E. George. 1991. Acquisition of Phosphorus and Copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49-57.
Liang, Y.C., H.X. Hua, Y.G. Zhu, J. Zhang, C.M. Cheng and V. Römheld. 2006. Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytol. 172:63-72.
Limpens, J., G. Granath, R. Aerts, M.M.P.D. Hejimans, L.J.Sheppard, L. Bragazza, B.L. Williams, H. Rydin, J. Bubier, T. Moore, L. Rochefort, E.A.D. Mitchell, A. Buttler, L.J.L. van den Berg, U. Gunnarsson, A.J. Francez, R. Gerdol, M. Thormann, P. Grosvernier, M.M. Wiedermann, M.B. Nilsson, M.R. Hoosbeek, S. Bayley, J.F. Nordbakken, M.P.C.P. Paulissen, S. Hotes, A. Breeuwer, M. Ilomets, H.B.M. Tomassen, I. Leith and B. Xu. 2012. Glasshouses vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses? New Phytol. 195:408-418.
Lo, C.S. (ed.) 2005. Handbook of Crop Plant Fertilisation. Agriculture and Food Agency, Council of Agriculture, Executive Yuan, ROC. (In Chinese). Retrieved from http://www.chinesefa.org.tw/files/94FertilizationGuide.pdf
Lobato, A.K.S., G.K. Coimbra, M.A.M. Neto, R.C.L. Costa, B.G. Santos Filho, C.F. Oliveira Neto, L.M. Luz, A.G.T. Barreto, B.W.F. Pereira, G.A.R. Alves, B.S. Monteiro, and C.A. Marochio. 2009. Protective action of silicon on water relations and photosynthetic pigments in pepper plants induced to water deficit. Res. J. Biol. Sci. 4:617–623.
Longnecker, N.F., R.D. Graham and G. Card. 1991. Effects of manganese deficiency on the pattern of tillering and development of barley (Hordeum vulgare cv. Galleon). Field Crops Res. 28:85-102.
Ma, J.F., K. Tamai, N. Yamaji, N. Mitani, S. Konishi, M. Katsuhara, M. Ishiquro, Y. Murata and M. Yano. 2006. A silicon transporter in rice. Nature 440:688-691.
Maherali, H. and J.N. Klironomos. 2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Sci. 316:1746-1748.
Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. London: Academic Press.
Marschner, H. and B. Dell. 1994. Nutrient-uptake in mycorrhizal symbiosis. Plant Soil 159:89-102.
Matichenkov, V.V. and E.A. Bocharnikova. 2001. The relationship between silicon and soil physical and chemical properties. p.209-219. In silicon in agriculture. Datnoff, L.E., G.H. Snyder and G.H. Korndörfer (eds.) Studies in Plant Sci., 8. Elsevier Sci. B.V. Amsterdam, The Netherlands.
McLaren, R.G., J.G. Williams and R.S. Swift. 1983. Some observation on the desorption and distribution behaviour of Copper with soil components. J. Soil Sci. 34:325-331.
Meena, V.D., M.L. Dotaniya, V.Coumar, S. Rajendiran, S. Kundu and A.S. Roa. 2014. A case for silicon fertilisation to improve crop yields in tropical soils. Biol. Sci. 84:505-518.
Mehravaran, H., A. Mozafar and E. Frossard. 2000. Uptake and partitioning of P-32 and Zn-65 by white clover as affected by eleven isolates of mycorrhizal fungi. J. Plant Nutr. 23:1385-1395.
Millaleo, R., M. Reyes-Diaz, A.G. Ivanov, M.L. Mora and M. Alberdi. Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J. Soil Plant Nutr. 10:476-494.
Miller, M., R. Linderman and L. Fuchigami. 1997. The effect of four composts on the establishment of vesicular-arbuscular mycorrhizar in soilless media. Hort. Sci. 32:538.
Miller, R.O. 1998. Nitric-perchloric acid wet digestion in an open vessel. p.69-73. In Y.P. Kalra (ed) Handbook of reference methods for plant analysis. CRC, Boca Raton.
Morton, J.B. and G.L. Benny. 1990. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glominae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471-491.
Munkvold, L., R. Kjoller, M. Vestberg, S. Rosendahl and I. Jakobsen. 2004. High functional activity within species of arbuscular mycorrhizal fungi. New Phytol 164:357-364.
Murray, R.K., D.K. Granner, P.A. Mayes and V.W. Rodwell. 2000. Biochemistry and medicine. p. 7-13. Harper’s Biochemistry, 25th Edition, McGraw-Hill, Health Profession Division, USA.
Najafi-Ghiri, M., R. Ghasemi-Fasaei and E. Farrokhnejad. 2013. Factors affecting micronutrient availability in calcareous soils of Southern Iran. Arid Land Res. and Management 27:203-215.
Newsham, K.K., A.H. Fitter and A.R. Watkinson. 1995. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol. Evol. 10:407-411.
Nguyen, C.Q., C. Guppy and P. Moody. 2010. Effect of P and Si amendment on the charge characteristics and management of a geric soil. 19th World Congress of Soil Science, Soil Solution for a Changing World.p:56-59.
Oh, B.J., K.D. Kim and Y.S. Kim. 1999. Effect of cuticular wax layers of green and red pepper fruits on infection by Colletotrichum gloeosporioides.J. Phytopathology 147:547-552.
Olaiya, C.O. 2006. Effects of three plant bioregulators on some biochemical properties of Lycopersicon esculentum (L.) Mill. Ph.D Thesis, Department of Biochemistry, University of Ibadan, Nigeria.
Palmer, C.M, and M.L. Guerinot. 2009. Facing the challenges of Cu, Fe and An homeostasis in plants. Nature Chemical Biol. 5:333-340.
Palmgren, M.G., S. Clemens, L.E. Williams, U. Kraemer, S. Borg, J.K. Schjorring and D. Sanders. 2008. Zinc biofortification of cereals: problems and solutions. Trends Plant Sci. 13:464-473.
Parniske, M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nature Rev. Microbiology 6: 763-775.
Pathak, P. and U. Kapil 2004. Role of trace elements zinc, copper and magnesium during pregnancy and its outcome. Indian J. Pardiatr. 71:1003-1005.
Phattarakul, N., B. Rerkasem, L.J. Li, L.H. Wu, C.Q. Zou, H. Ram, V.S. Sohu, B.S. Kang, H. Surek, M. Kalayci, A. Yazici, F.S. Zhang and I. Cakmak. 2012. Biofortification of rice grain with zinc through zinc fertilisation in different countries. Plant Soil 361:131-141.
Philip, L.J., U. Posluszny, and J.N. Klironomos. 2001. The influence of mycorrhizal colonization on the vegetative growth and sexual reproductive potential of Lythrum salicaria L. Can. J. Bot. 79: 381-388.
Pittman, J.K. 2005. Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytol. 167:733-742.
Polanco, L.R., F.A. Rodrigues, E.N. Moreira, H.S.S. Duarte, L.S. Cacique, L.A. Valenta, R.F. Vieira, T.J. Paula Júnior and F.X.R. Vale. 2014. Management of anthracnose in common bean by foliar sprays of potassium silicate, sodium molybdate and fungicide. Plant Disease 98:84-89.
Polanco, L.R., F.A. Rodrigues, K.J.T. Nascimanto, P. Shulman, L.C. Silva, F.W. Neves and F.X.R. Vale. 2012. Biochemical aspects of bean resistance to anthracnose mediated by silicon. Ann. Applied Biol. 161:140-150.
Poulton, J.L., R.T. Koide, and A.G. Stephenson. 2001. Effects of mycorrhizal onfection, soil phosphorus availability and fruit production on the male function in two cultivars of Lycopersion esculentum. Plant Cell Environ. 24: 841-849.
Powell, J., and J. Klironomos. 2007. The ecology of plant-microbial mutualisms. p. 257-280. In E.A. Paul (ed.) Soil Microbiology and Biochemistry. 3rd. ed. Elsevier. Canada.
Prasad, R. 2010. Zinc biofortification of food grains in relation to food security and alleviation of zinc malnutrition. Curr. Sci. 98: 1300-1304.
Rachniyom, H., and T. Jaenaksorn. 2008. Effect of soluble silicon and Trichoderma harzianum on the in vitro growth of Pythium aphanidermatum. J. Agric. Tech. 4:57–71.
Rengel, Z. and P. Marschner. 2005. Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol. 168:305-312.
Robson, A.D., R.D. Hartley and S.C. Jarvist. 1981. Effect of copper deficiency on phenolic and other constituents of wheat cell-walls. New Phytol. 89:361-371.
Roohani, N., R. Hurrell, R. Kelishadi and R. Schulin. 2013. Zinc and its importance for human health: An Integrative Review. J. Res. Med. Sci. 18: 144-157.
Savant, N.K., G.H. Korndorfer, L.E. Datnoff and G.H. Snyder. 1999. Silicon nutrition and sugarcane production: A Review. J. Plant Nutr. 22:1853-1903.
Schroeder, M.S. and D.P. Janos. 2004. Phosphorus and intraspecific density alter plant responses to arbuscular mycorrhizas. Plant Soil 264:335-348.
Schubert, A., M. Mazzitelli, O. Ariusso and I. Eynard. 1990. Effects of vesicular-arbuscular mycorrhizal fungi on micropropagated grapevines: Influence of endophyte strain, P fertilization and growth medium. Vitis 29:5-13.
Schüßler, A., D. Schwarzott and C. Walker. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105:1413-1421.
Sen, R. 2003. The root-microbe-soil interface: new tool for sustainable plant production. New Phytol. 157:391-398.
Sharma, C.P., P.N. Sharma, C. Chatterjee and S.C. Agarwala. 1991. Manganese deficiency in maize affects pollen viability. Plant Soil 138:139-142.
Singh, R.K., O. Dai and G. Nimasow. 2011. Effect of arbuscular mycorrhizal (AM) inoculation on growth of chili plant in organic manure amended soil. African J. Microbiol. Res. 5:5004-5012.
Slims, J.T. 1986. Soil-pH effects on the distribution and plant availability of manganese, copper and zinc. Soil Sci. Soc. Am. J. 50:367-373.
Smith, F.A. and S.E. Smith. 2011. What is the significance of the arbuscular mycorrhizal colonization of many economically important crop plants? Plant Soil 348:63-79.
Smyth, T.J. and P.A. Sanchez. 1980. Effects of lime, silicate and phosphorus application to an oxisol on phosphorus sorption and iron retention. Soil Sci. Soc. Am. J. 44:500-505.
Soetan, K.O., C.O. Olaiya and O.E. Oyewole. 2010. The importance of mineral elements for humans, domestic animals and plants: A Review. African J. Food Sci. 4:200-222.
Sperotto, R.A., F.K. Ricachenevsky, V.D.A. Waldow and J.P. Fett. 2012. Iron biofortification on rice: it’s long way to the top. Plant Sci. 190:24-39.
Spiller, S.C., L.S. Kaufman, W.F. Thompson and W.R. Briggs. 1987. Specific messenger-RNA and ribosomal-RNA levels in greening pea leaves during recovery from iron stress. Plant Physiol. 84:409-414.
Stomph, T.J., W. Jiang and P.C. Struik. 2009. Zinc biofortification of cereals: rice differs from wheat and barley. Trends Plant Sci. 14:123-124.
Subramanian, K.S., C. Bharathi and A. Jegan. 2008. Response of maize to mycorrhizal colonization at varying levels of zinc and phosphorus. Biol. Fertile. Soils 45:133-144.
Suzuki, H., H. Kumagai, K. Oohashi, K. Sakamoto, K. Inubushi and S. Enomoto. 2001. Transport of trace elements through the hyphae of an arbuscular mycorrhizal fungus into marigold determined by the multitracer technique. Soil Sci. Plant Nutr. 47:131-137.
Suzuki, H., H. Kumagai, K. Oohashi, K. Sakamoto, K. Inubushi, S. Enomoto and F. Ambe. 2000. Uptake of 15 trace elements in arbuscular mycorrhizal marigold measured by the multitracer technique. Soil Sci. Plant Nutr. 46:283-289.
Tanwar, A., A. Aggarwal, N. Kadian and A. Gupta. 2013. Arbuscular mycorrhizal inoculation and super phosphate application influence plant growth and yield of Capsicum annum. J. Soil Sci. Plant Nutr. 13:55-66.
Tawaraya, K. 2003. Arbuscular mycorrhizal dependency of different plant species and cultivars. J. Soil Sci. Plant Nutr. 49:655-668.
Toresano-Sánchez, F., A. Valverde-García and F. Camacho-Ferre. 2012. Effect of the application of silicon hydroxide on yield and quality of cherry tomato. J. Plant Nutr. 35:567-590.
Vestberg, M. and S. Kukkonen. 2008. Performance of AM fungi in peat substrates in greenhouse and field studies. p.25-26. In Proceedings of COST 870 meeting. COST.
Vierheilig, H. 2004. Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Can. J. Bot. 82:1166-1176.
Vogelsang, K.M., H.L. Reynolds and J.D. Bever. 2006. Mycorrhizal fungal identity and richness determines the diversity and productivity of a tallgrass praire system. New Phytol. 172:554-562.
Vosatka, M. and J.C. Dodd. 2002. Ecological consideration for successful application of arbuscular mycorrhizal fungi inoculum. p.235-247. In Gianinazzi, S., H. Schuepp, J.M. Barea and K. Haselwandter (eds) Mycorrhizal technology in agriculture: From genes to bioproducts. Birkauser Verlag, Switzerland.
Wang, B. and Y.L. Qiu. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299-363.
Water, B.M. and M.A. Grusak. 2008. Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia, Landsberg erecta, Cape Verde Islands and the mutant line ysl1ysl3. New Phytol. 177:389-405.
White, P.J. and M.R. Broadley. 2009. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 182:49-84.
William, U.S. 1992. A textbook of biology, 3rd ed.
Wu, C.G. and S.C. Lin. 1998. Technical manual of vesicular-arbuscular mycorrhizal fungi p. 600-612.
Young, C.C., T.C. Juang, and H.Y. Guo. 1986. The effect of inoculation with vesicular arbuscular mycorrhizal fungi on soybean field and mineral phosphors utilization in subtropical-tropical soils. Plant Soil 95:245-253.
Zhao, R.X., W. Guo, N. Bi, J.Y. Guo, L.X. Wang, J. Zhao and J. Zhang. 2015. Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoil under drought stress. Applied Soil Ecol. 88:41-49.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔