跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 09:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:克里斯
研究生(外文):Mangwe Mancoba Christopher
論文名稱:添加Lactobacillus formosensis S215T 與Lactobacillus buchneri可提升甘藷莖葉之青貯品質並降低濃縮單寧對瘤胃發酵之抑制作用
論文名稱(外文):Lactobacillus formosensis S215T and Lactobacillus buchneri inoculants improve quality and reduce in vitro ruminal biological activity of condensed tannins in sweet potato vines silage
指導教授:江信毅
指導教授(外文):Chiang, Hsin-I
口試委員:吳建平陳淵國
口試委員(外文):Wu, Chien-PingChen, Yuan-Kuo
口試日期:2016-05-26
學位類別:碩士
校院名稱:國立中興大學
系所名稱:國際農學碩士學位學程
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:38
中文關鍵詞:ensilingmicrobial inoculantaerobic stabilityin vitro ruminal fermentationfermentability
外文關鍵詞:ensilingmicrobial inoculantaerobic stabilityin vitro ruminal fermentationfermentability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This study investigated the influence of two microbial inoculants; Lactobacillus formonensis S215T and Lactobacillus buncheri strain NCIMB 40788, on fermentative quality, chemical composition, aerobic stability, in vitro ruminal nitrogen degradability and in vitro ruminal biological activity of condensed tannins in sweet potato vines silage. Tai Nong 57 vines were wilted and ensiled in tightly sealed 600 mL plastic containers for 28 and 60 days after treatment (1) without inoculant (CON), (2) with Lactobacillus buchneri (LB) and (3) with Lactobacillus formonensis (LF), both inoculants applied to achieve 1 × 106 cfu/g fresh weight. Wilted and inoculated sweet potato vines samples were analyzed before ensiling to characterize day 0 samples. Microbial inoculants and ensiling period affected all the chemical components measured. Ensiling period and inoculant interaction was not significant for all the chemical components, except water-soluble carbohydrates. Lactobacillus buncheri silage had more dry matter (DM) and crude protein losses than CON and LF silages. Inoculant, ensiling period, and their interactions were significant for all the fermentative parameters measured. Lactobacillus formonensis silage had lower (3.87) pH value and higher lactic acid (48.04 g/kg DM) concentrations than the other treatments. Lactobacillus buncheri silage had more acetate, hence was more aerobically stable than LF and CON silages. Lactobacillus formonensis silage was more aerobically stable than CON silage because it produced more propionic acid (7.04 g/kg DM). Ensiling increased in vitro ruminal N degradability, with microbial inoculated silages having the highest values at 28 and 60 days post ensiling than CON silage. In vitro ruminal biological activity of condensed tannins was lower after ensiling than before ensiling. Microbial inoculated silages were more effective in reducing the in vitro ruminal biological activity of condensed tannins than CON silage. This is the first study that reports the fermentative properties of the novel species Lactobacillus formosensis S215T and forms a basis of many studies to follow in exploring the strain’s potential use as a silage inoculant. Lactobacillus formosensis S215T was the most efficient strain in fermenting the water-soluble carbohydrates to produce lactic acid and reduce silage pH. The ability of this strain to improve both fermentability and aerobic stability in silages warrants further investigations.

TABLE OF CONTENTS
ACKNOWLEDGEMENTS i
ABSTRACT iii
TABLE OF CONTENTS v
LIST OF TABLES AND FIGURES vii
1. INTRODUCTION 1
2. LITERATURE REVIEW 3
2.1. Sweet potato utilization and characteristics 3
2.2. Ensiling 4
2.3. Microbial Inoculants 4
2.4. Silage quality indicators 5
2.5. Effects of ensiling of antinutririve value of forages 6
3. MATERIALS AND METHODS 7
3.1. Study site and harvesting method 7
3.2. Study design and inoculant application 7
3.3. Chemical analysis and in vitro N degradability 8
3.4. Silage fermentation characteristics 9
3.5. In vitro gas production and ruminal condensed tannin bioassay 9
3.6. Aerobic stability 10
3.7. Statistical Analysis 11
4. RESULTS 13
4.1. Chemical composition and in vitro ruminal N degradability 13
4.2. Silage fermentation characteristics 15
4.3. In vitro gas production and ruminal condensed tannin bioassay 17
4.4. Aerobic Stability 22
5. DISCUSSION 27
5.1. Chemical composition and in vitro ruminal N degradability 27
5.2. Silage fermentation characteristics 28
5.3. In vitro gas production and ruminal condensed tannin bioassay 30
5.4. Aerobic stability 31
6. CONCLUSIONS 33
7. REFERENCES 34
LIST OF TABLES AND FIGURES
Table 1. Chemical composition and in vitro ruminal N degradability of microbial-inoculated sweet potato vines before (0 days) and after ensiling for 28 and 60 days 14
Table 2. Fermentation characteristics of sweet potato vines before ensiling (0 days) and after ensiling for 28 and 60 days 16
Table 3. Statistical significance (P values) of the effects of main factors [microbial treatment, ensiling period and polyethylene glycol (PEG) inclusion] and their interactions on cumulative gas production, fermentation parameters and in vitro ruminal produced volatile fatty acids 18
Table 4. In vitro ruminal fermentation parameters and gas produced by sweet potato vines silage as influenced by ensiling, microbial inoculants and polyethylene glycol (PEG) inclusion 19
Table 5. In vitro ruminal produced volatile fatty acids (VFA, Mm) from sweet potato vines silage as influenced by ensiling, microbial inoculants and polyethylene glycol (PEG) inclusion 21
Figure 1 a. Effect of microbial inoculants on the number of hours taken to reach 20C above ambient temperature on sweet potato vines silages ensiled for 60 days.Treatments1: CON: no inoculant, LB: Lactobacillus buchneri applied to achieve 1 × 106 cfu/g, LF: Lactobacillus formosensis S215T applied to achieve 1 × 106 cfu/g. abc: Bars with different letters differ (P < 0.05). Figures are presented with their standard error bars (n = 4). 23
Figure 1 b. Effect of microbial inoculants on change in pH after aerobic exposure of sweet potato vines silages ensiled for 60 days. CON: no inoculant, LB: Lactobacillus buchneri applied to achieve 1 × 106 cfu/g, LF: Lactobacillus formosensis S215T applied to achieve 1 × 106 cfu/g. Figures are presented with their standard error bars (n = 4). 24
Figure 1 c. Effect of microbial inoculants (CON: no inoculant, LB: Lactobacillus buchneri applied to achieve 1 × 106 cfu/g, LF: Lactobacillus formosensis S215T applied to achieve 1 × 106 CFU g-1) change in yeast counts in sweet potato vines silages ensiled for 60 days after aerobic exposure. Figures are presented with their standard error bars (n = 4). 25
Figure 1 d. Effect of microbial inoculants (CON: no inoculant, LB: Lactobacillus buchneri applied to achieve 1 × 106 cfu/g, LF: Lactobacillus formosensis S215T applied to achieve 1 × 106 CFU g-1) change in yeast counts in sweet potato vines silages ensiled for 60 days after aerobic exposure. Figures are presented with their standard error bars (n = 4). 26


Ali, R., V. Mlambo, M. C. Mangwe, and B. J. Dlamini. 2015. Chemical composition, nitrogen degradability and in vitro ruminal biological activity of tannins in vines harvested from four tropical sweet potato (Ipomoea batatas L.) varieties. J. Anim. Physiol. Anim. Nutr. 100:61–68.
AOAC Method number 976.05, 2005. Official methods of analysis. 18th ed. AOAC international, Arlington, VA: Association of Official Analytical Chemists.
Barry, T. N., T. R. Manley, and S. J. Duncan. 1986. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 4. Sites of carbohydrate and protein digestion as influenced by dietary reactive tannin concentration. Br. J. Nutr. 55:123–137.
Blummel, M., K. P. Aiple, H. Steingas, and K. Becker. 1999. A note on the stoichiometrical relationship of short chain fatty acid production and gas formation in vitro in feedstuffs of widely differing quality. J. Anim. Physiol. Anim. Nutr. 81:157–167.
Bolsen, K. K., D. R. Bonilla, G. L. Huck, M. A. Young, R. A. Hart-Thakur, and A. Joyeaux. 1996. Effect of a Propionic Acid Bacterial Inoculant on Fermentation and Aerobic Stability of Whole-Plant Corn Silage. J. Anim. Sci. 74:274–282.
Chang, C., Y. Chen, T. Lee, Y. Chang, and B. Yu. 2015. Lactobacillus formosensis sp. nov., a lactic acid bacterium isolated from fermented soybean meal. Int. J. Syst. Evol. Microbiol. 65:101–106.
Chen, C. C., Y. C. Shih, P. W. S. Chiou, and B. Yu. 2010. Evaluating nutrition quality of single stage- and two stage-fermented soybean meal. Asian-Aust. J. Anim. Sci. 23:598–606.
Claessens, L., J. J. Stoorvogel, and J. M. Antle. 2008. Ex ante assessment of dual-purpose sweet potato in the crop-livestock system of western Kenya: A minimum-data approach. Agric. Syst. 99:13–22.
Contreras-Govea, F. E., R. E. Muck, G. A. Broderick, and P. J. Weimer. 2013. Lactobacillus plantarum effects on silage fermentation and in vitro microbial yield. Anim. Feed Sci. Technol. 179:61–68.
Contreras-Govea, F. E., R. E. Muck, D. R. Mertens, and P. J. Weimer. 2011. Microbial inoculant effects on silage and in vitro ruminal fermentation, and microbial biomass estimation for alfalfa, bmr corn, and corn silages. Anim. Feed Sci. Technol. 163:2–10.
Driehuis, F., S. F. Spoelstra, S. C. J. Cole, and R. Morgan. 1996. Improving aerobic stability by inoculation with Lactobacillus buchneri. Proc. of the XI Intl. Silage Conf., IGER, Aberystwyth. Pages 106-107.
Dreihuis, F., S. J. W. H. Oude Elferink, and S. F.Spoelstra. 1999. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with. J. Appl. Microbiol. 87:583–594.
Driehuis, F., S. J. W. H. Oude Elferink, and P. G. Van Wikselaar. 2001. Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass Forage Sci. 56:330–343.
Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 28:350–356.
Filya, I. 2003. The effect of Lactobacillus buchneri, with or without homofermentative lactic acid bacteria, on the fermentation, aerobic stability and ruminal degradability of wheat, sorghum and maize silages. J. Appl. Microbiol. 95:1080–1086.
Flieg, O. A key for the evaluation of silage samples. Futterb. Gartfutterber. 1:112–128.
Getachew, G., M. Blümmel, H. P. S Makkar, and K. Becker. 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Anim. Feed Sci. Technol. 72:261–281.
Gwinner, V. 2012. Putting sweet potato in the trough. Thomson Reuters Foundation. (http://news.trust.org//item/?map=putting-sweet-potato-in-the-trough). Last accessed 01 May 2016.
Haigh, P. M. 1990. Effect of herbage water-soluble carbohydrate content and weather conditions at ensilage on the fermentation of grass silages made on commercial farms. Grass Forage Sci. 45:263–271.
Huisden, C. M., A.T. Adesogan, S. C. Kim, and T. Ososanya. 2009. Effect of applying molasses or inoculants containing homofermentative or heterofermentative bacteria at two rates on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 92:690–7.
Kleinschmit, D. H., and L. Kung. 2006. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. J. Dairy Sci. 89:4005–4013.
Kung, L. Jr. 2014. A review on silage additives and enzymes. Department of Animal and Food Sciences University of Delaware Newark, DE 19717-1303.
Kung, L. Jr. and R. E. Muck. 1997. Effects of Silage Additives on Ensiling. Proceedings from the Silage: Field to Feed bunk North American Conference, Hershey, NRAES-99, Pages 187-199.
Kung, L. Jr. and R. Shaver. 2001. Interpretation and use of silage fermentation analysis reports. Focus on Forage 3:1–5.
Kwak, W. S., Y.I. Kim, J. S. Seok, Y. K. Oh, S. M. Lee. 2009. Molasses and microbial inoculants improve fermentability and silage quality of cotton waste-based spent mushroom substrate. Bioresour. Technol. 100:1471–1473.
Li, Z., S. Ding, and T. Tan. 2006. L-Lactic acid production by Lactobacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal. Biotechnol. J. 1:1453– 458.
Madrid, J., A. Martınez-Teruel, F. Hernandez, and M. Megıas. 1999. A comparative study on the determination of lactic acid in silage juice by colorimetric, high-performance liquid chromatography and enzymatic methods. J. Sci. Food. Agric. 79:1722–1726.
Makkar, H. P. S. 2005. In vitro gas methods for evaluation of feeds containing phytochemicals. Anim. Feed. Sci. Technol. 122:291–302.
Makkar, H. P., M. Blümmel, and K. Becker. 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr. 73:897–913.
Menke, K. H., and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7–55.
Mislivec, P. B., L. R. Beuchat, and M. A. Cousin. 1992. Yeasts and molds. Pages 239–249 in Compendium of methods for the microbiological examination of foods. Vanderzant, C., and D. F. Splittstoesser, ed. 3rd ed. J. Am. Public Health Assoc. Washington, D.C.
Muck, R. E. 1996. A lactic acid bacterial strain to improve aerobic stability of silages. In: U.S. Dairy Forage Research Center. Research Summaries. Pages 42-43.
Muck, R. E., I. Filya, and F.E. Contreras-Govea. 2007. Inoculant effects on alfalfa silage: in vitro gas and volatile fatty acid production. J. Dairy Sci. 90:5115–5125.
Ørskov, E. R., and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 92:499– 503.
Oude Elferink, S. J. W. H., J. Krooneman, J. C. Gottschal, S. F. Spoelstra, F. Faber, and F. Driehuis. 2001. Anaerobic Conversion of Lactic Acid to Acetic Acid and 1,2-Propanediol by Lactobacillus buchneri. Appl. Environ. Microbiol. 67:125–132.
Pahlow, G., R. E. Muck, F. Driehuis, S. J. W. H. Oude Elferink, and S. F. Spoelstra. 2003. Microbiology of ensiling. Pages 31-93 in Silage Science and Technology. Muck, R. E., and J. E. Harrison, ed. Am. Soc. Agron. Madison, WI.
Peters, D. 2008. Assessment of the Potential of Sweet potato as Livestock Feed in East Africa: Rwanda, Uganda, and Kenya. A report presented to The International Potato Center (CIP) in Nairobi.
Phale, O. and O. R. Madibela. 2006. Concentration of soluble condensed tannins and neutral detergent fibre-bound tannins in fodder trees and forage crops in Botswana. J. Biol. Sci. 6:320–323.
Rice, D. W., S. D. Soderlund, I. E. Phillip, and J. H. Harrison. 1990. Effect of Microbial Inoculation on Digestibility of Legume Silages. J. Dairy Sci.73:195-205.
Rooke, J.A., Hatfield, R., 2003. Biochemistry of ensiling, in: Buxton, D.R., Muck, R.E., Harrison, J.E. (Eds.), Silage Science and Technology. Am. Soc. Agron. Inc., Madison, Wisconsin, USA, pp. 95-139.
Russell, J. B., and R. J. Wallace. 1997. Energy yielding and energy consuming reactions. Pages 246–282 in The Rumen Microbial Ecosystem. Hobson, P. N., and C. S. Stewart, ed. Springer, Heidelberg.
SAS Institute. 2010. SAS/STAT® 9.3 User’s Guide. Cary, NC: SAS Institute Inc. USA
Stewart, W. M. 2011. Plant Nutrition Today. From Scientific Staff of the International Plant Nutrition Institute (IPNI), Norcross, Georgia.
Van An, L., and J.E. Lindberg. 2004. Ensiling of sweet potato leaves (Ipomoea batatas (L.) Lam) and the nutritive value of sweet potato leaf silage for growing pigs. Asian-Aust. J. Anim. Sci. 4:497–503.
Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583–3597.
Weatherburn, M. W. 1967. Phenol-Hypochlorite Reaction for Determination of Ammonia. Anal. Chem. 39:971–974.
Weinberg, Z. G., Y. Chen, and P. Weinberg. 2008. Ensiling olive cake with and without molasses for ruminant feeding. Bioresour. Technol. 99:1526–1529.
Wilkinson J. M., and D. R. Davies. 2012. The aerobic stability of silage: key findings and recent developments. Grass Forage Sci. 68:1–19.
Yitbarek, M., and B. Tamir. 2014. Silage Additives: Review. J. Appl. Sci. 4:258–274.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top