一、中文部分
1. 李墾典(2004), 消費者使用不動產銷售網站認知與態度之研究, 逢甲大學碩士論文。2. 李筱瑜、李豐良(2000), 電子商務對房仲業影響之實證研究,科技與管理學術研討會論文集,191-196。
3. 吳志宏(2004),以隱性回饋為基礎的自動化推薦機制,朝陽科技大學資訊管理研究所論文
4.彭建文、康尚德(2001),網際網路對不動產仲介業經營之影響分析,都市與計劃,28(2):171-186。5. 黃茗韋(2009),以計畫行為理論探討代言人對消費者的購買意願之研究,南華大學碩士論文。6. 黃維良(2007),具有“隨時間變異的顧客購買興趣"預測能力之多階層協同式推薦系統,國立高雄第一科技大學資訊管理研究所碩士論文。
7. 黃名義、許乃文(2012),電子商務應用對房仲業績效之影響,國立屏東商業技術學院學報14 2012.08,頁97-123。
8. 陳世泓(2009),適性地與適性化的智慧型行動裝置租屋推薦系統,中華大學碩士論文。9. 羅健銘(1991),協同過濾於網站推薦之研究,台北科技大學商業自動化與管理研究所碩士論文。
10. 葉旭榮(1997),志工參與行為意向模式的建構及其在志工人力資源招募的應用—以老人福利機構志工招募為例,國立中山大學碩士論文。
二、英文部分
1. Adomavicius , G., & Tuzhilin, A., (2005).Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions.1041-4347/05 IEEE.
2. Ajzen, I.(1985), From Intentions to Actins: A theory of Planned Behavior, in J. Kuhl and J. Bechmann(Eds.), Action-Control: From Cognition to Behavior, pp.11-39.
3. Ajzen, I.,(1989), Attitude Structure and Behavior , Lawrence Erlbaum Associates, Hillsdale, NJ, pp.241-274.
4. Ajzen, I.(1991), The theory of planned behavior. Organizational Behavior and Human Decision Processes, Vol.50, No.2, pp.179-211.
5. Akinyele, http://www.csee.umbc.edu/~jklabrou/courses/fall1999_691f/week10 /john_akinyele_recommender_systems/491f_files/v3_document.htm, 2002/3/1.
6. Armitage, C. J., & Conner, M.(2001), Efficacy of the theory of planned behaviour: A meta-analytic review. British Journal of Social Psychology, Vol.40, No.4, pp.471–499.
7. Badrul, S., George, K., Joseph, K., and John, R., (2000) “Analysis of Recommendation Algorithm for E-Commerce,” Communication of ACM, 2000.
8. Balabanovic, M. and Shoham, Y., (1997), “Fab: Content-based Collaborative Recommendation.” Communications of the ACM, 40(3), pp.66-72.
9. Benjamin J. D., P. Chinloy, G. D. Jud & D. T. Winkler(2005), “Technology and Real Estate Brokerage Firm Financial Performance,” Journal of Real Estate Research. 27(4): 409-426.
10. Bobadilla, J., Ortega, F., Hernando, A. and Gutiérrez, A. (2013), “Recommender systems survey”, Knowledge-Based Systems, Vol. 46, pp. 109-132.
11. Burke,R.(2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction. November 2002, Volume 12, Issue 4, pp 331-370.
12. Davis, F. D.(1989), “Perceived usefulness, perceived ease of use, and user acceptance of information technology,” MIS Quarterly. 13: 319-340.
13. Dhillon, N., “Achieving Effective Personalization and Customization Using Collaborative Filtering,” http:// home1.gte.net/dhillos/cf., Oct. 1995.
14. Fishbein, M. (1967). Attitude and the prediction of behavior. In Martin Fishbein (Eds.), Readings in attitude theory and measurement, 477-492. New York: Wiley.
15. Fishbein, M., & Ajzen, I.(1975), Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Journal of Leisure Research, Vol.27, No.1, pp.61-84.
16. Fishbein, M. (1980). A theory of reasoned action: Some applications and implications. In Howe, H., & Page, M. (Eds.), Nebraska Symposium on Motivation, 27, 65-116. Lincoln, NE: University of Nebraska Press.
17. Goldberg, D., Nichols, D., Oki B.M. and Terry, D., (1992), “Using collaborative filtering to weave an information tapestry.” Communications of the ACM, 35(12), pp.61-70.
18. Gwin, C. R.(2004), “International Comparisons of Real Estate E-Information on the Internet,” Journal of Real Estate Research. 26(1): 1-22.
19. Hagger, M. S., Chatzisarantis, N. L. D., & Biddle, S. J. H.(2002), A meta-analytic review of the theories of reasoned action and planned behavior in physical activity: Predictive validity and the contribution of additional variables. Journal of Sport & Exercise Psychology, Vol.24, No.1, pp.3-32.
20. Haubl ,G.,&Murray,K.B. “Beyond Personalization 2005 : A workshop on the Next Stage of Recommender System Research,” International Conference on Intelligent User Interfaces(IUI), 2005, San Diego, California.
21. Huang, Z., Chen, H., & Zeng, D. (2004). Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst., 22(1), 116-142.
22. Johathan L.,Herlocker, J., Konstan, J., and Riedl, J. “Explaining Collaborative Filtering Recommendations,” ACM 2000 Conference on Computer Supported Cooperative Work , Dec. 2000.
23. Kahle, Lynn R. & Homer, Pamela M.(1985), Physical Attractiveness of the Celebrity Endorser: A Social Adaptation Perspective, Journal of Consumer Research, Vol.11, pp.954-961.
24. Kim, B.D. and Kim, S.O., (2001), “A new recommender system to combine content-based and collaborative filtering systems.” The Journal of Database Marketing, 8(3), pp.244-252.
25. Krulwich, B. and Burkey, C., (1996), “Learning user information interests through extraction of semantically significant phrases.” In proceedings of the AAAI Spring symposium on Machine Learning in Information Access, Stanford, CA.
26. Krulwich, B., & Burkey, C. (1997). The InfoFinder agent: learning user interests through heuristicphrase extraction. Expert, IEEE [see also IEEE Intelligent Systems and Their Applications], 12(5), 22-27.
27. Lafferty, Barbara A. & R. E. Goldsmith(1999), Corporate credibility’s role in consumer’s attitudes and purchase intentions when a high versus a low credibility endorser is used in the ad. Journal of business Research, Vol.44, No.2, pp.109-116.
28. Lang, K., (1995), “Newsweeder: learning to filter netnews.” In proceedings of the Machine Learning conference, pp.331-339.
29. Lee, C. & Green, R. T. (1991). Cross-cultural examination of the fishbein behavioral intentions model. Journal of International Business Studies, 289-305.
30. Massa, P., & Avesani, P. (2004). Trust-aware collaborative filtering for recommender systems. Paper presented at the Proceedings of International Conference on Cooperative Information Systems, Agia Napa, Cyprus.
31. Meteren, R.V. and Someren, M.V., (2000), “Using content-based filtering for recommendation.” In proceedings of ECML Workshop: Machine Learning in New Information Age, pp.47-56.
32. Mock, K.J. and Vemuri, V.R., (1997), “Information filtering via hill climbing, wordnet, and index patterns.” Information Processing & Management, 33(5), pp.633-644.
33. Muhanna, W. A.(2000), “E-Commerce in the Real Estate Brokerage Industry,” Journal of Real Estate Practice and Education. 3(1): 1-16.
34. Papagelis, M., Plexousakis, D., & Kutsuras, T. (2005). Alleviating the sparsity problem of collaborative filtering using trust inferences. Paper presented at the Proceedings of the 3rd International Conference on Trust Management. LNCS. Springer-Verlag, Rocquencourt, France.
35. Ricci, F., (2002) “Travel Recommender System,” IEEE Intelligent System, pp.55-57
36. Resnick, P., (1997) “Recommender Systems,” Communications of the ACM, 40(3), pp. 56-58.
37. Sarwar, B., Konstan, J., Borchers, A., Herlocker, J., Miller, B., and Riedl, J.,(1998), “Using Filtering Agents to Improve Prediction Quality in the Research Collaborative Filtering System,” Proceedings of the 1998 Conference on Computer Supported Cooperative Work, Nov.
38. Schafer, J. B., Konstan, J., & Riedi, J., (1999). Recommender systems in e-commerce. Paper presented at the Proceedings of the 1st ACM conference on Electronic commerce.
39. Schafer, J.B., Konstan J.A. and Riedl, J., (2001), “E-commerce recommendation applications.” Data Mining and Knowledge Discovery, (5:1), pp.115-153.
40. Schiffman, L. G. & Kanuk, L. L.(2000), Consumer Behavior, 7th ed., Wisconsin Prentice Hall International, Inc.
41. Shardanand, U. and Maes, P., (1995), “Social snformation filtering: algorithms for automating ‘Word of Mouth’.” In Proceedings of The Conference on Human Factors in Computing Systems, pp.210-217.
42. Till, B. D. & Busler, M.(2000), The match-up hypothesis: Physical attractiveness, expertise, and the role of fit on brand attitude, purchase intent and brand beliefs, Journal of advertising, Vol.29, No.3, pp.1-13.
43. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D.(2003), User acceptance of information technology: Toward a unified view. MIS Quarterly, Vol.27, No.3, pp.425–478.