|
[1] M. D. Barrett, J. A. Sauer and M. S. Chapman, All-optical formation of an atomic Bose-Einstein condensate, Phys. Rev. Lett. 87 (2001) 010404. [2] A. Gorlitz, T. L. Gustavson, A. E. Leanhardt, R. Low, A. P. Chikkatur, S. Gupta, S. Inouye, D. E. Pritchard and W. Ketterle, Sodium Bose-Einstein condensates in the F = 2 state in a large-volume optical trap, Phys. Rev. Lett. 90 (2003) 090401. [3] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur and W. Ketterle, Spin domains in ground state spinor Bose-Einstein condensates, Nature 396 (1998) 345–348. [4] T. L. Ho, Spinor Bose condensates in optical traps, Phys. Rev. Lett. 81 (1998) 742–745. [5] C. K. Law, H. Pu and N. P. Bigelow, Quantum spins mixing in spinor Bose-Einstein condensates, Phys. Rev. Lett. 81 (1998) 5257–5261. [6] T. Isoshima, K. Machida and T. Ohmi, Spin-domain formation in spinor Bose-Einstein condensation, Phys. Rev. A 60 (1999) 4857–4863. [7] T. Ohmi and K. Machida, Bose-Einstein condensation with internal degrees of freedom in Alkali atom gases, J. Phys. Soc. Japan 67 (1998) 1822–1825. [8] D. Cao, I.-L. Chern and J.-C. Wei, On ground state of spinor Bose-Einstein condensates, Nonlinear Differ. Equ. Appl. (NoDEA) 18 (2011) 427–445. [9] L. Lin and I.-L. Chern, A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates, Discret. Contin. Dyn. Syst. Ser. B 19 (2014) 1119–1128. [10] W. Zhang, S. Yi and L. You, Mean field ground state of a spin-1 condensate in a magnetic field, New J. Phys. 5 (2003) 77–89. [11] H. Saito and M. Ueda, Spontaneous magnetization and structure formation in a spin-1 ferromagnetic Bose-Einstein condensate, Phys. Rev. A 72 (2005) 023610. [12] T. Isoshima and S. Yip, Effect of quadratic Zeeman energy on the vortex of spinor Bose-Einstein condensates, J. Phys. Soc. Japan 75 (2006) 074605. [13] W. Bao and Y. Zhang, Dynamical laws of the coupled Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates, Methods Appl. Anal. 17 (2010) 49–80. [14] W. Bao and H. Wang, A mass and magnetization conservative and energydiminishing numerical method for computing ground state of spin-1 Bose-Einstein condensates, SIAM J. Numer. Anal. 45 (2007) 2177–2200. [15] W. Bao and F. Y. Lim, Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow, SIAM J. Sci. Comput. 30 (2008) 1925–1948. [16] F. Y. Lim and W. Bao, Numerical methods for computing the ground states of spin-1 Bose-Einstein condensates in a uniform magnetic field, Phys. Rev. E 78 (2008) 066704. [17] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore and D. M. Stamper-Kurn, Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate, Nature 443 (2006) 312–315. [18] D. Jacob, L. Shao, V. Corre, T. Zibold, L. De Sarlo, E. Mimoun, J. Dalibard and F. Gerbier, Phase diagram of spin-1 antiferromagnetic Bose-Einstein condensates, Phys. Rev. A 86 (2012) 06160(R). [19] M. Matuszewski, T. J. Alexander, Y. S. Kivshar, Excited spin states and phase separation in spinor Bose-Einstein condensates, Phys. Rev. A 80 (2009) 023602. [20] F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller and G. Pupillo, Supersolid droplet crystal in a dipole-blockaded gas, Phys. Rev. Lett., 105 (2010) 135301. [21] S. Saccani, S. Moroni and M. Boninsegni, Phase diagram of soft-core bosons in two dimensions, Phys. Rev. B, 83 (2011) 092506. [22] N. Henkel, R. Nath and T. Pohl, Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates, Phys. Rev. Lett., 104 (2010) 195302. [23] P. Muruganandam and S. K. Adhikari, Bose-Einstein condensation dynamics in three dimension by the pseudospectral and finite-difference methods, J. Phys. B: At. Mol. Opt. Phys., 36 (2003) 2501–2513. [24] K. Kasamatsu, M. Tsubota and M. Ueda, Vortex phase diagram in rotating two-component Bose-Einstein condensates, Phys. Rev. Lett., 91 (2003) 150406. [25] K. Kasamatsu, M. Tsubota and M. Ueda, Structure of vortex lattice in rotating two-component Bose-Einstein condensates, Physica B, 329-333 (2003) 23–24. [26] K. Kasamatsu, M. Tsubota and M. Ueda, Vortex states of two-component Bose-Einstein condensates with and without internal Josephson coupling, J. Low Temp. Phys., 134 (2004) 719–724. [27] K. Kasamatsu and M. Tsubota, Vortex sheet in rotating two-component Bose-Einstein condensates, Phys. Rev. A, 79 (2009) 023606. [28] J. J. Garc´ıa-Ripoll and V. M. P´erez-Garc´ıa, Optimizing Schrodinger functionals using Sobolev gradients: Applications to quantum mechanics and nonlinear optics, SIAM J. Sci. Comput., 23 (2001) 1316–1334. [29] W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004) 1674–1697. [30] W. Bao, Ground states and dynamics of multi-component Bose-Einstein condensates, SIAM J. Multiscale Model. Simul., 2 (2004) 210–236. [31] W. Bao, H. Wang and P. A. Markowich, Ground, symmetric and central vortex states in rotating Bose-Einstein condensates, Commun. Math. Sci., 3 (2005) 57–88. [32] W. Bao, I.-L. Chern and F. Y. Lim, Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates, J. Comput. Phys., 219 (2006) 836–854. [33] I. Danaila and P. Kazemi, A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation, SIAM J. Sci. Comput., 32 (2010) 2447–2467. [34] W. J. F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM Publications, Philadelphia, 2000. [35] E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM, Philadelphia, PA, 2003. [36] H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems, Springer-Verlag, Berlin, 1987. [37] A. Jepson and A. Spence, Folds in solutions of two parameter systems and their calculation, Part I, SIAM J. Numer. Anal., 22 (1985) 347–368. [38] W. C. Rheinboldt, Numerical Analysis of Parametrized Nonlinear Equations, Wiley, NY, 1986. [39] W. C. Rheinboldt, On the computation of multidimensional solution manifolds of parametrized equations, Numer. Math., 53 (1988) 165–181. [40] S.-L. Chang, C.-S. Chien and B.-W. Jeng, Tracing the solution surface with folds of a two-parameter system, Int. J. Bifurcation and Chaos, 15 (2005) 2689–2700. [41] S.-L. Chang, C.-S. Chien and B.-W. Jeng, Computing wave functions of nonlinear Schrodinger equations: a time-independent approach, J. Comput. Phys., 226 (2007) 104–130. [42] S.-L. Chang and C.-S. Chien, Adaptive continuation algorithms for computing energy levels of rotating Bose-Einstein condensates, Comput. Phys. Commun., 177 (2007) 707–719. [43] G. L. Alfimov and D. A. Zezyulin, Nonlinear modes for the Gross-Pitaevskii equation–a demonstrative computation approach, Nonlinearity, 20 (2007) 2075–2092. [44] D. A. Zezyulin, G. L. Alfimov, V. V. Konotop and V. M. P´erez-Garc´ıa, Control of nonlinear modes by scattering-length management in Bose-Einstein condensates, Phys. Rev. A, 76 (2007) 013621. [45] D. A. Zezyulin, G. L. Alfimov, V. V. Konotop and V. M. P´erez-Garc´ıa, Stability of excited states of a Bose-Einstein condensates in an anharmonic trap, Phys. Rev. A, 78 (2008) 013606. [46] H.-S. Chen, S.-L. Chang and C.-S. Chien, Spectral collocation methods using sine functions for a rotating Bose-Einstein condensation in optical lattices, J. Comput. Phys., 231 (2012) 1553–1569. [47] S.-L. Chang and C.-S. Chien, Computing multiple peak solutions for Bose-Einstein condensates in optical lattices, Comput. Phys. Commun., 180 (2009) 926–947. [48] Z. Mei, Path following around corank-2 bifurcation points of a semilinear elliptic problem with symmetry, Computing 47 (1991) 69–85. [49] P. Budden and J. Norbury, A nonlinear elliptic eigenvalue problem, J. Inst. Math. Appl. 24 (1979) 9–33. [50] P. Budden and J. Norbury, Solution branches for non-linear equilibrium problems–bifurcation and domain perturbations, IMA J. Appl. Math. 28 (1982) 109–129. [51] P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Review 24 (1982) 441–467. [52] M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. I., Heidelberg, Berlin, New York, Tokyo, Springer, 1985. [53] S.-L. Chang, C.-S. Chien and B.-W. Jeng, Liapunov-Schmidt reduction and continuation for nonlinear Schrodinger equations, SIAM J. Sci. Comput. 29 (2007) 729–755. [54] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, New York, London, Sydney, John Wiley & Sons, Inc., 1969. [55] B.-W. Jeng, Y.-S. Wang and C.-S. Chien, A two-parameter continuation algorithm for vortex pinning in rotating Bose-Einstein condensates, Comput. Phys. Commun. 184 (2013) 493–508. [56] Y.-S. Wang, B.-W. Jeng and C.-S. Chien, A two-parameter continuation method for rotating two-component Bose-Einstein condensates in optical lattices, Commun. Comput. Phys. 13 (2013) 442–460. [57] Y.-S. Wang and C.-S. Chien, A two-parameter continuation method for computing numerical solutions of spin-1 Bose-Einstein condensates, J. Comput. Phys. 256 (2014) 198–213. [58] J.-H. Chen, I-L. Chern and W. Wang, Exploring ground states and excited states of spin-1 Bose-Einstein condensates by continuation methods, J. Comput. Phys. 230 (2011) 2222–2236. [59] J. H. Chen, I.-L. Chern and W. Wang, A complete study of the ground state phase diagrams of spin-1 Bose-Einstein condensates in a magnetic field via continuation methods, J. Sci. Comput. 64 (2014) 35–54. [60] W. Bao, I.-L. Chern and Y. Zhang, Efficient numerical methods for computing ground states of spin-1 Bose-Einstein condensates based on their characterizations, J. Comput. Phys. 253 (2013) 189–208. [61] W. Bao and Y. Cai, Ground states and dynamics of spin-orbit-coupled Bose-Einstein condensates, SIAM J. Appl. Math. 75 (2015) 492–517. [62] G. Iooss and M. Adelmeyer, Topic in Bifurcation Theory and Applications, 2nd ed., World Scientific, Singapore, 1998. [63] E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM, Philadelphia, 2003. [64] S.-L. Chang, C.-S. Chien, and B.-W. Jeng, Liapunov-Schmidt reduction and continuation for nonlinear Schrodinger equations, SIAM J. Sci. Comput. 29 (2007) 729–755. [65] N. Henkel, F. Cinti, P. Jain, G. Pupillo and T. Pohl, Supersolid vortex crystals in Rydberg-dressed Bose-Einstein condensates, Phys. Rev. Lett., 108 (2012) 265301. [66] C.-H. Hsueh, T.-C. Lin, T.-L. Horng and W. C. Wu, Quantum crystals in a Rydberg-dressed Bose-Einstein condensate, Phys. Rev. A, 86 (2012) 013619. [67] C.-H. Hsueh, Y.-C. Tsai, K.-S. Wu, M.-S. Chang and W. C. Wu, Pseudospin orders in the supersolid phases in binary Rydberg-dressed Bose-Einstein condensates, Phys. Rev. A, 88 (2013) 043646. [68] B.-W. Jeng, C.-S. Chien and I.-L. Chern, Spectral collocation and a two-level continuation scheme for dipolar Bose-Einstein condensates, J. Comput. Phys., 256 (2014) 713–727. [69] Y.-C. Tsai, C.-H. Hsueh, and W.-C.Wu, Interplay between the quantized vortex lattice and the two-dimensional supersolid crystal, preprint, National Taiwan Normal University, 2011.
|