跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 10:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃碧維
研究生(外文):Sirilak Sriburadet
論文名稱:利用數值延續法處理玻斯-愛因斯坦凝體的一些物理現象
論文名稱(外文):Numerical Continuation for Some Physical Phenomena of Bose-Einstein Condensates
指導教授:簡澄陞施因澤
指導教授(外文):Cheng-Sheng ChienYin-Tzer Shih
口試委員:葉立明陳宜良洪子倫楊肅煜
口試委員(外文):Li-Ming YehI-Liang ChernTzyy-Leng HorngSuh-Yuh Yang
口試日期:2016-06-24
學位類別:博士
校院名稱:國立中興大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:101
中文關鍵詞:基態解激發態解多層延續法擬普方法
外文關鍵詞:ground state solutionexcited state solutionmulti-level continuation methodsspectral collocation method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
在這篇博士論文中,我們應用擬弧長延續法與擬普方法處理多參數的非線性特徵值問題,包含 Rydberg-dressed BEC 問題以及二維的 spin-1 BEC 問題。
首先,我們討論具有三次非線性項的半線性橢圓特徵值問題(SEEP)。接著,我們將阱位能加入方程中,則SEEP問題會變成 GPE 方程。我們利用有效率的預測-修正延續法來計算 SEEP 問題以及 GPE 方程的前幾個解曲線。從數值結果可以看出上述方程的 corank-2 分叉點具有兩個長方形解以及兩個三角形解,這些分叉現象以及節線的結構完全被決定。
其次,我們研究 spin-1 BEC 的線性穩定分析,我們證明這些物理系統的有界解都是中性穩定的,尤其是所有穩定狀態的解以及相關聯的離散穩定狀態的解也都是中性穩定的。接下來我們考慮無磁場外力影響的 spin-1 BEC 系統,針對磁性與反磁性這兩種物理現象,我們分別發展出有效率的多層次擬弧長延續法來處理這些問題。當磁場外力被加入到 spin-1 BEC 系統後,另一種多層次的延續法也被發展出來處理這種具有磁性的例子。我們廣泛的計算出具有磁場作用力以及雷射晶格作用力的 spin-1 BEC 的各種數值結果。
最後,我們利用擬弧長延續法處理 Rydberg-dressed BEC 與二元的 Rydberg-dressed BEC 問題。我們利用分治法的技巧,針對非局部非線性項部份,調整延續法步長的大小。此方法可保證我們能夠精準地逼近想求的解。此外,當此方程加入旋轉項後,基態解的結構也會由一個圓錐變成許多漩渦。在求解的過程中我們亦適時的加入不同的延續參數。我們只需追蹤一個基態解曲線,就能算出GPE方程具有不同係數的非局部非線性項的數值解,因此所提的方法是有效率的。我們所求的數值結果與已發表論文的數值結果是一致的。

In this dissertation, we apply pseudo-arclength continuation methods combined with a spectral collocation method for multi-parameter nonlinear eigenvalue problems. These include Rydberg-dressed Bose-Einstein condensates (BEC), and spin-1 BEC in two-dimension which is governed by a system of three coupled Gross-Pitaevskii equations (GPEs).
We begin with a semilinear elliptic eigenvalue problem (SEEP) with cubic nonlinearity. Then a trapping potential is imposed on the SEEP so that the equation becomes the GPE. An efficient predictor-corrector continuation algorithm is exploited to follow the first few solution curves of the SEEP and the GPE. Our numerical results show that at a corank-2 bifurcation of the equations mentioned above, two rectangular solutions and two triangular solutions branch there. The bifurcation scenarios and their nodal set structures of these equations are completely determined.
Next, We study linear stability analysis for spin-1 BEC. We show that all bounded solutions of this physical system are neutrally stable. In particular, all steady state solutions of the physical system, and the associated discrete steady state solutions are neutrally stable. We consider the physical system without the affect of magnetic field. By exploiting the physical properties of both ferromagnetic and antiferromagnetic cases, we develop efficient multi-level pseudo-arclength continuation algorithms for these two cases, respectively. When the magnetic field is imposed on the physical system, an additional multi-level continuation algorithm is described for the ferromagnetic case. Extensive numerical results for spin-1 BEC in a magnetic field, and in optical lattices are reported.
Finally, we describe pseudo-arclength continuation methods for both Rydberg-dressed BEC, and binary Rydberg-dressed BEC. A divide-and-conquer technique is proposed for dealing with the scaling of the range/ranges of nonlocal nonlinear term/terms, which gives enough information for choosing a proper stepsize. This guarantees that the solution curve we wish to trace can be precisely approximated. In addition, the ground state solution would successfully evolve from one peak to vortices when the rotating term is imposed. Moreover, parameter variables with different number of components are exploited in curve-tracing. The proposed methods have the advantage of tracing the ground state solution curve once to compute the contours for various values of the coefficients of the nonlocal nonlinear term/terms. Our numerical results are consistent with those published in the literatures.

Chapter 1: Introduction . . . . . . . . . . . . . . . . . 1
Chapter 2: Bifurcation scenarios of the GPE . . . . . . . 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . 8
2.2 Spectral collocation method for the GPE . . . . . . .11
2.3 Predictor-corrector continuation method . . . . . . .12
2.4 Numerical results . . . . . . . . . . . . . . . . . .14
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . .16
Chapter 3: Efficient multi-level continuation algorithms for spin-1 BEC in a magnetic field . . . . . . . . . . . 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . 21
3.2 Spectral collocation method for spin-1 BEC . . . . . 22
3.3 Linear stability analysis . . . . . . . . . . . . . .25
3.4 Efficient multi-level continuation algorithms . . . .26
3.5 Numerical results . . . . . . . . . . . . . . . . . .32
3.6 Analysis of numerical results and conclusions . . . .36
Chapter 4: Pseudo-arclength continuation algorithms for binary Rydberg-dressed BEC . . . . . . . . . . . . . . . 56
4.1 Introduction . . . . . . . . . . . . . . . . . . . . 56
4.2 Spectral collocation method for Rydberg-dressed BEC .57
4.2.1 Trapped Rydberg-dressed BEC . . . . . . . . . . . .57
4.2.2 Rotating Rydberg-dressed BEC . . . . . . . . . . . 60
4.2.3 Binary rotating Rydberg-dressed BEC . . . . . . . .62
4.3 A brief review of the continuation algorithm . . . . 64
4.4 Divide-and-conquer with rescaling . . . . . . . . . .66
4.4.1 One-component Rydberg-dressed BEC . . . . . . . . .66
4.4.2 Two-component Rydberg-dressed BEC . . . . . . . . .68
4.5 Numerical results . . . . . . . . . . . . . . . . . .71
4.6 Analysis of numerical results and conclusions . . . .75
Bibliography . . . . . . . . . . . . . . . . . . . . . . 96

[1] M. D. Barrett, J. A. Sauer and M. S. Chapman, All-optical formation of an atomic Bose-Einstein condensate, Phys. Rev. Lett. 87 (2001) 010404.
[2] A. Gorlitz, T. L. Gustavson, A. E. Leanhardt, R. Low, A. P. Chikkatur, S. Gupta, S. Inouye, D. E. Pritchard and W. Ketterle, Sodium Bose-Einstein condensates in the F = 2 state in a large-volume optical trap, Phys. Rev. Lett. 90 (2003) 090401.
[3] J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur and W. Ketterle, Spin domains in ground state spinor Bose-Einstein condensates, Nature 396 (1998) 345–348.
[4] T. L. Ho, Spinor Bose condensates in optical traps, Phys. Rev. Lett. 81 (1998) 742–745.
[5] C. K. Law, H. Pu and N. P. Bigelow, Quantum spins mixing in spinor Bose-Einstein condensates, Phys. Rev. Lett. 81 (1998) 5257–5261.
[6] T. Isoshima, K. Machida and T. Ohmi, Spin-domain formation in spinor Bose-Einstein condensation, Phys. Rev. A 60 (1999) 4857–4863.
[7] T. Ohmi and K. Machida, Bose-Einstein condensation with internal degrees of freedom in Alkali atom gases, J. Phys. Soc. Japan 67 (1998) 1822–1825.
[8] D. Cao, I.-L. Chern and J.-C. Wei, On ground state of spinor Bose-Einstein condensates, Nonlinear Differ. Equ. Appl. (NoDEA) 18 (2011) 427–445.
[9] L. Lin and I.-L. Chern, A kinetic energy reduction technique and characterizations of the ground states of spin-1 Bose-Einstein condensates, Discret. Contin. Dyn. Syst. Ser. B 19 (2014) 1119–1128.
[10] W. Zhang, S. Yi and L. You, Mean field ground state of a spin-1 condensate in a magnetic field, New J. Phys. 5 (2003) 77–89.
[11] H. Saito and M. Ueda, Spontaneous magnetization and structure formation in a spin-1 ferromagnetic Bose-Einstein condensate, Phys. Rev. A 72 (2005) 023610.
[12] T. Isoshima and S. Yip, Effect of quadratic Zeeman energy on the vortex of spinor Bose-Einstein condensates, J. Phys. Soc. Japan 75 (2006) 074605.
[13] W. Bao and Y. Zhang, Dynamical laws of the coupled Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates, Methods Appl. Anal. 17 (2010) 49–80.
[14] W. Bao and H. Wang, A mass and magnetization conservative and energydiminishing numerical method for computing ground state of spin-1 Bose-Einstein condensates, SIAM J. Numer. Anal. 45 (2007) 2177–2200.
[15] W. Bao and F. Y. Lim, Computing ground states of spin-1 Bose-Einstein condensates by the normalized gradient flow, SIAM J. Sci. Comput. 30 (2008) 1925–1948.
[16] F. Y. Lim and W. Bao, Numerical methods for computing the ground states of spin-1 Bose-Einstein condensates in a uniform magnetic field, Phys. Rev. E 78 (2008) 066704.
[17] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore and D. M. Stamper-Kurn, Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate, Nature 443 (2006) 312–315.
[18] D. Jacob, L. Shao, V. Corre, T. Zibold, L. De Sarlo, E. Mimoun, J. Dalibard and F. Gerbier, Phase diagram of spin-1 antiferromagnetic Bose-Einstein condensates, Phys. Rev. A 86 (2012) 06160(R).
[19] M. Matuszewski, T. J. Alexander, Y. S. Kivshar, Excited spin states and phase separation in spinor Bose-Einstein condensates, Phys. Rev. A 80 (2009) 023602.
[20] F. Cinti, P. Jain, M. Boninsegni, A. Micheli, P. Zoller and G. Pupillo, Supersolid droplet crystal in a dipole-blockaded gas, Phys. Rev. Lett., 105 (2010) 135301.
[21] S. Saccani, S. Moroni and M. Boninsegni, Phase diagram of soft-core bosons in two dimensions, Phys. Rev. B, 83 (2011) 092506.
[22] N. Henkel, R. Nath and T. Pohl, Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates, Phys. Rev. Lett., 104 (2010) 195302.
[23] P. Muruganandam and S. K. Adhikari, Bose-Einstein condensation dynamics in three dimension by the pseudospectral and finite-difference methods, J. Phys. B: At. Mol. Opt. Phys., 36 (2003) 2501–2513.
[24] K. Kasamatsu, M. Tsubota and M. Ueda, Vortex phase diagram in rotating two-component Bose-Einstein condensates, Phys. Rev. Lett., 91 (2003) 150406.
[25] K. Kasamatsu, M. Tsubota and M. Ueda, Structure of vortex lattice in rotating two-component Bose-Einstein condensates, Physica B, 329-333 (2003) 23–24.
[26] K. Kasamatsu, M. Tsubota and M. Ueda, Vortex states of two-component Bose-Einstein condensates with and without internal Josephson coupling, J. Low Temp. Phys., 134 (2004) 719–724.
[27] K. Kasamatsu and M. Tsubota, Vortex sheet in rotating two-component Bose-Einstein condensates, Phys. Rev. A, 79 (2009) 023606.
[28] J. J. Garc´ıa-Ripoll and V. M. P´erez-Garc´ıa, Optimizing Schrodinger functionals using Sobolev gradients: Applications to quantum mechanics and nonlinear optics, SIAM J. Sci. Comput., 23 (2001) 1316–1334.
[29] W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow, SIAM J. Sci. Comput., 25 (2004) 1674–1697.
[30] W. Bao, Ground states and dynamics of multi-component Bose-Einstein condensates, SIAM J. Multiscale Model. Simul., 2 (2004) 210–236.
[31] W. Bao, H. Wang and P. A. Markowich, Ground, symmetric and central vortex states in rotating Bose-Einstein condensates, Commun. Math. Sci., 3 (2005) 57–88.
[32] W. Bao, I.-L. Chern and F. Y. Lim, Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates, J. Comput. Phys., 219 (2006) 836–854.
[33] I. Danaila and P. Kazemi, A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation, SIAM J. Sci. Comput., 32 (2010) 2447–2467.
[34] W. J. F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM Publications, Philadelphia, 2000.
[35] E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM, Philadelphia, PA, 2003.
[36] H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems, Springer-Verlag, Berlin, 1987.
[37] A. Jepson and A. Spence, Folds in solutions of two parameter systems and their calculation, Part I, SIAM J. Numer. Anal., 22 (1985) 347–368.
[38] W. C. Rheinboldt, Numerical Analysis of Parametrized Nonlinear Equations, Wiley, NY, 1986.
[39] W. C. Rheinboldt, On the computation of multidimensional solution manifolds of parametrized equations, Numer. Math., 53 (1988) 165–181.
[40] S.-L. Chang, C.-S. Chien and B.-W. Jeng, Tracing the solution surface with folds of a two-parameter system, Int. J. Bifurcation and Chaos, 15 (2005) 2689–2700.
[41] S.-L. Chang, C.-S. Chien and B.-W. Jeng, Computing wave functions of nonlinear Schrodinger equations: a time-independent approach, J. Comput. Phys., 226 (2007) 104–130.
[42] S.-L. Chang and C.-S. Chien, Adaptive continuation algorithms for computing energy levels of rotating Bose-Einstein condensates, Comput. Phys. Commun., 177 (2007) 707–719.
[43] G. L. Alfimov and D. A. Zezyulin, Nonlinear modes for the Gross-Pitaevskii equation–a demonstrative computation approach, Nonlinearity, 20 (2007) 2075–2092.
[44] D. A. Zezyulin, G. L. Alfimov, V. V. Konotop and V. M. P´erez-Garc´ıa, Control of nonlinear modes by scattering-length management in Bose-Einstein condensates, Phys. Rev. A, 76 (2007) 013621.
[45] D. A. Zezyulin, G. L. Alfimov, V. V. Konotop and V. M. P´erez-Garc´ıa, Stability of excited states of a Bose-Einstein condensates in an anharmonic trap, Phys. Rev. A, 78 (2008) 013606.
[46] H.-S. Chen, S.-L. Chang and C.-S. Chien, Spectral collocation methods using sine functions for a rotating Bose-Einstein condensation in optical lattices, J. Comput. Phys., 231 (2012) 1553–1569.
[47] S.-L. Chang and C.-S. Chien, Computing multiple peak solutions for Bose-Einstein condensates in optical lattices, Comput. Phys. Commun., 180 (2009) 926–947.
[48] Z. Mei, Path following around corank-2 bifurcation points of a semilinear elliptic problem with symmetry, Computing 47 (1991) 69–85.
[49] P. Budden and J. Norbury, A nonlinear elliptic eigenvalue problem, J. Inst. Math. Appl. 24 (1979) 9–33.
[50] P. Budden and J. Norbury, Solution branches for non-linear equilibrium problems–bifurcation and domain perturbations, IMA J. Appl. Math. 28 (1982) 109–129.
[51] P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Review 24 (1982) 441–467.
[52] M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. I., Heidelberg, Berlin, New York, Tokyo, Springer, 1985.
[53] S.-L. Chang, C.-S. Chien and B.-W. Jeng, Liapunov-Schmidt reduction and continuation for nonlinear Schrodinger equations, SIAM J. Sci. Comput. 29 (2007) 729–755.
[54] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, New York, London, Sydney, John Wiley & Sons, Inc., 1969.
[55] B.-W. Jeng, Y.-S. Wang and C.-S. Chien, A two-parameter continuation algorithm for vortex pinning in rotating Bose-Einstein condensates, Comput. Phys. Commun. 184 (2013) 493–508.
[56] Y.-S. Wang, B.-W. Jeng and C.-S. Chien, A two-parameter continuation method for rotating two-component Bose-Einstein condensates in optical lattices, Commun. Comput. Phys. 13 (2013) 442–460.
[57] Y.-S. Wang and C.-S. Chien, A two-parameter continuation method for computing numerical solutions of spin-1 Bose-Einstein condensates, J. Comput. Phys. 256 (2014) 198–213.
[58] J.-H. Chen, I-L. Chern and W. Wang, Exploring ground states and excited states of spin-1 Bose-Einstein condensates by continuation methods, J. Comput. Phys. 230 (2011) 2222–2236.
[59] J. H. Chen, I.-L. Chern and W. Wang, A complete study of the ground state phase diagrams of spin-1 Bose-Einstein condensates in a magnetic field via continuation methods, J. Sci. Comput. 64 (2014) 35–54.
[60] W. Bao, I.-L. Chern and Y. Zhang, Efficient numerical methods for computing ground states of spin-1 Bose-Einstein condensates based on their characterizations, J. Comput. Phys. 253 (2013) 189–208.
[61] W. Bao and Y. Cai, Ground states and dynamics of spin-orbit-coupled Bose-Einstein condensates, SIAM J. Appl. Math. 75 (2015) 492–517.
[62] G. Iooss and M. Adelmeyer, Topic in Bifurcation Theory and Applications, 2nd ed., World Scientific, Singapore, 1998.
[63] E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM, Philadelphia, 2003.
[64] S.-L. Chang, C.-S. Chien, and B.-W. Jeng, Liapunov-Schmidt reduction and continuation for nonlinear Schrodinger equations, SIAM J. Sci. Comput. 29 (2007) 729–755.
[65] N. Henkel, F. Cinti, P. Jain, G. Pupillo and T. Pohl, Supersolid vortex crystals in Rydberg-dressed Bose-Einstein condensates, Phys. Rev. Lett., 108 (2012) 265301.
[66] C.-H. Hsueh, T.-C. Lin, T.-L. Horng and W. C. Wu, Quantum crystals in a Rydberg-dressed Bose-Einstein condensate, Phys. Rev. A, 86 (2012) 013619.
[67] C.-H. Hsueh, Y.-C. Tsai, K.-S. Wu, M.-S. Chang and W. C. Wu, Pseudospin orders in the supersolid phases in binary Rydberg-dressed Bose-Einstein condensates, Phys. Rev. A, 88 (2013) 043646.
[68] B.-W. Jeng, C.-S. Chien and I.-L. Chern, Spectral collocation and a two-level continuation scheme for dipolar Bose-Einstein condensates, J. Comput. Phys., 256 (2014) 713–727.
[69] Y.-C. Tsai, C.-H. Hsueh, and W.-C.Wu, Interplay between the quantized vortex lattice and the two-dimensional supersolid crystal, preprint, National Taiwan Normal University, 2011.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top