|
[1] E.N. Aksan. Quadratic B-spline finite element method for numerical solution of the Burgers’ equation. Appl. Math. Comput., 174:884–896, 2006.
[2] A. Asaithambi. Numerical solution of the Burgers’ equation by automatic differentiation. Appl. Math. Comput., 216:2700–2708, 2010.
[3] A.R. Bahadir and M. Sağlam. A mixed finite fifference and boundary element approach to one-dimensional Burgers’ equation. Appl. Math. Comput., 160:663–673, 2005.
[4] A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng., 32:199–259, 1982.
[5] J. Canny. A computational approach to edge detection. IEEE Trans. Pattern Anal. Machine Intell., 8:679–698, 1986.
[6] F. Catté, P. L. Lions, J. M. Morel, and T. Coll. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal., 29:182–193, 1992.
[7] J.D. Cole. On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Appl. Math., 9(3):225–236, 1951.
[8] ROHAN Academic Computing. Image analysis. http://www-rohan.sdsu.edu/doc/matlab/toolbox/images.
[9] A. Dogan. A Galerkin finite element approach to Burgers’ equation. Appl. Math. Comput., 157:331–346, 2004.
[10] Albert Einstein. In Germ.: Über die von der molekularkinetischen theorieder Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten teilchen; In Eng: investigations on the theory of Brownian movement. Annalen der Physik, 17(8):549–560, 1905.
[11] M. S. Eldred and J. Burkardt, editors. Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification. American Institute of Aeronautics and Astronautics, 2009.
[12] Howard Elman. Lecture notes: Numerical methods for mathematical models posed with uncertainty.
[13] Oliver G. Ernst, Antje Mugler, Hans-Jörg Starkloff, and Elisabeth Ullmann. On the convergence of generalized polynomial chaos expansions. Mathematical Modelling and Numerical Analysis, M2AN 46:317–339, 2012.
[14] R. Finkel and J. L. Bentley. Quad trees: a data structure for retrieval on composite keys. Acta Inform., 4:1–9, 1974.
[15] F. Gao and C. Chi. Numerical solution of nonlinear Burgers’ equation using high accuracy multi-quadric quasi-interpolation. Appl. Math. Comput., 229:414–421, 2014.
[16] R.J. Gelinas and S. K. Doss. The moving finite element method: applications to general partial differential equations with multiple large gradients. J. Comput. Phys., 40:202–249, 1981.
[17] Marc Gerritsma, Jan-Bart van der Steen, Peter Vos, and George Karniadakis. Time-dependent generalized polynomial chaos. Journal of Computational Physics, 229:8333–8363, 2010.
[18] Roger Ghanem. The nonlinear Gaussian spectrum of log-normal stochastic process and variables. J. Appl. Mech, 66:964–973, 1999.
[19] Roger G. Ghanem and Pol D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer New York, 1991.
[20] Daniel Hackmann. Solving the Black Scholes equation using a finite difference method. http://math.yorku.ca/~dhackman/.
[21] Chuan-Hsiang Han and Yu-Tuan Lin. Accelerated variance reduction methods on GPU. In Proceedings of the 20th IEEE International Conference on Parallel and Distributed Systems, 2014.
[22] H. Han. Private communication with Prof. Han.
[23] H. Han and Z. Huang. A tailored finite point method for the Helmholtz equation with high wave numbers in heterogeneous medium. J. Comp. Math., 26:728–739, 2008.
[24] H. Han and Z. Huang. Tailored finite point method for a singular perturbation problem with variable coefficients in two dimensions. J. Sci. Comp., 41:200–220, 2009.
[25] H Han, Z Huang, and RB Kellogg. A tailored finite point method for a singular perturbation problem on an unbounded domain. J Sci Comp, 36:243–261, 2008.
[26] H. Han, J.J.H. Miller, and M. Tang. A parameter-uniform tailored finite point method for singularly perturbed linear ODE systems. J. Comp. Math, 31:422–438, 2013.
[27] H. Han, Y.-T. Shih, and C.-C. Tsai. Tailored finite point method for numerical solutions of singular perturbed eigenvalue problems. Adv. Appl. Math. Mech., 6(3):376–402, 2014.
[28] A. Hashemian and H.M. Shodja. A meshless approach for solution of Burgers’ equation. J. Comput. Appl. Math., 220:226–239, 2008.
[29] I.A. Hassanien, A.A. Salama, and H.A. Hosham. Fourth-order finite difference method for solving Burgers equation. Appl. Math. Comput., 170:781–800, 2005.
[30] Steven L. Heston. A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6(2):327–343, 1993.
[31] E. Hopf. The partial differential equation ut + uux = νuxx. Commun. Pure Appl. Math, 3:201–230, 1950.
[32] P. W. Hsieh, Y. T. Shih, and S. Y. Yang. A tailored finite point method for solving steady MHD duct flow problems with boundary layers. Commun. Comput. Phys., 10:161–182, 2011.
[33] Z. Huang and X. Yang. Tailored finite point method for first order wave equation. J. Sci. Comput., 49:351–366, 2011.
[34] John C. Hull. Options, Futures, and Other Derivatives. Pearson Education, 2009.
[35] Investopedia. http://www.investopedia.com/.
[36] C. Johson and K. Szepessy. On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math. Comput., 49:427–444, 1987.
[37] Davar Khoshnevisan. Probability. AMS, 2007.
[38] Emil Barandt Kærgaard. Spectral methods for uncertainty quantification. Master’s thesis, Technical University of Denmark, 2013.
[39] S. Kutulay, A.R. Bahadir, and A. Özdeş. Numerical solution of the onedimensional Burgers’ equation: Explicit and exact-explicit finite difference methods. J. Comput. Appl. Math., 103:251–261, 1999.
[40] S. Kutulay, A. Esen, and I. Dag. Numerical solutions of the Burgers’ equation by the least-squares quadratic B-spline finite element method. J. Comput. Appl. Math., 167:21–33, 2004.
[41] W. Liao. An implicit fourth-order compact finite difference scheme for onedimensional Burgers’ equation. Appl. Math. Comput., 206(2):755–764, 2008.
[42] W. Liao and J. Zhu. Efficient and accurate finite difference schemes for solving one-dimensional Burgers’ equation. Int. J. Comput. Math., 88(12):2575–2590, 2011.
[43] Yen-Ru Lin. Discrete nonlinear diffusion model for image denoising by using the tailored finite point method. Master’s thesis, Department of Applied Mathematics, National Chung Hsing University, 2014.
[44] Yu-Tuan Lin, Yin-Tzer Shih, and Chih-Ching Tsai. An anisotropic convectiondiffusion model using tailored finite point method for image denoising and compression. Communications in Computational Physics, 2016.
[45] Yu-Tuan Lin, Yin-Tzer Shih, and Hui-Ching Wang. An explicit and implicit tailored finite point method for option pricing simulation. In Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation, pages 189–199. Springer, 2015.
[46] F. Liu and J. Liu. Anisotropic diffusion for image denoising based on diffusion tensors. J. Vis. Commun. Image R., 23:516–521, 2012.
[47] X. Ma and N. Zabaras. High-dimensional stochastic model representation technique for the solution of stochastic pdes. J. Comput. Phys., 229:3884–3915, 2010.
[48] O. P. Le Maître and Omar M. Knio. Spectral Methods for Uncertainty Quantification with Application to Computational Fluid Dynamics. Springer Netherlands, 2010.
[49] Robert C. Merton. Theory of rational option pricing. Bell Journal of Economics and Management Science (The RAND Corporation), 4(1):141–183, 1973.
[50] Motoi J. Namihira. Probabilistic Uncertainty Analysis and Its Applications in Option Models. PhD thesis, Florida State University, 2013.
[51] F. Nobile, R. Tempone, and C. Webster. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal., 2008.
[52] Bernt Arne Odegaard. Financial numerical recipes in c++. http://finance.bi.no/~bernt/gcc_prog/recipes/recipes.pdf, 2014.
[53] University of Maryland. http://www.burgers.umd.edu/burgers.html.
[54] A. O’Hagan. Polynomial chaos: a tutorial and critique from a statisticians perspective. http://www.tonyohagan.co.uk/academic/pdf/Polynomial-chaos.pdf, 2013.
[55] S. Oladyshkin and W. Nowak. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliability Engineering & System Safety, 106:179–190, 2012.
[56] K. Pandey, L. Verma, and A.K. Verma. On a finite difference scheme for Burgers’ equation. Appl. Math. Comput., 215:2206–2214, 2009.
[57] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell., 12:629–639, 1990.
[58] Mass Per Pettersson, Gianluca Iaccarino, and Jan Nordström. Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Springer International Publishing, 2015.
[59] T. Preußer and M. Rumpf. An adaptive finite element method for large scale image processing. Journal of Visual Communication and Image Representation, 11(2):183–195, 2000.
[60] Roland Pulch and Cathrin van Emmerich. Polynomial chaos for simulating random volatilities. Mathematics and Computers in Simulation, 80(2):245–255, 2009.
[61] Mark Richardson. Numerical Methods for Option Pricing. University of Oxford, 2009.
[62] Y. Shih, C. Chien, and C. Chuang. An adaptive parameterized block-based singular value decomposition for image de-noising and compression. Appl. Math. Comput., 218:10370–10385, 2012.
[63] Y. Shih and H. C. Elman. Modified streamline diffusion schemes for convection diffusion problems. Meth. Appl. Mech. Eng., 147:137–151, 1999.
[64] Y. Shih, C. Rei, and H. Wang. A novel PDE based image restoration: convection-diffusion equation for image denoising. J. Comput. Appl. Math., 231:771–779, 2009.
[65] Y.-T. Shih, R. B. Kellogg, and Y. Chang. Characteristic tailored finite point method for convection dominated convection-diffusion-reaction problems. J. Sci. Comput., 47:189–215, 2011.
[66] Y.-T. Shih, R. B. Kellogg, and P. Tsai. A tailored finite point method for convection-diffusion-reaction problems. J. Sci. Comput., 43(2):239–260, 2010.
[67] YT Shih and HC Elman. Iterative methods for stabilized discrete convection diffusion problems. IMA, Numerical Analysis, 20(3):333–385, 2000.
[68] Albert N. Shiryaev. Problems in Probability. Springer, 2012.
[69] Steven Shreve. Stochastic Calculus for Finance II: Continuous Time Models. Springer-Verlag New York, 2004.
[70] A. N. Tikhonov. Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl., 4:1035 – 1038, 1963.
[71] Chih-Ching Tsai, Yin-Tzer Shih, Yu-Tuan Lin, and Hui-Ching Wang. Tailored finite point method for solving one-dimensional Burgers’ equation. International Journal of Computer Mathematics, 2016.
[72] J. Weickert. Anisotropic diffusion in image processing. ECMI Series, Teubner-Verlag, Stuttgart, Germany, 1998.
[73] Joachim Weickert. Anisotropic Diffusion in Image Processing. PhD thesis, University of Copenhagen, Copenhagen, Denmark, 1998.
[74] N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60:897–936, 1938.
[75] WikiPedia. https://en.wikipedia.org.
[76] W.L. Wood. An exact solution for Burgers’ equation. Comm. Numer. Meth. Eng., 22(7):797–798, 2006.
[77] Dongbin Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, 2010.
[78] Dongbin Xiu and G. E. Karniadakis. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM. J. Sci. Comput., 24:619–644, 2002.
[79] Dongbin Xiu and Jie Shen. Efficient stochastic galerkin methods for random diffusion equations. Journal of Computational Physics, 228:266 – 281, 2009.
[80] P.-G. Zhang and J.-P. Wang. A predictor-corrector compact finite difference scheme for Burgers’ equation. Appl. Math. Comput., 219:892–898, 2012.
|