( 您好!臺灣時間:2021/05/13 01:28
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Teng-Fu Tsao
論文名稱(外文):A Feasibility Study of Using Four Steady-state Free Precession (SSFP)-based Magnetic Resonance (MR) Imaging Sequences to Detect Acute Venous Thrombosis in a Rabbit Model
外文關鍵詞:magnetic resonance imagingrabbitsteady-state free processionthrombosis
  • 被引用被引用:0
  • 點閱點閱:37
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
在磁振造影臨床應用中,穩定態自由旋進(steady-state free precession,SSFP)方法,例如真穩定態旋進快速影像(true fast imaging with steady-state precession,true FISP),產生亮血(bright blood)影像,存在著快速資料收集(data acquisition)、高的訊雜比(signal-to-noise ratios,SNRs)、高的對雜比(contrast-to-noise ratios,CNRs)、還有無需對比劑(contrast media)的優點。然而,因為穩定態自由旋進(SSFP)產生的組織對比(tissue contrast)依賴磁振造影中的T2/T1數值,當血栓(thrombus)的T2/T1特性與血池(或譯為血液)相近時,用此方法可能無法偵測出血栓的存在。我們的目的是評估使用四種不同的穩定態自由旋進(SSFP)為基礎的影像技術來偵測急性靜脈血栓的可行性,並以黑血(black-blood)T1加權影像(T1WI)作為參考。
本實驗使用四種不同種類的穩定態自由旋進為基礎的磁振造影(magnetic resonance imaging,MRI)研究六隻兔子的靜脈血栓,包括:(a)真穩定態旋進快速影像(true FISP),(b)真穩定態旋進快速影像(true FISP)倂有非選擇性的反轉回復(non-selective inversion recovery,NSIR),(c)真穩定態旋進快速影像(true FISP)倂有切面選擇性的反轉回復(slice-selective inversion recovery,SSIR),及(d)減贅(subtraction)的真穩定態旋進快速影像(true FISP)。
在24個血栓中,使用真穩定態旋進快速影像(true FISP)漏看了16個血栓(66.7%)。藉由真穩定態旋進快速影像倂有非選擇性的反轉回復(true FISP with NSIR),真穩定態旋進快速影像倂有切面選擇性的反轉回復(true FISP with SSIR),及減贅的真穩定態旋進快速影像(subtraction true FISP)的使用,這樣的情況可以改善,而後三者的血栓偵測率(thrombus detection rates,分別為91.7 %, 95.8 %, 100 %),較真穩定態旋進快速影像(true FISP)的血栓偵測率(33.3%)為高,具有統計學上的意義(三者的P值皆小於0.001)。然而,真穩定態旋進快速影像倂有非選擇性的反轉回復(true FISP with NSIR)存在較差的黑血效果(black-blood effect),其對雜比(CNRs)(-1.0 ± 1.2)較T1加權影像(T1WI)的對雜比(CNRs)(-3.8 ± 0.6)為高,具有統計學上的意義(P值小於0.001),因此限制了它未來的應用。
相較於真穩定態旋進快速影像(true FISP)或真穩定態旋進快速影像倂有非選擇性的反轉回復(true FISP with NSIR),在血管磁振造影(MRI)方法中,真穩定態旋進快速影像倂有切面選擇性的反轉回復(true FISP with SSIR)或減贅的真穩定態旋進快速影像(subtraction true FISP)較可行。對於影像中暗的(hypo-intense)急性血栓與亮的(bright)血液之間,後兩種影像方法有較高的對比度(contrasts)。

In magnetic resonance (MR) clinical applications, steady-state free precession (SSFP) techniques, such as true fast imaging with steady-state precession (true FISP), produce bright blood images with rapid data acquisition, high signal-to-noise ratios (SNRs), and high contrast-to-noise ratios (CNRs), without the need of contrast media. However, when the thrombus has T2/T1 characteristics similar to those of the blood pool, SSFP techniques may fail to detect it since the tissue contrast produced with SSFP sequences depends on T2/T1. Our aim was to evaluate the feasibility of different SSFP-based imaging techniques for the detection of acute venous thrombosis using black-blood T1-weighted imaging (T1WI) as a reference.
Six rabbits with venous thrombosis were studied using four types of SSFP-based MR images including: (a) true FISP, (b) true FISP with non-selective inversion recovery (NSIR), (c) true FISP with slice-selective inversion recovery (SSIR), and (d) subtraction true FISP.
Sixteen of 24 (66.7 %) thrombi were overlooked using true FISP. This situation was improved by using true FISP with NSIR, true FISP with SSIR, or subtraction true FISP with significantly higher thrombus detection rates (91.7 %, 95.8 %, 100 %, respectively) than true FISP (33.3 %) (all P values < 0.001). However, true FISP with NSIR had a lower black blood effect with significantly higher CNRs (-1.0 ± 1.2) than T1WI (-3.8 ± 0.6) (P < 0.001) which limited its further application.
True FISP with SSIR or subtraction true FISP are more feasible for vascular MR images with high contrasts between hypo-intense acute thrombi and bright bloods than that in true FISP or true FISP with NSIR.

摘要 i

1. Introduction - 1 -

2. Materials and Methods - 3 -
2.1 The animal model - 3 -
2.2 The MR scan protocol - 9 -
2.3 Image post-processing and data analysis - 13 -
2.4 Statistical analysis - 15 -

3. Results - 16 -
3.1 Imaging characteristics - 17 -
3.2 Imaging of thrombosis using different MR pulse sequences - 19 -

4. Discussion - 29 -
4.1 Previous MR studies of thrombosis in animal models - 29 -
4.2 true FISP for acute venous thrombosis - 30 -
4.3 true FISP with NSIR for acute venous thrombosis - 31 -
4.4 true FISP with SSIR for acute venous thrombosis - 32 -
4.5 Subtraction true FISP for acute venous thrombosis - 33 -
4.6 Other phenomena related to SSFP-based sequences - 34 -
4.7 Study limitations - 35 -

5. Conclusions - 36 -

6. References - 37 -

Appendix - 40 -
List of Abbreviations中英文縮寫對照表 (按字母排列) - 40 -

Appendix - 41 -
Diagnostic Performance of Combined Contrast-enhanced Magnetic Resonance Angiography and Phase-contrast Magnetic Resonance Imaging in Suspected Subclavian Steal Syndrome - 41 -

1. Miyazaki M, Lee VS. Nonenhanced MR angiography. Radiology. 2008;248:20-43.
2. Hartung MP, Grist TM, François CJ. Magnetic resonance angiography: current status and future directions. J Cardiovasc Magn Reson. 2011;13:19.
3. Finn JP, Nael K, Deshpande V, Ratib O, Laub G.. Cardiac MR imaging: state of the technology. Radiology. 2006;241:338-54.
4. Pereles FS, McCarthy RM, Baskaran V, Carr JC, Kapoor V, Krupinski EA, et al. Thoracic aortic dissection and aneurysm: evaluation with nonenhanced true FISP MR angiography in less than 4 minutes. Radiology. 2002;223:270-4.
5. Pedrosa I, Morrin M, Oleaga L, Baptista J, Rofsky NM. Is true FISP imaging reliable in the evaluation of venous thrombosis? AJR Am J Roentgenol 2005;185:1632-40.
6. Maintz D, Botnar RM, Manning WJ, Stuber M. Images in cardiovascular medicine. Pitfalls in coronary magnetic resonance angiography: right coronary artery occlusion. Circulation. 2005;111:e94-6.
7. Bitar R, Leung G, Perng R, Tadros S, Moody AR, Sarrazin J, et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics. 2006;26:513-37.
8. Corti R, Osende JI, Fayad ZA, Fallon JT, Fuster V, Mizsei G, et al. In vivo noninvasive detection and age definition of arterial thrombus by MRI. J Am Coll Cardiol. 2002;39:1366-73.
9. Kuroiwa Y, Yamashita A, Miyati T, Furukoji E, Takahashi M, Azuma T, et al. MR signal change in venous thrombus relates organizing process and thrombolytic response in rabbit. Magn Reson Imaging. 2011;29:975-84.
10. Moody AR, Liddicoat A, Krarup K. Magnetic resonance pulmonary angiography and direct imaging of embolus for the detection of pulmonary emboli. Invest Radiol. 1997;32:431-40.
11. Moody AR, Pollock JG, O''Connor AR, Bagnall M. Lower-limb deep venous thrombosis: direct MR imaging of the thrombus. Radiology. 1998;209:349-55.
12. Westerbeek RE, Van Rooden CJ, Tan M, Van Gils AP, Kok S, De Bats MJ, et al. Magnetic resonance direct thrombus imaging of the evolution of acute deep vein thrombosis of the leg. J Thromb Haemost. 2008;6:1087-92.
13. Glockner JF, Takahashi N, Kawashima A, Woodrum DA, Stanley DW, Takei N, et al. Non-contrast renal artery MRA using an inflow inversion recovery steady state free precession technique (Inhance): comparison with 3D contrast-enhanced MRA. J Magn Reson Imaging. 2010;31:1411-8.
14. Miyazaki M, Isoda H. Non-contrast-enhanced MR angiography of the abdomen. Eur J Radiol. 2011;80:9-23.
15. Huang TY, Huang IJ, Chen CY, Scheffler K, Chung HW, Cheng HC. Are TrueFISP images T2/T1-weighted? Magn Reson Med. 2002;48:684-8.
16. Sechtem U, Pflugfelder PW, White RD, Gould RG, Holt W, Lipton MJ, et al. Cine MR imaging: potential for the evaluation of cardiovascular function. AJR Am J Roentgenol. 1987;148:239-46.
17. Krinsky GA, Rofsky NM, DeCorato DR, Weinreb JC, Earls JP, Flyer MA, et al. Thoracic aorta: comparison of gadolinium-enhanced three-dimensional MR angiography with conventional MR imaging. Radiology. 1997;202:183-93.
18. Leach JL, Fortuna RB, Jones BV, Gaskill-Shipley MF. Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. Radiographics. 2006;26 Suppl 1:S19-41.
19. Deshpande VS, Shea SM, Li D. Artifact reduction in true-FISP imaging of the coronary arteries by adjusting imaging frequency. Magn Reson Med. 2003;49:803-9.
20. White EM, Edelman RR, Wedeen VJ, Brady TJ. Intravascular signal in MR imaging: use of phase display for differentiation of blood-flow signal from intraluminal disease. Radiology. 1986;161:245-9.
21. Dinsmore RE, Wedeen V, Rosen B, Wismer GL, Miller SW, Brady TJ. Phase-offset technique to distinguish slow blood flow and thrombus on MR images. AJR Am J Roentgenol. 1987;148:634-6.
22. Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics. 2002;22:651-71.
23. Cohen MD, McGuire W, Cory DA, Smith JA. Society for Pediatric Radiology John Caffey Award. MR appearance of blood and blood products: an in vitro study. AJR Am J Roentgenol. 1986;146:1293-7.

第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔